Platelets, Vasoconstriction, and Nitroglycerin During Arterial Wall Injury
A New Antithrombotic Role for an Old Drug

Jules Y.T. Lam, MD, James H. Chesebro, MD, and Valentin Fuster, MD

Endothelial injury in vivo is associated with platelet deposition and a localized platelet-dependent vasoconstrictive response. To assess the influence of nitroglycerin on platelets and vasoconstriction, quantitative \(^{111}\)In-labeled platelet deposition (no platelets \(\times 10^9/cm^2\)) of the injured segment and the degree of angiographic vasoconstriction (percent diameter narrowing proximal and distal to the dilated segment) produced during injury by balloon angioplasty of the common carotid arteries were studied in heparinized normal pigs that were sacrificed immediately after the procedure. In deeply injured (injury extending through the internal elastic lamina) compared with mildly injured (deendothelialization only) arteries, there was both greater platelet deposition (63.8 vs. 6.9, \(p = 0.04\)) and more vasoconstriction (30% vs. 19%, \(p = 0.02\)). In the presence of deep arterial wall injury, nitroglycerin given intravenously at a dose sufficient to lower mean arterial pressure by 9±2% significantly decreased both platelet deposition (16.2 vs. 63.8, \(p < 0.008\)) and the vasoconstrictive response (20 vs. 30%, \(p < 0.02\)) relative to control. However, in the presence of mild arterial wall injury, nitroglycerin decreased vasoconstriction relative to control (10% vs. 19%, \(p < 0.01\)) without causing a significant decrease in the already low level of platelet deposition (5.6 vs. 6.9, respectively; \(p = \text{NS}\)), suggesting a direct smooth muscle relaxant effect of nitroglycerin. This is the first reported in vivo effectiveness of nitroglycerin in the reduction of platelet deposition after deep arterial injury. (Circulation 1988;78:712–716)

Nitroglycerin has been used for over a century for the prevention and relief of myocardial ischemia. Its proven clinical efficacy is believed to be related to its vasodilatory effects on the coronary and systemic vascular beds. However, the exact mechanism by which nitroglycerin produces vasodilatation or relieves vasoconstriction remains to be elucidated. Recent in vitro studies have shown that nitrates can relax vascular smooth muscles through an endothelium-independent mechanism, which may explain its remarkable efficacy in relieving vasoconstriction that is often localized to the site of atherosclerosis where the endothelium may be injured or dysfunctional. Disruption of the endothelial barrier also leads to localized platelet deposition that may contribute to the vasoconstrictive response by releasing potent vasoconstrictive substances. Nitroglycerin inhibits platelet aggregation in vitro, and this antiplatelet effect may provide an additional mechanism for decreasing vasoconstriction that is localized to the site of arterial injury. However, it is unclear whether nitroglycerin can inhibit platelet function in vivo and thus alter the local platelet–arterial wall response to injury and inhibit injury-related and platelet-dependent vasoconstriction. This study assesses the efficacy of nitroglycerin in decreasing platelet deposition and the localized vasoconstriction after arterial wall injury in vivo.

Materials and Methods

Experimental Procedure

Twenty-one normal pigs 3–4 months old (weight, 28–35 kg) of the Babcock four-way cross stock (mixture of Landrace, Yorkshire, Hampshire, and Duroc breeds) were sedated by intramuscular injection of 300 mg ketamine (Ketaset, Bristol, Evansville, Indiana), intubated after a small amount of ether (ether USP, J.T. Baker, Miami, Florida) was given by inhalation, and maintained in anesthesia by mechanical ventilation (Harvard respirator) with 0.5% halothane (Fluothane, Ayerst, New York, New York) in room air. The electrocardiogram and
intra-arterial pressure were continuously monitored throughout the procedure with a Honeywell multi-
channel recorder. Injury of the common carotid arteries was performed by balloon angioplasty as
described. An 8F balloon dilatation catheter (Meditech polyethylene balloon, 8 mm × 3 cm) was inserted
through a right femoral arteriotomy under full heparinization (single bolus, 100 USP units/kg i.v.).
The catheter was then advanced into the right and left common carotid arteries under fluoroscopic
guidance for initiation of angioplasty of the arterial segment located between the fourth and fifth verte-
brae. Five inflations were performed, 30 seconds each at 6 atm (Meditech pressure manometer) with
60-second intervals between inflations. The angiographic lumen diameter before dilatation was 5–6
mm; during dilatation, the diameter of the inflated balloon within the artery was not more than 10%
bigger than the original arterial lumen (measured on plain x-ray films taken during the procedure and
compared with predilatation angiograms).

