New developments in lipid-lowering therapy: the role of inhibitors of hydroxymethylglutaryl-coenzyme A reductase

J. A. Tobert, M.B., Ph.D.

ABSTRACT HMG-CoA reductase catalyzes the conversion of hydroxymethylglutarate to mevalonate, an important early rate-limiting step in the cholesterol biosynthesis pathway. Since the discovery of compactin, the first HMG-CoA reductase inhibitor, by Endo et al. in 1976, several other inhibitors have been described. Those that have been investigated in the clinic include mevastatin (compactin), lovastatin (mevinolin), simvastatin (synvinolin), eptastatin (CS-514, SQ-31,000), and SRI-62320. These compounds are competitive inhibitors, with K_i values of the hydroxyacid forms of around $10^{-9}M$. Lovastatin (mevinolin, Mevacor*), which is in the late stages of clinical development and has been administered to over 1000 subjects for up to 4 years, is the inhibitor on which the most information is available. It is given in single or divided doses of 20 to 80 mg/day, and is a very effective and usually well-tolerated lipid-lowering agent. At 40 mg bid, lovastatin produces the following approximate mean changes: total plasma cholesterol, -33%; low-density lipoprotein (LDL) cholesterol, -40%; very low-density lipoprotein cholesterol, -35%; plasma triglycerides, -25%; high-density lipoprotein cholesterol, +10%; apolipoprotein B, -20. The substantial reduction in both LDL cholesterol and apolipoprotein B (the principal protein component of LDL) indicates a reduction in the number of circulating LDL particles. The mechanism probably involves both decreased LDL production and increased LDL clearance.

THE ROLE OF hypercholesterolemia, or more accurately hyperbetalipoproteinemia, as a risk factor for atherosclerosis in general and ischemic heart disease in particular is supported by a wealth of clinical, epidemiologic, and pathologic studies. A National Institutes of Health Consensus Development Panel recently concluded that the ideal blood cholesterol for all Americans over the age of 30 is 200 mg/dl or less, and that attempts should be made to lower blood cholesterol when it exceeds the 75th percentile, or approximately 240 mg/dl, in middle-aged American men. Therapy should always start with a lipid-lowering diet, but diets acceptable to most patients typically lower blood cholesterol by 10% or less. Drug therapy has been limited by insufficient efficacy at tolerated doses, and in some cases a high instance of side effects and/or significant safety problems.

In individuals eating a typical Western diet, approximately one-third of total body cholesterol is derived from the diet, and two-thirds is synthesized, mainly by the liver and intestine. The biosynthetic pathway for cholesterol involves more than 25 different enzymes, and is summarized in figure 1. An important rate-limiting step in this pathway is the conversion of hydroxymethylglutaryl-coenzyme A (HMG-CoA) to mevalonate, which is catalyzed by HMG-CoA reductase. Early attempts to inhibit cholesterol synthesis were centered on the late stages of the pathway. One such inhibitor, triparanol (MER/29), was used briefly in the clinic, but was withdrawn in 1962 after reports of serious toxicity, including cataracts, ichthyosis, and alopecia. Triparanol inhibited the conversion of desmosterol to cholesterol, and consequently caused the buildup of desmosterol in plasma and tissues. It is believed that the toxicity of triparanol and other late-stage inhibitors can be attributed, at least in part, to the accumulation of abnormal sterols in tissues.

Inhibitors of HMG-CoA reductase inhibit the pathway at a much earlier stage, and therefore cannot cause buildup of sterol intermediates. Five inhibitors have been studied in the clinic: mevastatin (compactin), lovastatin (mevinolin, Mevacor*), simvastatin (synvinolin,

*Registered trademark of Merck & Co., Inc.

From the Department of Clinical Research, Merck Sharp & Dohme Research Laboratories, Rahway, NJ.
Address for correspondence: J. A. Tobert, M.B., Ph.D., Department of Clinical Research, Merck Sharp & Dohme Research Laboratories, Rahway, NJ 07065.
nolin), eptastatin (CS-514, SQ-31,000), and SRI-62320 (figure 2). Mevastatin, lovastatin, and simvastatin are prodrugs; in vivo, the lactone ring is hydrolyzed to the corresponding \(\beta \)-hydroxyacid, which is the principal active form of these drugs. These compounds are competitive inhibitors of HMG-CoA reductase, with \(K_i \) values of approximately \(10^{-9} \)M. Mevastatin, which was discovered by Endo et al.\(^6\) in Japan, is the prototype of this class of compounds. However, lovastatin is the agent that has been most extensively studied, having been given to more than 1000 subjects for up to 4 years. Approval by the U.S. Food and Drug Administration is expected in 1987. Because much more information is available on lovastatin than on the other inhibitors, this review will summarize the clinical evaluation of this agent.

