Measurement of Absolute Myocardial Blood Flow With H$_{2}^{15}$O and Dynamic Positron-Emission Tomography

Strategy for Quantification in Relation to the Partial-Volume Effect

Hidehiro Iida, DSc, Iwao Kanno, PhD, Akira Takahashi, MD, Shuichi Miura, PhD, Matsutaro Murakami, PhD, Kazuhiro Takahashi, MS, Yukihiko Ono, MD, Fumio Shishido, MD, Atsushi Inugami, MD, Noriaki Tomura, MD, Shuichi Higano, MD, Hideaki Fujita, MD, Hiroshi Sasaki, BS, Hiroyuki Nakamichi, BS, Shigenori Mizusawa, BS, Yasushi Kondo, BS, and Kazuo Uemura, MD

An in vivo technique was developed for measuring the absolute myocardial blood flow with H$_{2}^{15}$O and dynamic positron-emission tomography. This technique was based on a new model involving the concept of the tissue fraction, which was defined as the fraction of the tissue mass in the volume of the region of interest. The myocardium was imaged dynamically by positron-emission tomography, starting at the time of intravenous bolus injection of H$_{2}^{15}$O. The arterial input function was measured continuously with a beta-ray detector. A separate image after C15O inhalation was also obtained for correction of the H$_{2}^{15}$O radioactivity in the blood. The absolute myocardial blood flow and the tissue fraction were calculated for 15 subjects with a kinetic technique under region-of-interest analysis. These results seem consistent with their coronary angiographic findings. The mean value of the measured absolute myocardial blood flows in normal subjects was 0.95 ± 0.09 ml/min/g. This technique detected a diffuse decrease of myocardial blood flow in patients with triple-vessel disease. (Circulation 1988;78:104–115)

With the use of suitable tracers and appropriate mathematical models, positron-emission tomography (PET) has the capability of providing noninvasive quantitative measurements of physiological functions in organs. However, in the field of cardiac PET, relatively few measurements have been made of the absolute value of the myocardial blood flow (MBF) and metabolism.1,2 The main reason for this concerns the so-called partial volume effect (PVE),1–6 that is, the spillover effect in radioactivity measurement due to the relatively thin-walled myocardium compared with the spatial resolution of PET,7 and the wall motion of the myocardium. The PVE problem might be resolved if the myocardium could be imaged with an infinitely high-resolution PET scanner with an electrocardiographic gating scan. This is, however, still impractical. In the present study, we developed an alternative approach based on kinetic analysis.

Performing kinetic analysis for dynamic measurements, in general, allows two or more parameter determinations to be made. For example, single-compartment kinetic analysis for a diffusible tracer gives the regional blood flow and the tracer distribution volume in units per space. The distribution volume obtained here is related to the tissue/blood partition coefficient of the tracer and the tissue fraction in the region to be analyzed. In the present study, to exclude the effect of the PVE when analyzing PET data, we developed a modified single-compartment model that included the concept of the tissue fraction. The tissue fraction can be determined from this type of kinetic model analysis, assuming that the tissue/blood partition coefficient can be fixed.

From the Department of Radiology and Nuclear Medicine, Department of Internal Medicine (A.T., Y.O., H.N., S.M.), and Department of Neurology (Y.K.), Research Institute for Brain and Blood Vessels-AKITA, Akita City, Akita, Japan.

Address for correspondence: Hidehiro Iida, DSc, Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels-AKITA, 6-10 Senshu-Kubota-machi, Akita City, Akita 010, Japan.

Received March 31, 1987; revision accepted March 17, 1988.
15O-Labeled water (H_2^{15}O) was used as the tracer in this study because it has the following advantages. The tissue/blood partition coefficient of water is almost the same in each individual, and the distribution is almost uniform in the myocardium. Kety's model8,9 is applicable because H_2^{15}O is chemically inert and diffusible. The measurement is repeatable because of the short half-life of 15O (123 seconds). In practice, H_2^{15}O is easier to handle compared with other diffusible tracers such as inert gases.

Based on the use of H_2^{15}O and dynamic PET, the present study outlines our new approach for overcoming the PVE in cardiac PET studies. Quantitative absolute measurements of MBF were obtained in 15 subjects. A conventional H_2^{15}O autoradiographic method was also examined together with its limitations for quantification.

Subjects and Methods

Model Description

The theory for the measurement of MBF is based on the principle of inert gas exchange developed by Kety.8,9 except that the present model includes the concept of the tissue fraction, α (g/ml), as illustrated in Figure 1; α is defined as the ratio of the tissue mass, W (g), to the volume of the region of interest (ROI), V (ml):

$$\alpha = \frac{W}{V}$$

By assuming a uniform and constant flow, F (ml/min), and instantaneous equilibrium, the tracer balance in the ROI can be expressed by

$$\frac{dQ(t)}{dt} = EF\text{Ca}(t) - \frac{E}{p} Cm(t)$$

where Q(t) (μCi) is the total tracer amount in the ROI, E is the extraction fraction, p (ml/g) is the tissue/blood partition coefficient, Ca(t) (μCi/ml) is the tracer arterial concentration, and Cm(t) (μCi) is the net tissue concentration. Note that Cm(t) is not observable and is related to the measured ROI concentration, Dm(t), by

$$Dm(t) = \alpha Cm(t)$$ (3)

