

Editorial Comment

Prostacyclin, High Density Lipoproteins, and Myocardial Ischemia

Allan M. Lefer, PhD

Ever since the discovery of prostacyclin (originally termed PGX by Moncada et al but later designated PGI2), there has been considerable interest in its role in cardiovascular homeostasis. Despite the fact that PGI2 is not cleared by the lung in contrast to virtually all other prostaglandins, its circulating concentration is very low. This low circulating PGI2 level is in part due to its instability in aqueous media at physiological pH, its rapid rate of metabolism, and its uptake by target tissues. The half-life of prostacyclin in blood is generally acknowledged to be about 3 minutes. Despite its short half-life, prostacyclin has been accorded a prominent role in vascular homeostasis because it has potent biological effects that act as a defensive humoral agent opposing the untoward effects of thromboxane A2 (TXA2). In this connection, 10 nM prostacyclin can totally block the marked degree of platelet aggregation induced by 0.5 mM arachidonic acid. In so doing, PGI2 blocks the formation of TXA2 by more than 80%.

An important piece of the puzzle related to the effectiveness of PGI2 was recently discovered by Yui et al, who identified the hitherto-unknown “prostacyclin stabilizing factor” (PSF) as apolipoprotein (apo) A-1, a major protein constituent of high density lipoprotein (HDL) particles present in blood. This research group has just extended their work in an article in this issue of Circulation by showing that the apo A-1 level, and thus prostacyclin stabilization, is markedly lower in patients experiencing unstable angina and the acute phase of myocardial infarction and to a lesser extent in patients experiencing angina pectoris and the later phases of myocardial infarction. The authors claim that reduced apo A-1 and lower PGI2 stabilization “may play an important role in the pathogenesis of atherosclerosis and thrombus formation during an acute coronary event.” Although the data are from a relatively small patient population, these findings are of great potential for determining the protective role of HDL and PGI2 in the pathogenesis of coronary artery disease, particularly in patients with atherosclerosis or acute myocardial infarction.

Examine some of the mechanisms by which HDL and PGI2 protect in acute myocardial infarction and atherosclerosis. HDL may protect in acute myocardial ischemia by a variety of mechanisms, including 1) transport of free cholesterol from the blood to the liver where it is esterified by lecithin cholesterol acyl transferase (LCAT). The apo A-1 component of HDL promotes activation of LCAT. The net effect is the removal of free cholesterol from the circulation, leaving less cholesterol to be deposited inside the walls of blood vessels; 2) preservation of endothelial cell function including the release of endothelium-derived relaxing factor (EDRF), a substance produced by endothelial cells that is an important contributor to vasodilation, inhibition of platelet aggregation, and prevention of neutrophil adherence. Both cholesterol deposits in blood vessels and low density lipoprotein (LDL), particularly in its oxidized form, inhibit the release of EDRF. HDL tends to oppose these EDRF-inhibitory effects of LDL and free cholesterol; 3) HDL promotes the release of PGI2 from endothelial cells, and as shown by Aoyama et al in this issue of Circulation, HDL stabilizes circulating PGI2.

This latter effect of HDL in stabilizing PGI2 is very important because prostacyclin has a variety of actions that are important protective mechanisms during angina, acute myocardial ischemia, and the development of myocardial infarction. In this connection, exogenously administered PGI2 has been shown to preserve myocardial integrity in acute myocardial ischemia in a variety of species. Since the pioneering paper of Ogletree et al a decade ago showing cardioprotection in cats with acute myocardial ischemia, the beneficial effects of PGI2 in myocardial ischemia have been confirmed in dogs, rabbits, rats, and humans. Thus, the findings that HDL exerts effects that enhance both the release and the stabilization of PGI2 is of considerable potential significance, particularly since reduced apo

The opinions expressed in the editorial comment do not necessarily express those of the editors or of the American Heart Association.

From the Department of Physiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.