Effect of lovastatin on lipoproteins. The first human studies on lovastatin were carried out in normocholesterolemic volunteers eating an unrestricted diet. In these subjects, the hypocholesterolemic effects of the drug were evident after 3 days, and mean reductions in low-density lipoprotein (LDL) cholesterol between 35% and 45% were obtained after 4 weeks at doses of 6.25 to 50 mg bid.\(^7\) Similar reductions in LDL cholesterol were subsequently demonstrated in heterozygous familial hypercholesterolemia (FH)\(^8\)-\(^12\) and in patients with primary nonfamilial hypercholesterolemia.\(^10,\)\(^13,\)\(^14\) In all these studies, patients were on lipid-lowering diets before starting treatment with lovastatin. Illingworth and Sexton\(^8\) obtained dose-related decreases in LDL cholesterol in 13 patients with FH that ranged from 20% on 5 mg bid to 38% on 40 mg bid. In six patients with heterozygous FH, Bilheimer et al.\(^9\) noted a 27% decrease in LDL cholesterol on 20 mg bid; in another group of six patients with heterozygous FH, Hoeg et al.\(^10\) reported a 34% reduction in LDL cholesterol at the same dose. In a multicenter, double-blind, placebo-controlled study in 101 patients with FH, Havel et al.\(^11\) observed mean reductions in LDL cholesterol ranging from 17% on 5 mg bid to 39% on 40 mg bid. The corresponding mean changes

FIGURE 1. The cholesterol biosynthesis pathway.

FIGURE 2. Inhibitors of HMG-CoA reductase studied in the clinic.
in total cholesterol ranged from 14% to 34%. In two patients with homozygous FH undergoing treatment by plasma exchange, lovastatin was relatively ineffective, producing reductions in serum cholesterol of only 7% and 12%. The effects of lovastatin in patients with nonfamilial primary hypercholesterolemia are similar to those in patients with FH. Hoeg et al. obtained a 34% reduction in LDL cholesterol at 20 mg bid in 18 patients with nonfamilial hypercholesterolemia, and Grundy and Vega reported a 31% reduction in 12 patients at the same dose. In another multicenter study using the same double-blind, placebo-controlled design as that of Havel et al. in their study of patients with FH, Hunninghake et al. reported very similar results in 100 patients with nonfamilial hypercholesterolemia. At 40 mg bid, total and LDL cholesterol fell by 32% and 39%, respectively.

In addition to reducing LDL cholesterol, lovastatin increases high-density lipoprotein (HDL) cholesterol by 5% to 10%, although this effect is too small and variable to be reliably detected in small studies. As a result of the large decreases in LDL cholesterol coupled with the small increases in HDL cholesterol, the ratio of LDL cholesterol to HDL cholesterol, which some consider to be the best predictor of atherogenic risk, is almost halved during therapy with lovastatin. Very low-density lipoprotein (VLDL) cholesterol is also reduced almost as much as LDL cholesterol, and plasma triglycerides have been reported to fall about 25% in most studies. Apolipoprotein B also falls substantially.

Since each LDL particle contains one molecule of apolipoprotein (apo) B and since little apo B is found in the other lipoproteins, the indication is that lovastatin reduces the concentration of circulating LDL particles. Consistent with the effects on HDL cholesterol, the concentrations of apo A1 and apo AII (which are carried in HDL) also tend to rise slightly.

The time course of the therapeutic response is shown in figure 3. The maximum therapeutic response is obtained in 4 to 6 weeks, after which the response is quite stable. The effects of progressive increases in dose on plasma cholesterol are shown in figure 4. Lovastatin is given with meals, in single or divided doses. Divided doses are slightly more effective, but single daily doses are more convenient and may be adequate for patients with milder forms of hypercholesterolemia. If the drug is given once a day, a dose given in the evening is more effective than the same dose given in the morning, probably because human cholesterol synthesis reaches a peak around midnight.

FIGURE 3. Effect of a fixed dose of lovastatin (20 mg bid) on plasma cholesterol. (Reproduced, with permission, from Hunninghake et al.)

Mechanism of action. Lovastatin is a potent competitive inhibitor of HMG-CoA reductase, and this action can be demonstrated in human subjects by measuring plasma and urinary mevalonate. In normocholesterolemic volunteers, plasma and urinary mevalonate clearly fall after administration of lovastatin. In a limited number of patients with FH, however, Illingworth et al. observed increases in plasma mevalonate. This paradoxical effect is not understood at the present time.