Quantitation of Vasoconstriction

To quantitate the severity of localized vasocon-
striction immediately proximal and distal to the
dilatation site, angiograms of the common carotid
arteries were obtained in all pigs before and after
the dilatation procedure; for these two selective
intra-arterial injections at the beginning and end of
the procedure, 6.0 ml meglumine diatrizoate
(Renografin-76, Squibb, Princeton, New Jersey)
was used with exposure factors of 90 kV, 200 mA,
and 20 msec. The degree of vasoconstriction was
expressed as the mean of the maximal narrowing of
the lumen diameter measured with a caliper to the
nearest 0.1 mm, just proximal and just distal to the
dilated segment as measured on the postdilatation
angiogram, and expressed as percentages of the
respective arterial dimension before dilatation.

Therapy With Nitroglycerin

Eleven pigs randomly assigned for active drug
treatment received nitroglycerin intravenously
(Tridil, American Critical Care, McGaw Park, Illi-
nois) starting 30 minutes before the angioplasty
procedure, and administration was continued through-
out the procedure until the animals were
sacrificed. The nitroglycerin was prepared immedi-
ately before use in glass bottles and infused through
polyethylene infusion sets. The therapeutic dose of
nitroglycerin in pigs is unknown. Because an arbi-
trary dose may not be adequate or optimal in all pigs
and because there may be no correlation between
the rate of nitroglycerin infusion and plasma nitro-
glycerin concentration, nitroglycerin was individ-
ually titrated to produce a 10% fall in mean arterial
pressure. This hemodynamic response, which has
been shown to be associated with beneficial effects
in both humans and experimental animals, required an infusion of 1,151 ± 235 µg/min nitrogly-
cerin in the pigs. Although this rate may be higher
than that usually infused in humans (and may reflect
a different pharmacokinetic and pharmacodynamic
profile in pigs as opposed to humans), doses up to
1,020 µg/min have been infused to achieve clinical
benefit in patients. Ten pigs randomly assigned to
nitroglycerin vehicle (n = 4, 2.4% alcohol, 2.4%
propylene glycol) or 5% dextrose in water (n = 6)
served as controls. Platelet deposition and vasocon-
striction in the vehicle-treated group did not differ
from the dextrose in water-treated group.

Tissue Preparation

At the completion of the angioplasty procedure,
the animals were given a lethal dose of sodium
pentobarbital and perfused antegradely with 2%
glutaraldehyde and 1% paraformaldehyde in 0.1 M
cacodylate (pH 7.25) at 100 mm Hg for 15 minutes
to fix the arteries in situ. The carotid arteries were
then removed, cleaned of all adventitia, and pre-
pared for analysis.

The dilated portion of the fixed artery was easily
identified because of the in situ fixation that showed
the regions of vasoconstriction proximally and dis-
tally to the dilated area and from the spot films
taken during and after the angioplasty. The dilated
portion was divided into two equal segments, each
about 1.5 cm; segments were also taken from the
distal uninvolved artery.

Histopathology

From each arterial segment, two- or three-ring
sections were removed and stained with hematoxy-
lin and eosin and Lason’s elastin-Van Gieson
stain. The histological sections were examined by
two investigators to provide consensus evaluation
of the presence of medial tears. An intimal tear
extending through the internal elastic lamina into
the media was defined as deep arterial wall injury;
endothelial denudation without a tear through the
internal elastic lamina was mild injury.

Quantitation of Platelet Deposition

Autologous platelets were labeled with In
(tropolone) (300–400 µCi) and injected into the
animal 18–24 hours before angioplasty. The quanti-
tative platelet deposition on the arterial segments
was calculated from the blood platelet counts, and
the In activity on the arterial wall (arterial seg-
ments counted in a well counter) and in blood, as
described. The number of platelets per unit area
(×10/cm²) was then obtained by dividing the num-
ber of deposited platelets per arterial segment by
the arterial wall surface area (area = π × d × ℓ; d is diam-
eter of segment and ℓ is length of arterial segment).