Dividing Equation 2 by V, and incorporating Equations 1 and 3, we have

$$\frac{dDm(t)}{dt} = \alpha Ef\text{Ca}(t) - \frac{E}{p} Dm(t)$$

where f is the regional blood flow defined by

$$f = \frac{F}{W}$$

Note that Equation 4 represents the relation between two observed variables $\{Dm(t)$ and $\text{Ca}(t)\}$ and two model parameters (f and α) when E and p are given. It should also be mentioned that the obtained f is free from PVE; that is, F and W are free from PVE. PVE is already included in α. Solving Equation 4 for $Dm(t)$ gives

$$Dm(t) = \alpha Ef\text{Ca}(t) \ast \exp(-Ef/p \ t)$$

$$= k_1\text{Ca}(t) \ast \exp(-k_2 t)$$

(6)

where $Dm(t=0)=0$ is assumed, and the asterisk is the convolution integral.

Two parameters in Equation 6, k_1 ($=\alpha Ef$) and k_2 ($=Ef/p$), are determined simultaneously so that the calculated tissue curve reproduces the measured dynamic data best by means of the least-squares fitting (χ^2 minimizing) technique (see below). Therefore, MBF (free from PVE), f, and α are obtained from $f=k_1 \cdot p/E$ and $\alpha=(k_1/k_2)/p$, respectively, based on the assumptions that p and E can be fixed (p=0.91 ml/g and E=1). The value of p is determined as the ratio of the water content in the myocardium (0.78 g water/g tissue)10 to that in the blood (0.86 g water/ml blood for a hematocrit of about 0.45).$^{10-12}$ The validity of these assumptions will be examined later (see "Discussion").

Myocardial Blood Flow Imaging by the Autoradiographic Method

When measuring the cerebral blood flow by the conventional autoradiographic method,$^{13-17}$ it is necessary to fix the value of the tissue fraction (commonly as $\alpha=1$ g/ml). Integrating both sides of Equation 6 for the time duration (t_1, 0, t_2) gives

$$\int_{t_1}^{t_2} Dm(t) = \alpha Ef \int_{t_1}^{t_2} \text{Ca}(t) \ast \exp(-Ef/p \ t)dt$$

The right side of Equation 7 can be calculated with the measured arterial concentration curve, Ca(t), for various Ef values, that is, from 0.01 to 2 ml/min/g in 0.01 steps. Here, the tissue fraction is fixed as $\alpha=1$ g/ml.$^{4-6}$ Therefore, we can obtain the relation between the Ef value and the PET scan data, $f_1^2 Dm(t) dt$. Once the right side of Equation 7 has been calculated, a unique f value can be determined for each pixel of the tomographic image data by the
look-up-table procedure. Here, the tissue/blood partition coefficient is fixed as p = 0.91 ml/g.

Subjects
The present study was performed on seven normal subjects and eight patients. The normal subjects consisted of two groups. One included four normal volunteers (N1-N4), and the other included three subnormal subjects (S1-S3) who were suspected of angina pectoris because of complaints of chest pain, but had normal coronary angiographic findings (see “Results”). Three of the patients (P1, P2, and P6) were diagnosed as having angina pectoris, and the other five (P3-P5, P7, and P8) were diagnosed as having myocardial infarction. Diagnosis, interval from onset to PET, and the interval from coronary angiography to PET are listed in Table 1.

For all subnormal subjects and patients, conventional coronary angiography was performed before the PET study. The angiographic data were interpreted by angiographers who were test blinded with respect to the PET data.

Production of H215O
H215O was synthesized by an in-target direct method.18 The target gas (3.5 kg/cm² of 0.1% H2 in N2) was bombarded by 6.8 MeV deuterons.15O was produced by the reaction of 14N (d,n)15O, and H215O vapor was produced by 2H2+15O→2H215O. The resultant H215O vapor was channeled directly to an automatic injection unit in the PET room and trapped by bubbling into a 5-ml saline-filled vial.

PET Scanner
The PET scanner was a HEADTOME-III19 installed at our institute, a three-ring and five-slice machine. The standard-resolution collimator was used. In the H215O study, a high-speed mode was selected to achieve quick data acquisition, which took 2.5 seconds for a single complete data acquisition while making continuous motions of the wobble and rotation of the detector ring.

In the present study, images were taken with intervals of 5 or 15 seconds as described below. Data were reconstructed with 2 × 2-mm² pixel size. The image resolution was about 10 mm full width at half maximum at the center. The axial resolution in the direct (cross) plane was about 11 mm (13 mm) full width at half maximum at the center of the field of view.

Calibration between the PET scanner and the well counter was performed for each study with a 10-cm diameter flood phantom filled with 68Ga solution.

The random coincidence and the dead time were corrected with a hardware logic circuit (delayed coincidence) and a software algorithm, respectively.19,20 The difference between the corrected true and the ideal true event rates was guaranteed at less than 1% (<5%) up to 50 (80) kcps of the corrected true event rate per slice.19,20

PET Measurement
Each subject was made to lie supine on the couch of the HEADTOME-III with his arms out of the field of view. The imaging position was determined by echocardiography and confirmed by a short-time test transmission scan. A 10-minute transmission scan was made for the attenuation correction with a 3-mCi 68Ga-68Ga radioactivity ring source of 50 cm in diameter. At 3–4 minutes after a 1-minute C15O inhalation (30 mCi), a 2-minute emission scan was initiated for imaging the distribution of C15O-labeled red blood cells, which was confined to the vascular space. At the start and end time of the C15O scan, arterial blood was sampled to scale the blood-volume image.