It is clear that the mechanism of action of lovastatin is not simply and solely due to inhibition of cholesterol synthesis. In five patients studied by sterol balance techniques, Grundy and Bilheimer showed a modest decline in fecal output of neutral and acidic sterols in three patients but no changes in another two. Changes in the fecal output of sterols did not correlate with the degree of lowering of LDL cholesterol. Bilheimer et al. had earlier shown that lovastatin could increase the fractional catabolic rate of LDL in patients with FH, which may indicate an increase in the number of LDL receptors. The importance of the LDL receptor is supported by limited data in patients with homozygous FH, who have very few or no functioning LDL receptors.

FIGURE 4. Effect of progressive increases in dosage of lovastatin on plasma cholesterol. (Reproduced, with permission, from Hunninghake et al.)
1.9% of patients have had larger and persistent asymptomatic increases of transaminases, particularly SGPT, which has been observed to rise above three times the upper limit of normal. When the drug was discontinued, the transaminases returned to pretreatment levels, usually within a few weeks. In contrast to the small increases in transaminases that appear early in therapy, the larger increases have usually occurred after at least 3 months on drug. Alkaline phosphatase remained essentially normal, indicating that the effect is most probably hepatocellular rather than cholestatic. It is clear that these idiosyncratic increases in transaminases are not the result of hypersensitivity, but otherwise the mechanism of the effect is unknown.

In dogs, lovastatin produces posterior and anterior subcapsular cataracts in about 10% of treated animals, albeit at doses at least 50 times the maximum therapeutic dose. This phenomenon was not noted in rats or mice.* Because of this finding and the recorded effects of triparanol,4 the ophthalmologic data on patients treated with lovastatin have been scrutinized very carefully. More than 600 patients have had full ophthalmologic examinations, including slit-lamp biomicroscopy of the lens, at baseline and once or more during treatment.

Lens opacities were reported at baseline in approximately 30% of patients, which was not unexpected in view of the fact that lens opacities are very common in middle age.26 In controlled studies, the prevalence of lens opacities remained essentially unchanged during treatment with lovastatin. In one early study in 101 patients,14 an increase in the prevalence of lens opacities was reported; however, this experience is atypical and is probably the result of bias induced by the finding of cataracts in dogs, which were discovered after almost all patients in this study had had their baseline examinations, but before the majority had had their posttreatment examination. (It is well known that the detection of small lens opacities is subjective and depends, for example, on the time the examiner spends and the degree of pupillary dilatation achieved.) Thus it is likely that many, if not all, of the so-called new opacities reported in this study were merely small preexisting opacities missed at baseline. In later studies, begun after the report of cataracts in dogs and involving about 500 patients, there was little difference from baseline in the prevalence of lens opacities during treatment. The data thus indicate no detectable effect of lovastatin on the human lens within the period of time studied to date, i.e., up to 18 months.

*MacDonald JS: Personal communication.
Although cholesterol is the precursor of all steroid hormones, lovastatin has no detectable effect on adrenal11, 12, 14, 27 or gonadal11, 14 steroidogenesis.

Benefit-to-risk analysis. The utility of any drug is a function of the relationship between benefit and risk. In terms of benefit, lovastatin clearly produces large lipid-lowering effects of a nature and magnitude that cannot be achieved with any existing approved agents. The drug is well tolerated and well accepted by patients. Based on the results of the Lipid Research Clinics Coronary Primary Prevention Trial,25 as well as much other clinical, epidemiologic, and pathologic evidence, these effects on lipids would be expected to result in a substantial reduction in coronary event rates. Set against the benefit, there is a small risk of myositis and of adverse effects on the liver. However, symptomatic liver injury has not been observed thus far, and its risk should be minimal if liver function is monitored appropriately. Therefore, a reasonable overall assessment of the data is that the risk is substantially outweighed by the benefit.

In conclusion, based on the experience with lovastatin, inhibitors of HMG-CoA reductase are likely to prove a major advance in the treatment of hypercholesterolemia. They may well usher in a new era in the management of this disorder, playing a role comparable to that of the thiazides in hypertension a quarter of a century ago.

References
16. Elovson J, Jacobs JC, Schumaker VN, Puppione DL: Molecular weights of apoprotein B obtained from low-density lipoprotein (apoB-100) and from rat very-low-density lipoprotein (apoB-100) by gel filtration and high-performance liquid chromatography. J Lipid Res 24: 1569, 1983
New developments in lipid-lowering therapy: the role of inhibitors of hydroxymethylglutaryl-coenzyme A reductase.
J A Tobert

Circulation. 1987;76:534-538
doi: 10.1161/01.CIR.76.3.534

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1987 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/76/3/534

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/