Statistical Analysis

All values are expressed as mean ± SEM unless
otherwise indicated. Differences between group
means were assessed by a two-tailed Student’s
group t test; p<0.05 was considered significant.
Localized vasoconstriction was observed immediately proximal and distal to the dilation site where there was endothelial denudation as previously described.9

Control Group

With deep arterial wall injury, the vasoconstrictive response (30 ± 3%) and the platelet deposition (63.8 ± 18.1) were significantly higher compared with mild arterial wall injury where the vasoconstrictive response (19 ± 2%) and platelet deposition (6.9 ± 0.5) were lower (p = 0.02 and p = 0.04, respectively). Neither platelet deposition nor vasoconstriction were observed in the distal uninjured portion of the artery with intact endothelium, as previously described.9

Effects of Nitroglycerin

In the presence of deep arterial wall injury, nitroglycerin significantly decreased platelet deposition relative to control (16.2 ± 2.3 vs. 63.8 ± 18.1, p = 0.008) and vasoconstriction relative to control (20 ± 3%, n = 16 arteries, vs. 30 ± 3%, n = 13 arteries, p = 0.02) (Table 1). In the presence of mild arterial wall injury, nitroglycerin did not decrease platelet deposition relative to control (5.6 ± 0.9 vs. 6.9 ± 0.5) but did significantly decrease the vasoconstriction relative to control (10 ± 1%, n = 6 arteries, vs. 19 ± 2%, n = 7 arteries, p = 0.01) (Table 1). During therapy with nitroglycerin, the vasoconstrictive response was also significantly greater in the arteries with deep injury compared with mild injury (20 ± 3% vs. 10 ± 1%, respectively, p < 0.04) and was associated with greater residual platelet deposition in the deeply injured compared with the mildly injured group (16.2 ± 2.3 vs. 5.6 ± 0.9, respectively; p < 0.01) even though the decrease in mean arterial pressure was the same in both groups (9 ± 2%).

Discussion

This study demonstrates a new and unexpected finding for an old vasodilator drug, namely, that intravenous nitroglycerin can be a potent and effective platelet inhibitor agent in vivo; this supports its inhibition of platelet aggregation in vitro14–16 and its inhibition of whole blood platelet aggregation in vivo at therapeutic doses (titrated to a 10-mm Hg reduction in blood pressure) in humans when measured at the bedside within 60 seconds of sampling (but not after 30 minutes of incubation).22 As expected, it can also decrease vasoconstriction in the presence of deep arterial wall injury. However, the adherence of a single layer of platelets to the exposed subendothelium in the presence of mild injury appears resistant to inhibition by nitroglycerin as we have also observed with other platelet inhibitor therapies.9,23

Nitroglycerin also produced a significant decrease in the vasoconstrictive response associated with arterial wall injury. This is consistent with its potent endothelium-independent vasodilator properties.5,6 In this model, we have shown that there is also a platelet-dependent component to this vasoconstrictive response,9 and aspirin, an antiplatelet agent with no known vasodilator properties, can decrease this vasoconstrictive response by decreasing platelet deposition.9 Thus, in addition to its direct vascular–smooth muscle relaxant effect, nitroglycerin probably has a further vasodilating effect mediated by its antiplatelet properties, but in this study we had no way to determine how much of the vasodilation was endothelium-independent and how much was platelet-dependent. We can only infer that a platelet-dependent component was present based on the greater platelet deposition and vasoconstriction after deep compared with mild injury (with and without nitroglycerin) and our previous study with low-dose aspirin.9

The vasodilator response to nitroglycerin, not related to a decrease in platelet deposition in mild injury probably represents its direct action on vascular smooth muscle causing relaxation, an intrinsic property of nitroglycerin likely related to cyclic guanosine monophosphate (cGMP) generation.5,6
Thus, at least two mechanisms may contribute to the decrease in vasoconstriction at the site of arterial wall injury in vivo by nitroglycerin: first, a direct smooth muscle relaxant effect independent of the presence of the endothelium and independent of platelets and, second, a decrease in platelet deposition and the platelet-dependent vasoconstriction.