Address for correspondence: Allan M. Lefer, PhD, Department of Physiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107.
TXA2 concentrations do not vasodilate, prostacyclin is a potent inhibitor of platelet aggregation\(^1\)\(^-\)\(^6\) and can even disaggregate clumps of aggregated platelets.\(^4\) Perhaps even more important in myocardial ischemia, PG\(_I\)\(_2\) is a potent membrane-stabilizing agent of both plasma membranes and lysosomal membranes.\(^5\) This effect may be related to preservation of myocardial cell membrane phospholipids during acute myocardial ischemia.\(^6\) In addition, PG\(_I\)\(_2\) counteracts the proischemic effects of TXA\(_2\), the proaggregatory, vasoconstrictor, and cytolytic eicosanoid produced largely by activated platelets.\(^20\) Because PG\(_I\)\(_2\) inhibits TXA\(_2\) formation in human platelets\(^5\) and exerts a profile of effects opposing the proischemic effects of TXA\(_2\), this action of PG\(_I\)\(_2\) may be important in the pathogenesis of myocardial ischemia. Moreover, PG\(_I\)\(_2\) acts synergistically with EDRF to inhibit platelet aggregation and exert other cytoprotective effects so that lower concentrations of PG\(_I\)\(_2\) are more effective in the presence of an intact endothelium that releases EDRF, presently thought to be nitric oxide.\(^21\)

All of the above cited actions of PG\(_I\)\(_2\) are acute effects occurring over seconds and minutes. Prostacyclin also exerts chronic effects on cholesterol metabolism that may be potentially important in preventing myocardial ischemia. First, it inhibits platelet mitogen release (e.g., platelet-derived growth factor [PDGF]),\(^22\) thus retarding one of the initial steps in atherogenesis. Second, PG\(_I\)\(_2\) reduces cholesterol esters present in foam cells during atherogenesis and facilitates the transport of cholesterol to the liver via HDL.\(^23\) These important chronic effects of PG\(_I\)\(_2\) occurring over a long time-span can be a major factor in retarding atherosclerosis, which clearly can be a precipitating factor in angina and myocardial ischemia.

While the above matrix of effects of PG\(_I\)\(_2\) is impressive, there remain several unanswered questions so the findings of Aoyama et al.\(^7\) must be viewed with caution. First, are there corresponding changes in TXA\(_2\) concentration or TXA\(_2\) sensitivity in the coronary microvasculature during angina and myocardial ischemia? PG\(_I\)\(_2\) is one portion of the cyclooxygenase pathway of arachidonic acid metabolism; TXA\(_2\) is another important component. Considerable evidence exists that the PG\(_I\)\(_2\)-to-TXA\(_2\) ratio is a critical factor in coronary artery disease and related phenomena. Thus, the relation between apo A-I and TXA\(_2\) production, metabolism, receptor density and sensitivity may be particularly important because cholesterol has been shown to increase TXB\(_2\) production in human platelets.\(^25\) Second, how relevant are the PG\(_I\)\(_2\)-stabilizing effects in the presence of endothelial injury with or without atherosclerosis? Is enough PG\(_I\)\(_2\) produced by damaged endothelium or in atherosclerosis to be stabilized? Is synergy between EDRF and PG\(_I\)\(_2\) essential for an effective concentration of PG\(_I\)\(_2\)? Third, is there clear evidence that PG\(_I\)\(_2\) does not normally circulate at concentrations that exert biological effects.\(^2\)\(^-\)\(^3\) Is the circulating PG\(_I\)\(_2\) an “overflow mechanism”? Does PG\(_I\)\(_2\) exert a coating effect on the endothelium, contributing to its “antithrombotic surface” without actually circulating? Finally, does the finding by Aoyama et al.\(^7\) obtained in Japanese adults apply to other populations (e.g., Western society) on a different diet? Is this a universal finding, or is it a regional one? Additional investigation will undoubtedly be addressed to answer these questions. Nevertheless, at this time, another important piece of the eicosanoid puzzle relating to cardiovascular disease appears to have been provided by the work of Aoyama and coworkers.\(^7\)

References

1. Moncada S, Gryglewski RJ, Bunting S, Vane JR: A lipid peroxide inhibits the enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides the substance (prostaglandin X) which prevents platelet aggregation. Prostaglandins 1976;12:715–733


Prostacyclin, high density lipoproteins, and myocardial ischemia.

A M Lefer

doi: 10.1161/01.CIR.81.6.2013

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1990 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/81/6/2013.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/