An intravenous injection of 15 mCi H215O in 5 ml saline into the antecubital vein was commenced within 2–3 seconds and was followed immediately by a 10-ml saline injection to sweep out the radio-

<table>
<thead>
<tr>
<th>TABLE 1. Coronary Angiographic Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>S1</td>
</tr>
<tr>
<td>S2</td>
</tr>
<tr>
<td>S3</td>
</tr>
<tr>
<td>P1</td>
</tr>
<tr>
<td>P2</td>
</tr>
<tr>
<td>P3</td>
</tr>
<tr>
<td>P4</td>
</tr>
<tr>
<td>P5</td>
</tr>
<tr>
<td>P6</td>
</tr>
<tr>
<td>P7</td>
</tr>
<tr>
<td>P8</td>
</tr>
</tbody>
</table>

RCA, right coronary artery; LAD, left anterior descending branch of the left coronary artery; seg 6, segment 6 of LAD; seg 7, segment 7 of LAD; LCx, left circumflex branch of the left coronary artery; PET, positron-emission tomography; CAG, coronary angiography; AP, angina pectoris; MI, myocardial infarction.
activity staining in the vein. The dynamic PET scan was started simultaneously with the H$_2$H$_{15}$O injection. The scan sequence consisted of 12 5-second and eight 15-second scans (total, 3 minutes).

Measurement of Input Function

In the H$_2$H$_{15}$O dynamic measurements, the input function was obtained by continuously measuring the radioactivity in the arterial blood. Arterial blood was continuously withdrawn during the H$_2$H$_{15}$O scan from the femoral artery (N3, S1–S3, and P1–P7) or the radial artery (N1, N2, N4, and P8) at a withdrawal speed of 10 ml/min. The manometer tube (0.5 mm i.d.) and catheter were connected directly without a three-way tap to minimize the dispersion occurring in the tube system. The radioactivity in the blood was monitored by beta-ray detection with a plastic scintillator. The sampling interval was 0.5 seconds. The tube was coiled to about 2 cm in diameter at a distance of about 15 cm from the catheter and was taped onto the beta-ray detector. The dispersion time constant of this tube-detector system was less than 1 second when the dispersion was approximated by a single exponential function.

To evaluate and correct for the internal dispersion occurring in the arterial lines, the measured arterial curves were compared with the left ventricle (LV) time-activity curve in sequential H$_2$H$_{15}$O images for each study. A systematic discrepancy (dispersion) could be observed in the arterial curves when sampled from the radial artery and even when sampled from the femoral artery in patients with low cardiac output. Such dispersion was corrected by deconvoluting the measured arterial curve by the single-exponential function. Here, the time constant of the single-exponential function was determined so that the deconvoluted curve fit the LV time-activity curve.

The timing discrepancy between the arterial curve and the PET data, which was related to the delay in the arterial lines and in the detector tube, was adjusted absolutely by comparing the arterial curve with the LV curve.

Calibration of the radioactivity sensitivity between the beta-ray detector and the well counter was performed after each study by filling the tube with H$_2$H$_{15}$O saline and by counting the same solution in the well counter.

The beta-ray detector was shielded by a 5-cm thick cylindrical-lead container, and the discrimination was set at the level to reject gamma rays. The background count was negligibly small in the measurement of the H$_2$H$_{15}$O radioactivity in the blood.

Correction for Blood Volume

Because the red blood cells labeled with C15O were confined to the vascular space, the C15O scan provided the blood-volume image, BV(x,y):

$$BV(x,y) = [C^{15}O](x,y)/[C^{15}O]_{\text{well}}$$ \hspace{1cm} (8)

where [C15O](x,y) and [C15O]$_{\text{well}}$ represent the C15O radioactivity concentration of both the PET measurement and the blood sample, respectively. A fraction of the H$_2$H$_{15}$O radioactivity in the blood component was removed from the H$_2$H$_{15}$O raw image by subtracting the blood-volume image multiplied by arterial concentration of H$_2$H$_{15}$O. The net H$_2$H$_{15}$O radioactivity in the myocardium, [H$_2$H$_{15}$O]$_{\text{myo}}$(x,y), was calculated as

$$[H_2^{15}O]_{j}^{\text{myo}}(x,y) = [H_2^{15}O](x,y) - \int_{T_j}^{T_j + 1} C_a(t) \, dt \times BV(x,y)$$ \hspace{1cm} (9)

where [H$_2$H$_{15}$O]$_{j}(x,y)$ is the raw H$_2$H$_{15}$O radioactivity in the jth scan at the location (x,y), C$_a$(t) is the arterial concentration curve, and T$_j$ and T$_j + 1$ are the scan start and stop times of the jth scan, respectively.