Localized vasoconstriction after endothelial injury in vivo may result from endothelial injury.24 This may reduce endothelium-derived relaxation factor(s),25 and prostacyclin (PGI2) production,26 or may promote platelet deposition and release of platelet-derived vasoconstrictive substances.7–13 The relative contribution of these components is unknown. Localized vasoconstriction is also influ-

Table 1. Change in Arterial Diameters (Vasoconstriction) Before and Immediately After Angioplasty

<table>
<thead>
<tr>
<th>Arterial diameters (± SEM) after and before angioplasty</th>
<th>Deep injury</th>
<th>Mild injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTG (n = 16)</td>
<td>Control (n = 13)</td>
<td></td>
</tr>
<tr>
<td>Percent change</td>
<td>NTG (n = 6)</td>
<td>Control (n = 7)</td>
</tr>
<tr>
<td>(mm before/ mm after)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 ± 0.1/ 5.1 ± 0.1</td>
<td>3.6 ± 0.2/ 5.2 ± 0.1</td>
<td>4.8 ± 0.2/ 5.3 ± 0.2</td>
</tr>
<tr>
<td>20 ± 3</td>
<td>30 ± 3</td>
<td>10 ± 1</td>
</tr>
</tbody>
</table>

n, number of carotid arteries; NTG, nitroglycerin.
enced by the vascular smooth muscle responsive-
ness because vasoconstriction does not occur in the
dilated region where necrosis of smooth muscle
cells results but does occur immediately proximal
and distal to the dilated region where there is
endothelial cell denudation but no necrosis of smooth
muscle cells.8,9

Initial in vivo and in vitro studies showed that
nitroglycerin can enhance endothelial prostacyclin
synthesis and inhibit platelet thromboxane A2
production,14-16 but subsequent reports have failed
to confirm an increased prostacyclin synthesis by
endothelial cells.27 Blockade of prostaglandin pro-
duction with indomethacin or aspirin has failed to
attenuate the actions of nitroglycerin.28,29 Increasing
evidence suggests that it is the increase in
intracellular cGMP that may be responsible for the
action of nitroglycerin both on the vascular smooth
muscle6 and on platelets.30

The clinical relevance of the interaction between
platelets, arterial injury, and vasomotor tone lies in
the growing recognition that spontaneous arterial
injury and platelet aggregates may contribute to
such acute ischemic syndromes as unstable angina
pectoris, acute myocardial infarction, and sudden
ischemic death.31 In these conditions, thrombotic and
vasospastic coronary arterial occlusions occur at
the site of atherosclerosis where spontaneous
endothelial and deep injury (plaque rupture)
occur,31-33 and treatment with nitroglycerin has been
beneficial.18-20 Human and experimental canine
studies in arteries externally constricted with a
plastic ring suggest that platelet vasoconstrictor
substances that are released during episodes of
unstable angina contribute, in part, to vasoconstric-
tion and cyclic blood flow variations in the presence
of a severe stenosis and subendothelial or
superficial injury34-39; the cyclic flow variations and
vasoconstriction can be reduced with thromboxane
A2 and serotonin receptor inhibitors or aspirin but
were not reduced by nitroglycerin (not titrated to
lower mean arterial pressure by 10 mm Hg as in pigs
or) or diltiazem.35,38,39 Platelet–arterial
wall interaction also occurs during deep arterial
wall injury induced by balloon angioplasty or occurs
spontaneously both in our porcine model and in
humans, where platelet thrombi and vasospasm
occur8 and nitroglycerin in dosages titrated to blood
pressure may also be efficacious.40,41 Other drugs
that decrease vasoconstriction such as verapamil,
nifedipine, prostacyclin, and receptor blockade to
thromboxane A2 (SQ 29548) and serotonin (ketan-
serin) do not decrease platelet deposition in the
presence of deep arterial injury.42-45 Although the
above experimental results appear to be at odds, the
experimental models differ, and concepts from both
may apply to the corresponding human situation
(deep arterial injury compared with severe stenosis
with associated subendothelial injury).

In this study, we have shown that nitro-
glycerin decreased both platelet deposition and
localized vasoconstriction; this may explain, at
least in part, its beneficial clinical effects. The
antiplatelet effect of nitroglycerin in vivo may
contribute to its vasodilator effect.

Acknowledgments

We gratefully acknowledge the technical
assistance of Brenda I. Wendland, Holly B. Lamb, and James M. Bryne.

