Arteriovenous carbon dioxide and pH gradients during cardiac arrest

WILLIAM GRUNDLER, M.D., MAX HARRY WEIL, M.D., PH.D., AND ERIC C. RACKOW, M.D.

ABSTRACT In a porcine preparation of cardiac arrest, we demonstrated that there is a marked paradox of venous acidaemia and arterial alkalosis. This paradox is related to decreased clearance of CO₂ from the lungs when pulmonary blood flow is critically reduced. Accordingly, increased venous PCO₂ rather than metabolic acidosis due to lactic acidosis predominates during the initial 8 min of cardiopulmonary resuscitation. Arterial blood gases fail as indicators of systemic acid-base status and therefore as indicators of tissue acidosis. *Circulation* 74, No. 5, 1071–1074, 1986.

THE ACIDEMIA and consequent cellular acidosis that result from cardiopulmonary resuscitation (CPR) have been attributed to critical reduction of oxygen transport function with consequent anaerobic metabolism and metabolic lactic acidosis due to increases in the concentration of blood lactic acid. However, Fillmore et al.¹ and subsequently Bishop et al.² observed acidaemia in arterial blood during the initial 10 min of CPR. This was due to hypocapnea and therefore respiratory alkalosis. During this initial period, only minor increases in blood lactate concentrations were observed.¹ This is of importance because sodium bicarbonate is routinely administered in the clinical setting of cardiac arrest and this intervention both augments alkalosis and carries the added risk of fatal hyperosmolality.³ These observations prompted the clinical recommendation of the American Heart Association that the decision of whether to administer bicarbonate therapy be based on measurements of arterial blood gases.⁴

During CPR in a porcine preparation of cardiac arrest, we observed a remarkable paradox between the pH and PCO₂ conditions in arterial and central venous blood. Decreased arterial PCO₂ and elevated arterial pH were accompanied by an elevated venous PCO₂ and depressed venous pH. This paradox was reversed after restoration of spontaneous circulation. These observations indicate that earlier concepts relating to acid-base changes during CPR and the presumed benefits of bicarbonate treatment are invalid.

Methods

Twelve healthy immature minipigs weighing 17 to 25 kg were anesthetized by ear vein injection of 25 mg/kg pentobarbitol and neuromuscular block was induced by administration of 0.09 mg/kg pancuronium bromide. The trachea was intubated and ventilation was maintained with a pressure-cycled ventilator. The ventilator was adjusted to deliver a fractional inspired oxygen concentration (FiO₂) of 0.4, 12 breaths/min, and a tidal volume adjusted so as to maintain Paco₂ at 40 ± 5 mm Hg. Expired gas volume and the carbon dioxide concentration were continuously measured with a Fleisch pneumotachometer (C. J. Enterprises, Tarzana, CA) and an infrared CO₂ analyzer (ETCO₂ meter, Instrumentation Laboratories, Lexington, MA).

A balloon-tipped, triple-lumen, thermodilution pulmonary arterial catheter (Swan-Ganz catheter 93A-131-7F, American Edwards, Santa Ana, CA) was surgically inserted via the right femoral vein into the pulmonary artery. A No. 8F Cordis Ducov catheter was advanced from the right femoral artery into the thoracic aorta. A specially designed catheter sheath was advanced from the internal jugular vein into the right ventricle. A flexible guidewire advanced through the sheath was impacted against the right ventricular wall such that an electrocardiographic current indicating subendocardial injury was observed. Ventricular fibrillation was then induced by an alternating current of 100 mA delivered to the right ventricular wire and to an indifferent electrode in the subcutaneous tissue of the anterior chest. After 210 sec of ventricular fibrillation, external counter-shocks were administered with a direct-current defibrillator (Lifepulse 911 Physio-Control, Redmond, WA) at progressive energy levels of 40, 80, 200, and 300 J until a viable rhythm was restored. In each instance, electromechanical dissociation (EMD) was induced. EMD was defined as a viable electrical rhythm with systolic aortic pressure of less than 30 mm Hg, a pulse pressure less than 5 mm Hg, and a narrow QRS complex at a rate greater than 40/min.