Data Analysis

First, the serial images of H$_2$H$_{15}$O in the myocardium, [H$_2$H$_{15}$O]$_{\text{myo}}$(x,y), were accumulated with weighting according to each scan period because the serial images of the HEATOM-III were already normalized for the scan period.

$$[H_2^{15}O]^{\text{myo}}(x,y,T) = \frac{1}{N} \sum_{j=1}^{N} (T_j - T) [H_2^{15}O]_j^{\text{myo}}(x,y)$$ \hspace{1cm} (10)

where [H$_2$H$_{15}$O]$_{j}(x,y,T)$ is the integration of the H$_2$H$_{15}$O radioactivity from 0 to T at the location (x,y), and N is the number of scans accumulated. T is the scan stop time of the final scan (3 minutes). Second, the MBF images were calculated with the [H$_2$H$_{15}$O]$_{\text{myo}}$(x,y,T) and the C$_a$(t) data according to the conventional autoradiographic method (described above).

ROIs were set in three regions of the myocardium (the septum, the anterior wall, and the lateral wall) by referring the autoradiographic MBF image according to the segmentation by Schelbert and coworkers. Relatively large ROIs, 2–6-cm diameter ellipse, were adopted to reduce the statistical noise. The total number of the pixels in ROIs was more than 100. The H$_2$H$_{15}$O time activity curves, [H$_2$H$_{15}$O]$_{\text{myo}}$, were obtained for these ROIs. By performing kinetic analysis of the dynamic data, the absolute MBF values and the tissue fractions were calculated for these specified ROIs.

In the present least-squares fitting procedure, the following index (χ^2) was minimized.

$$\chi^2 = \frac{1}{N} \sum_{j=1}^{N} \frac{\int_{T_j}^{T_j + 1} D_m(t) \, dt - [H_2^{15}O]_j^{\text{myo}}}{\Delta_j^2}$$ \hspace{1cm} (11)

The values of the weighting factor, $|\Delta|^2$, were chosen to correspond to the errors of measurement expected in the jth data. This was intended to normalize each square sum of the numerator in Equation 11 by its accuracy of measurement since
A typical example of serial images of the middle of the five slices after \(\text{H}_2\text{O} \) injection is shown in Figure 2. It can be seen that the radioactivity passes serially through the right ventricle (RV), lung, and LV and diffuses to the myocardium.

Figure 3 shows typically obtained autoradiographic MBF images for a normal volunteer (N3) and a patient (P1) together with their profiles. For these calculations, a value of \(p=0.91 \text{ ml/g} \) was assumed (see "Discussion"). The autoradiographic MBF values calculated in the lateral wall of N3, whose ROI is depicted in Figure 4A, are plotted in Figure 4B as a function of the accumulation time (T). For \(\alpha = 1 \text{ g/ml} \), the autoradiographic MBF values decreased with lengthening accumulation time. On the other hand, the calculated MBF values were independent of the accumulation time for \(\alpha = 0.55 \text{ ml/g} \), which was the value obtained by kinetic analysis for the same ROI as described below.

Figure 5 gives a typical example of the radioactivity curve in the lateral wall of N3 (the same region as in Figure 4A). The histogram shows the measured data, and the solid line plots the theoretical prediction best fitted to the measured data. Such curves were already corrected for blood-volume contamination and for radioactive decay. Two parameters (MBF and tissue fraction) were optimized by fitting these two curves. The parameters obtained were \(\alpha = 0.55 \text{ g/ml} \) and \(f = 0.97 \text{ ml/min/g} \), where \(p=0.91 \text{ ml/g} \) and \(E = 1 \) were assumed.

The tissue fraction and MBF values were calculated for the same myocardium (lateral wall in N3) but with different sizes of the ROI as shown in Figure 6A. The results are plotted in Figure 6B as a function of the diameter, x, of the ROI. The calculated MBF values revealed no significant changes. On the other hand, the calculated tissue fractions were reasonably decreased with increasing ROI diameter.

Discussion

"Discussion".

Results

The coronary angiographic findings are summarized in Table 1. All subnormal subjects (S1–S3) had negative angiographic indication. Patients P1–P3 had severe stenosis in their main three vessels (triple-vessel disease). Patients P4–P7 had stenosis in the left anterior descending branch of the left coronary artery (LAD). Patient P8 had stenosis in the left circumflex branch of the left coronary artery (LCx).
The MBF values obtained by the present kinetic method in normal volunteers and subnormal subjects are summarized in Table 2 for the three regions of the myocardium (the septum, anterior wall, and lateral wall). The averaged MBF values over the three regions in four normal and in three subnormal subjects were 0.97 ± 0.07 and 0.91 ± 0.10 ml/min/g, respectively. The overall mean MBF for the seven subjects was 0.95 ± 0.09 ml/min/g. The results for the patients are summarized in Table 3. The MBFs were homogeneously decreased in the patients with triple-vessel disease. The mean value (0.55 ± 0.09 ml/min/g) represented about a 40% decrease relative to the normal subjects. In the patients with stenosis of the LAD, a systematic decrease of MBF was observed in the septum and/or anterior-wall regions. In the patient with stenosis of the LCx, about a 20% decrease was noted in the lateral-wall region. The averaged MBF for the three regions of all the patients was 0.63 ± 0.26 ml/min/g.