References

1. Fam WM, McGregor M: Effect of coronary vasodilator
drugs on retrograde flow in areas of chronic myocardial
2. Thadani U, Fung HL, Darke AC, Parker JO: Oral isosorbide
dinitrate in the treatment of angina pectoris. Dose response
relationship and duration of action during acute therapy.
Circulation 1980;62:491
3. Brown BG, Bolson E, Petersen RB, Pierce CD, Dodge HT:
The mechanisms of nitroglycerin action: Stenosis vasodilata-
tion as a major component of the drug response. Circulation
1981;64:1089
Med 1980;302:1234
AL, Kadowitz PJ, Gruetter LD: Mechanism of vascular
smooth muscle relaxation by organic nitrates, nitrates, nitro-
prusside and nitric oxide: Evidence for the involvement of
S-nitrosothiols as active intermediates. J Pharmacol Exp
Ther 1981;218:739
6. Rapoport RM, Murad F: Agonist-induced endothelium depen-
dent relaxation in rat thoracic aorta may be mediated through
cGMP. Circ Res 1983;52:352
7. Janger P, Selwyn A, Shook TL, Wayne RR, Mudge GH,
Alexander RW, Ganz P: Paradoxical vasoconstriction induced
by acetylcholine in atherosclerotic coronary arteries. N Engl
J Med 1986;315:1046
8. Steele PM, Chesebro JH, Stanson AW, Holmes DR Jr,
Dewanjee MK, Badimon J, Fuster V: Balloon angioplasty:
Natural history of the pathophysiologic response to injury
9. Lam JYT, Chesebro JH, Steele PM, Fuster V: Is vasospasm
related to platelet deposition? Relation in a porcine prepa-
RC: Vasoconstriction: New activity for platelet-derived
11. Ellis EF, Oelz O, Roberts LJ, Payne NA, Sweetman BJ,
Nies AS, Oates JA: Coronary arterial smooth muscle con-
traction by a substance release from platelets: Evidence that
it is thromboxane A2. Science 1976;193:1135
12. Cohen RA, Shepherd JT, Vanhoupt PM: Inhibitory role
of the endothelium in the response of isolated coronary
arteries to platelets. Science 1983;219:273
13. Mullanie RM, Bradley G, Moncada S: The interaction of
platelet-derived mediators on isolated canine coronary arter-
ies. Eur J Pharmacol 1982;84:115
14. Schaefer AI, Alexander RW, Handin RI: Inhibition of platelet
15. Levin RJ, Jaffe EA, Weksler BB, Tack-Goldman K: Nitro-
glycerin stimulates synthesis of prostacyclin by cultured
16. Schror K, Grodzinska DH: Stimulation of coronary vascular
prostacyclin and inhibition of human platelet thromboxane
17. Wei JY, Reid RR: Quantitative determination of trinitro-
18. Flaherty JT, Becker LC, Bulkley BH, Weiss JL, Gersten-
blith G, Kailiman CH, Silverman KJ, Wei JY, Pitt B,
Weisfeldt ML: A randomized prospective trial of intrave-
nous nitroglycerin in patients with acute myocardial infarc-

42. Lam JYT, Chesbro JH, Badimon L, Fuster V: The vasoconstrictive response following arterial angioplasty in pigs: Evidence of vasoconstriction resulting from rather than causing platelet-deposition (abstract). J Am Coll Cardiol 1986;7:12A

43. Lam JYT, Chesbro JH, Badimon L, Fuster V: Serotonin and thromboxane A2 receptor blockade decrease vasoconstriction, but not platelet deposition after deep arterial injury (abstract). Circulation 1986;74(suppl II):II-97

44. Steele PM, Chesbro JH, Holmes DR, Badimon L, Fuster V: Balloon angioplasty in pigs: Comparative effects of platelet-inhibitor drugs (abstract). Circulation 1984;70(suppl II):II-361

Key Words: nitroglycerin • platelet deposition • arterial wall injury
Platelets, vasoconstriction, and nitroglycerin during arterial wall injury. A new antithrombotic role for an old drug.

J Y Lam, J H Chesebro and V Fuster

Circulation. 1988;78:712-716
doi: 10.1161/01.CIR.78.3.712

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1988 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/78/3/712

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/