Discussion

Introduction of Tissue Fraction

For the purposes of accurate detection and evaluation of cardiac pathophysiology in humans, it is necessary to measure the absolute value of the MBF noninvasively. However, the PVE, which arises from the limited spatial resolution of the scanner and the cardiac wall motion, impairs the quantification of the measurement. This problem is related to a confusion between two different concepts, the tissue concentration and the ROI (spatial) concentration. Kety’s model has been commonly used for estimating regional blood flow by PET. This model requires measurement of the tissue concentration, that is, the tracer amount per mass of tissue (Cm, μCi/g). However, the PET method provides the tracer concentration in a specified ROI volume (Dm, μCi/ml). The difference between Cm and Dm sometimes becomes large, especially in cardiac studies. The effect of this difference is not straightforward in the calculation of MBF because of the nonlinear relation between MBF
and Dm (or Cm). The concept of the tissue fraction was therefore introduced in the present model as illustrated in Figure 1.

The tissue fraction can be solved by the kinetic method developed in the present study, which was based on H$_2^{15}$O dynamic measurements. This kinetic method, formulated according to the new model, allowed determinations of two parameters (the regional MBF and the tissue fraction in the specified ROI) to be made under the assumption that the partition coefficient and the extraction fraction were given. Thus, the absolute regional MBF, which was free from the PVE, could be obtained. Moreover, it is possible that the tissue fraction could be used for quantification in measurement of other physiological functions such as glucose utilization and oxygen consumption in PET.

As shown in Figure 6, the MBF values obtained were independent of the size of the ROIs and were almost consistent. On the other hand, the tissue fraction was reasonably decreased with increasing ROI size. These results provide evidence to suggest the validity of the mathematical procedures presented in this paper.

Accuracy of Positron-Emission Tomography

Because, in general, quantification of PET measurement tends to suffer from high-dose radioactivity in the field of view, we need to consider the accuracy of measurements under the high count rates obtained after passage of the RV after intravenous bolus injection of H$_2^{15}$O. In the HEADTOME-III, the measured events were corrected for random coincidence and dead time. The difference between the corrected true and the ideal true event rate was guaranteed at less than 1% (<5%) up to 50 (80) kcps of the corrected true event rate per slice. Because the maximum counting rate was 50–80 kcps at the peak after the injection for the typical injection dose of 15 mCi, the true H$_2^{15}$O distribution in the field of view would be measured with an accuracy of less than 5% at maximum.

The accuracy of this measurement was checked by comparing the LV time-activity curve with the arterial curve in the H$_2^{15}$O measurements. The LV:blood ratio in the C15O measurement was 0.94±0.06 for 15 subjects. The decrease of about 6% would result from spillover of the LV radioactivity because of the PVE. In the H$_2^{15}$O studies, when the injection dose was less than 20 mCi, the ratio of the first 60-second integration of the H$_2^{15}$O LV curve to that of the arterial curve was almost equal to the LV:blood ratio in the C15O measurement within 10% fluctuation. As shown in Figure 7, which illustrates one of our early studies with an injection dose of 20 mCi, good agreement was seen between the two curves. Thus, the measurements should be sufficiently accurate in terms of the dead-time effect because 15 mCi H$_2^{15}$O was typically injected in the present study.

One might consider possibility of a noninvasive study with the use of the LV curve as the input function. However, the present kinetic calculation would require very accurate measurement of the input function. The 6% spillover of the LV radioactivity could not be neglected. Our simulation study demonstrated that the 6% decrease around the peak

Figure 6. Various regions of interest (ROIs) in the myocardium of a normal volunteer (N3) (Panel A). Myocardial blood flows (MBFs) were calculated according to the present kinetic method for these ROIs. ROI size dependence of the calculated MBF and α obtained by the kinetic method (Panel B). The calculations were made for ROIs indicated in left panel. Calculated MBF values revealed no significant changes, while the calculated tissue fractions were decreased with increasing ROI size.
of the input function produced systematic errors of a few tens of percentage in calculated values for MBF and \(\alpha \). We, therefore, obtained the input function by measuring the arterial concentration curve, minimizing the dispersion and the ambiguity of the time delay for all studies.

Measurement of Input Function

As described by us recently,\(^{17,21}\) accurate measurement of the input function was important for measuring the quantitative blood flow by the autoradiographic method. The degree of dispersion in the present system was substantially improved compared with the previous one.\(^{17,21}\) A thinner tube (0.5 mm i.d.) was used; the withdrawal speed was sufficiently high (10 ml/min); and the tube was directly connected to the catheter without a three-way tap. Moreover, the deconvolution of the measured arterial curve, which was performed only for subjects having a significantly large internal dispersion, increases the accuracy of measurement of the true input function even for patients with very high internal dispersion due to low output.

Comparison of the arterial curves with the LV curves has another advantage in improving the ambiguity of the absolute time axis of the measured arterial curves. The time axis of the measured arterial curve was adjusted to the time axis of the PET measurement. The accuracy of this adjustment technique, which might be within \(\pm 1-2 \) seconds, would be much better than in other studies.\(^4-6\)

Autoradiographic Myocardial Blood Flow

The present method for calculating the MBF image was based on a conventional theory of the \(\text{H}_2\text{O} \) autoradiographic technique,\(^{13-17}\) which Bergmann et al\(^4\) first applied to the cardiac PET study. The following aspects were improved in the present study. The input function was accurately obtained. That is, arterial radioactivity was continuously monitored with a 0.5-second sampling interval; time delay of the arterial curve was adjusted to absolute time axis of PET data analysis by comparing the arterial curve with the LV time activity curve; and the net dispersion was negligibly small or corrected by a deconvolution technique. The blood-volume contamination was corrected absolutely by measurement of the blood radioactivity concentration in the \(\text{H}_2\text{O} \) scans as shown in Equation 9. A scanner with high-counting rate characteristics was used.\(^{19,20}\)

As shown in Figure 3, the MBF image was calculated from the autoradiographic data. It may be helpful for gaining an insight into the blood flow distribution intuitively. However, autoradiographic MBF obtained in this manner would be systematically lower than the true value. It is demonstrated intuitively in Figure 3, where the profiles were not flat at the peak, suggesting a limited spatial resolution of the measurement. When we performed ROI analysis, the averaged MBF value in the specified ROI must have depended on the size of the ROI. Also, the peak height must have depended on the wall thickness and wall motion. As can be seen from Figure 3, higher flow values were yielded by the autoradiographic method for patient P1 than for subject N3, although patient P1 was confirmed as having severe stenosis in his main three vessels by coronary angiography. This spurious result would be due to his relatively thick-walled myocardium. Indeed, the kinetic analysis, as described above, proved that the MBF in patient P1 was uniformly low.

We fixed the tissue fraction at 1 g/ml when calculating the autoradiographic MBF image in this paper. The true value is certainly smaller than this in

TABLE 2. Myocardial Blood Flow in Normal and Coronary Angiographic Normal Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Study no.</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Hct</th>
<th>Septum</th>
<th>Anterior wall</th>
<th>Lateral wall</th>
<th>Combined mean and SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>477</td>
<td>30</td>
<td>M</td>
<td>0.48</td>
<td>1.00</td>
<td>0.95</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>515</td>
<td>25</td>
<td>M</td>
<td>0.44</td>
<td>1.05</td>
<td>1.00</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>602</td>
<td>53</td>
<td>M</td>
<td>0.42</td>
<td>0.85</td>
<td>0.99</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td>848</td>
<td>53</td>
<td>M</td>
<td>0.43</td>
<td>0.82</td>
<td>1.03</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
<td>0.99</td>
<td>1.00</td>
<td>0.97</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
<td>0.03</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>S1</td>
<td>580</td>
<td>53</td>
<td>M</td>
<td>0.43</td>
<td>0.93</td>
<td>0.94</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>634</td>
<td>59</td>
<td>F</td>
<td>0.35</td>
<td>0.80</td>
<td>1.08</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>672</td>
<td>54</td>
<td>M</td>
<td>0.40</td>
<td>0.80</td>
<td>0.79</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.84</td>
<td>0.94</td>
<td>0.95</td>
<td>0.91</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
<td>0.15</td>
<td>0.07</td>
<td>0.10</td>
</tr>
<tr>
<td>Combined N1–S3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.89</td>
<td>0.96</td>
<td>0.98</td>
<td>0.95</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.09</td>
<td>0.09</td>
<td>0.05</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Hct, hematocrit; N, normal subject; S, subnormal subject.
cardiac studies because of the PVE. This choice of tissue fraction thus produced a systematic underestimation of the MBF. The calculated MBF was, moreover, dependent on the accumulation time as shown in Figure 4B. (The calculated value decreased with lengthening of the accumulation time.) The correct value of the tissue fraction must therefore be used for each pixel when we need to calculate the quantitative and time-independent MBF image, although there is no way of determining the tissue fraction in the autoradiographic approach.

Kinetic Myocardial Blood Flow

The regional MBF was calculated for three myocardial segments (the septum, anterior wall, and lateral wall) in each subject according to the kinetic method. The present kinetic method enabled us to obtain absolute MBF values for each ROI. Also, the tissue fraction could be determined. Note that the tissue fraction included two concepts, that is, the spillover effect due to the limited spatial resolution of PET and the myocardial wall movement throughout the ROI. The obtained MBF was free from the PVE. As shown in Table 2, the MBFs for the normal and subnormal groups revealed a relatively small difference among the subjects and were almost consistent in the three regions. The averaged MBFs for the normal and subnormal groups were 0.97 ± 0.07 and 0.91 ± 0.10 ml/min/g, respectively. On the other hand, in the patients, the MBFs were significantly reduced and showed larger deviations compared with the normal subjects (Table 3).

In the subnormal subjects, coronary angiography detected no abnormalities. Moreover, no significant uptake of 18F-fluoro-deoxyglucose was observed in their myocardium during a study in the fasted condition. These findings suggest that they had no ischemic state in the myocardium in the resting condition. This is consistent with our observation of no significant decrease in calculated MBF from the value of normal volunteers.

In the patients with triple-vessel disease, the MBFs were diffusely reduced (Table 3). The averaged MBF showed about a 40% decrease relative to the normal subjects with a standard deviation of 16%. This homogenous decrease may be consistent with their coronary angiographic findings (see also Table 1) as well as the global uptake of 18F-fluoro-deoxyglucose in their myocardium in the fasted condition (about 9 hours after a meal).23 The kinetic method presented here could thus detect such a homogenous decrease of the MBF in triple-vessel disease, although the conventional autoradiographic method failed to demonstrate any abnormality as typically shown in Figure 3.

In the patients with stenosis in the LAD (in segment 6 and/or 7), the MBFs were significantly decreased in the septum and/or anterior wall, rather than in the lateral wall. In patient P8 who had stenosis only in the LCx, the MBF in the lateral wall was slightly reduced compared with the other regions, and the MBFs in the septum and anterior wall were within the normal range. These observations seemed to be consistent, although anatomic correspondence of each segment to ROI in PET might not be proved. It is of interest to examine the precise correlation between the degree of stenosis and absolute value of MBF in its dominant region. However, this is beyond the scope of present study. Further investigations are in progress on a larger number of subjects and will be published elsewhere (in preparation).

Table 3. Myocardial Blood Flow in Patients and Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Study no.</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Hct</th>
<th>Septum</th>
<th>Anterior wall</th>
<th>Lateral wall</th>
<th>Combined mean and SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>582</td>
<td>67</td>
<td>M</td>
<td>0.45</td>
<td>0.48</td>
<td>0.57</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>636</td>
<td>50</td>
<td>M</td>
<td>0.44</td>
<td>0.58</td>
<td>0.58</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>685</td>
<td>62</td>
<td>F</td>
<td>0.36</td>
<td>0.34</td>
<td>0.54</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.47</td>
<td>0.56</td>
<td>0.62</td>
<td>0.550</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.10</td>
<td>0.02</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>P4</td>
<td>728</td>
<td>45</td>
<td>M</td>
<td>0.40</td>
<td>0.31</td>
<td>0.15</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>730</td>
<td>57</td>
<td>M</td>
<td>0.39</td>
<td>0.28</td>
<td>0.76</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>734</td>
<td>60</td>
<td>F</td>
<td>0.36</td>
<td>0.78</td>
<td>0.71</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>753</td>
<td>65</td>
<td>M</td>
<td>0.41</td>
<td>0.44</td>
<td>0.25</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.45</td>
<td>0.47</td>
<td>0.89</td>
<td>0.60</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.20</td>
<td>0.27</td>
<td>0.18</td>
<td>0.30</td>
</tr>
<tr>
<td>P8</td>
<td>777</td>
<td>66</td>
<td>M</td>
<td>0.30</td>
<td>0.96</td>
<td>1.10</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Combined P1–P8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.52</td>
<td>0.58</td>
<td>0.77</td>
<td>0.63</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.22</td>
<td>0.28</td>
<td>0.18</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Hct, hematocrit; P1–P3, patients with triple-vessel disease; P4–P7, patients with left anterior descending coronary artery stenosis; P8, patients with left circumflex stenosis (see also Table 1).
The MBF values in the normal subjects (all were studied in the resting condition) showed a relatively low interindividual variability compared with other techniques (e.g., the 133Xe clearance method). The standard deviations were 7.6% for normal, 10.7% for subnormal, and 9.3% for all subjects combined (i.e., normal and subnormal). This indicates stability of the present method, although our analysis was based on a relatively small number of subjects.

Fitting Procedure

The introduction of the weight in Equation 11 was important in the fitting procedure of the kinetic analysis since each of the scan data has a different accuracy of measurement. In the present study, the errors expected in the jth measurement of the myocardial concentration were multiplied inversely in calculating each square sum of Equation 11 so that each square sum was normalized by its expected accuracy. Hence, each square of Equation 11 would have its own significance corresponding to the accuracy of each measurement.

The following five error factors were taken into account: 1) statistical fluctuation of ROI concentration curve, 2) insufficient temporal smoothing of the wall motion, 3) errors of subtraction for the radioactivity in the blood volume, 4) the effect of radioactivity in the lung, and 5) inaccuracy of the scanner itself.

As for the first factor, the statistical noise was derived as an inverse of a square root of each ROI concentration data.

Regarding the second factor, we assumed that the wall movement through the ROI was completely smoothed during each scan period. However, a 5-second scan may not be sufficient for complete smoothing. For a typical heart rate of 60 beats/min, about 10% of this error would be expected at maximum in the 5-second measurement. Thus, this error would be proportional to the inverse of each scan period.

The error of the blood-volume subtraction was large at the early phase near the LV peak and became small at the later phase. To cancel out the error of the blood-volume subtraction, the LV concentration data that would be almost equal to the subtraction level were multiplied inversely as one of the weights in calculating the square sum of Equation 11. Further, the data before the appearance of H_2^{15}O radioactivity in the LV were neglected since the H_2^{15}O will not exist in the myocardium before then. Thus, the time difference of the H_2^{15}O radioactivity in the RV and LV was almost negligible in the calculation for the septum region.

Regarding the H_2^{15}O radioactivity in the lung, the blood volume of the lung is not negligible, although the lung tissue H_2^{15}O would be small compared with that in the myocardium. Therefore, subtraction of the blood volume may produce a large error due to the difference in the appearance time of H_2^{15}O in the lung and in the LV. To cancel out this subtraction error in addition to the effect of the lung tissue radioactivity itself, we used the concentration curve in a typical lung region as the weight corresponding to the fourth term.

Concerning the fifth factor, the inaccuracy of the scanner was estimated on the basis of previous studies19,24,25 and phantom experiments.17

Thus, $|\Delta|^2$ was determined as

$$|\Delta|^2 = \sum_{i=1}^{5} |\Delta_i|^2,$$

$$|\Delta_i|^2 = W_i/\left[H_2^{15}O\right]_{ROI}$$

$$|\Delta_i|^2 = W_i/\left[T^j - T_i\right]$$

$$|\Delta_i|^2 = W_i/\left[H_2^{15}O\right]_{LV}$$

$$|\Delta_i|^2 = W_i/\left[H_2^{15}O\right]_{LUNG}$$

$$|\Delta_i|^2 = W_i,$$ \hspace{1cm} (12)

where the superscripts ROI, LV, and LUNG represent the radioactivity in the myocardial ROI, in the LV, and in the lung, respectively.

As a result of these procedures, the early phase data were almost neglected in the calculation (due mainly to the third and fourth factors) because the weight (inverse of $|\Delta|^2$) was small at the early phase near the peaks of the RV, the lung, and the LV. It is of importance, therefore, that the optimization of the kinetic parameters be made mainly by weighting the absolute height and the shape of the H_2^{15}O myocardium concentration curve at the decreasing slope. This supposes that flow determination becomes inaccurate in either extreme range of low flow (MBF=0) or high flow (MBF=∞) as explained in the following. As MBF decreases, height of tissue curve is reduced; hence, relatively large contamination of surrounding tissue occurs. This is essentially the same effect as a conventional clearance technique. On the other hand, as MBF extremely increases, the tissue curve becomes sharp.
as it approaches the arterial curve, and its early portion is rendered to be neglected where most of flow information is included.

\(H_2^{15}O \) as Myocardial Blood Flow Tracer

The present method was based on the following assumptions concerning the suitability of the tracer used. 1) \(H_2^{15}O \) is ideally permeable across the capillary membrane (single-pass extraction fraction is unity, \(E = 1 \)). 2) The tracer is diffusible in the tissue space, and the distribution reaches equilibrium instantaneously. 3) The tissue/blood partition coefficient, \(p \) (ml/g), can be fixed.

Concerning the first assumption, any diffusable tracer theoretically has a limitation of permeability across the capillary membrane. Using Crone's model,\(^{26}\) the single-pass extraction fraction, \(E \), can be expressed as

\[
E = 1 - e^{-PSf}
\]

where PS (ml/min/g) is the product of the capillary permeability and surface area. Therefore, \(E \) becomes reduced (\(E < 1 \)) for finite PS. However, as for the use of \(H_2^{15}O \), this represented a minor factor in the myocardium as reported by Bergmann et al.\(^4\) They estimated the extraction fraction for \(H_2^{15}O \) in the dog myocardium 0.96±0.05 in the flow range of 0.8–1 ml/min/g. This higher extraction in the myocardium compared with the brain tissue might be due to greater capillary density (larger S) in the myocardium.

As for the second assumption, the diffusion speed was precisely calculated for tissues with normal capillary density and seemed to be sufficiently high in the current time scale.\(^8,9,25,27\)

The final assumption involves two parts. The first is related to the definition of \(p \) (or adequacy of model assumed), and the second is related to the uncertainty of choice of \(p \) for each individual. In the present study, the tissue/blood partition coefficient is defined as the ratio of the water content in the tissue to that in the blood. This is based on the assumption that all tissue water is freely exchangeable. However, some investigators have proposed a limitation to this assumption in view of their observations; that is, the water distribution volume in the brain tissues obtained by their method was significantly smaller than the predicted value\(^{28}\) and was dependent on the measurement time.\(^{29}\) Their findings suggest the possible existence of a considerable amount of a slowly exchanging component in the tissue water. On the contrary, their results could have been derived from neglected errors with respect to the measurement of the input functions (dispersion and time shift) as well as the tissue heterogeneity. We recently estimated the water distribution volume of the brain tissue with a highly accurate measurement system. Our preliminary data revealed no evidence that suggested a considerable amount of a slowly exchanging component in the tissue water.\(^{30}\) Thus, the first part of this assumption seems to be reasonable for the present study.

The second part of the final assumption (variation of \(p \)) concerns the variation of water content in the myocardium and blood in each individual. Uncertainty of \(p \) should directly affect the errors in the determination of \(f \) and \(\alpha \) since \(f \) and \(p \) are calculated as \(f = (k_2 p)/E \) and \(\alpha = (k_0/k_2)/p \), respectively. This error might become important in the evaluation of ischemic lesions or necrotic tissues. Further consideration is needed with regard to this point.

Acknowledgments

We are greatly indebted to the staff of the Research Institute for Brain and Blood Vessels-Akita, in particular, Messers. Y. Shoji, E. Hagami, T. Hachiya, and Y. Aizawa for their assistance. We wish to thank Ms. Shoko Ishioka for her helpful secretarial work.

References

KEY WORDS: *myocardial blood flow* • *partial volume effect* • *H_2^{15}O-labeled water* • *positron-emission tomography*

H Iida, I Kanno, A Takahashi, S Miura, M Murakami, K Takahashi, Y Ono, F Shishido, A Inugami and N Tomura

Circulation. 1988;78:104-115
doi: 10.1161/01.CIR.78.1.104

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1988 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/78/1/104

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/