After onset of EMD, chest compression was initiated with a...
TABLE 1
Nonresuscitated animals (seven trials, seven animals)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Time (min)</th>
<th>Site</th>
<th>pH (units)</th>
<th>ΔpH (units)</th>
<th>PCO₂ (mm Hg)</th>
<th>ΔPCO₂ (mm Hg)</th>
<th>Lactate (mmol/liter)</th>
<th>SAP (mm Hg)</th>
<th>DAP (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>-5</td>
<td>A</td>
<td>7.45 ± 0.03</td>
<td>0.03 ± 0.01</td>
<td>39.9 ± 1.1</td>
<td>5.0 ± 1.0</td>
<td>2.1 ± 0.5</td>
<td>137 ± 9</td>
<td>107 ± 7</td>
</tr>
<tr>
<td>B</td>
<td>-5</td>
<td>V</td>
<td>7.42 ± 0.03</td>
<td></td>
<td>44.9 ± 1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMD</td>
<td>+2</td>
<td>A</td>
<td>7.63 ± 0.04</td>
<td>0.30 ± 0.05</td>
<td>20.2 ± 2.6</td>
<td>34.2 ± 4.1</td>
<td>3.2 ± 0.5</td>
<td>55 ± 6</td>
<td>17 ± 3</td>
</tr>
<tr>
<td>EMD</td>
<td>+2</td>
<td>V</td>
<td>7.33 ± 0.03</td>
<td></td>
<td>54.3 ± 3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMD</td>
<td>+4</td>
<td>A</td>
<td>7.56 ± 0.03</td>
<td>0.26 ± 0.04</td>
<td>22.9 ± 2.4</td>
<td>35.0 ± 5.0</td>
<td>3.9 ± 0.4</td>
<td>54 ± 6</td>
<td>20 ± 4</td>
</tr>
<tr>
<td>EMD</td>
<td>+4</td>
<td>V</td>
<td>7.29 ± 0.03</td>
<td></td>
<td>57.9 ± 3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMD</td>
<td>+8</td>
<td>A</td>
<td>7.50 ± 0.02</td>
<td>0.27 ± 0.05</td>
<td>22.9 ± 2.6</td>
<td>39.4 ± 5.0</td>
<td>4.9 ± 0.4</td>
<td>51 ± 6</td>
<td>18 ± 2</td>
</tr>
<tr>
<td>EMD</td>
<td>+8</td>
<td>V</td>
<td>7.23 ± 0.03</td>
<td></td>
<td>62.4 ± 3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMD</td>
<td>+16</td>
<td>A</td>
<td>7.38 ± 0.04</td>
<td>0.22 ± 0.06</td>
<td>30.5 ± 6.1</td>
<td>36.9 ± 8.2</td>
<td>6.4 ± 0.4</td>
<td>41 ± 6</td>
<td>12 ± 3</td>
</tr>
<tr>
<td>EMD</td>
<td>+16</td>
<td>V</td>
<td>7.16 ± 0.03</td>
<td></td>
<td>67.4 ± 5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B = baseline; A = arterial; V = venous; ΔpH = arterial minus venous pH; ΔPCO₂ = venous minus arterial PCO₂; SAP = systolic arterial pressure; DAP = diastolic arterial pressure.

*p < .001; **p < .01; ***p < .05; all p values indicate differences from baseline values.

mechanical sternal compressor (Thumper, Michigan Instruments, Grand Rapids, MI) at a rate of 60/min with an equal compression-relaxation interval (i.e., 50% duty cycle) and for a compression depth equal to 25% of the animals' anteroposterior chest diameter. This technique results in a systolic arterial pressure greater than 25 mm Hg with a cardiac output approximately 25% that of baseline. The Fio₂ was increased to 0.8 and ventilation was interspersed with chest compressions at a ratio of 1:5. Aortic and pulmonary arterial blood was sampled before ventricular fibrillation and 2, 4, 8, and 16 min after the onset of EMD and 2, 4, 8, and 16 min after successful resuscitation. These samples were used to determine venous and arterial blood gases and blood lactate by techniques previously described. Successful resuscitation was defined as that resulting in systolic pressure greater than 30 mm Hg with a pulse pressure greater than 5 mm Hg in the absence of mechanical chest compressions. Within 30 sec of resuscitation, the arterial blood pressures invariably equaled or exceeded the baseline pressures and remained stable a minimum of 40 min.

In successfully resuscitated animals, the procedure was repeated after 1 hr. Both analysis of variance for sequential measurements and the Student t test for paired observations were used for statistical analyses. All data are reported as mean ± SEM.

Results

A total of 17 trials were completed on 12 animals. Seven of the animals were successfully resuscitated. Before the onset of ventricular fibrillation, there were normal differences between arterial and mixed venous PCO₂ and pH in both nonresuscitated and resuscitated animals (tables 1 and 2).

In the animals that were ultimately resuscitated, the arterial PCO₂ had declined from the baseline value of 37.4 to 20.1 mm Hg 2 min after the onset of EMD. Simultaneously, the venous PCO₂ was increased from 45.2 to 54.2 mm Hg. Consequently, there was a marked widening in the normal venoarterial PCO₂ gradient from 7.8 to 34.2 mm Hg. In the resuscitated

TABLE 2
Resuscitated animals (10 trials, seven animals)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Time (min)</th>
<th>Site</th>
<th>pH (units)</th>
<th>ΔpH (units)</th>
<th>PCO₂ (mm Hg)</th>
<th>ΔPCO₂ (mm Hg)</th>
<th>Lactate (mmol/liter)</th>
<th>SAP (mm Hg)</th>
<th>DAP (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>-5</td>
<td>A</td>
<td>7.46 ± 0.02</td>
<td>0.06 ± 0.01</td>
<td>37.4 ± 0.9</td>
<td>7.8 ± 1.2</td>
<td>2.8 ± 0.7</td>
<td>120 ± 6</td>
<td>95 ± 5</td>
</tr>
<tr>
<td>B</td>
<td>-5</td>
<td>V</td>
<td>7.41 ± 0.02</td>
<td></td>
<td>45.2 ± 1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMD</td>
<td>+2</td>
<td>A</td>
<td>7.54 ± 0.05</td>
<td>0.23 ± 0.06</td>
<td>20.1 ± 1.8</td>
<td>34.2 ± 3.6</td>
<td>3.9 ± 0.7</td>
<td>53 ± 5</td>
<td>19 ± 3</td>
</tr>
<tr>
<td>EMD</td>
<td>+2</td>
<td>V</td>
<td>7.31 ± 0.02</td>
<td></td>
<td>54.2 ± 2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES</td>
<td>+2</td>
<td>A</td>
<td>7.24 ± 0.02</td>
<td>0.05 ± 0.01</td>
<td>50.9 ± 3.1</td>
<td>10.3 ± 2.0</td>
<td>6.1 ± 0.8</td>
<td>119 ± 11</td>
<td>72 ± 10</td>
</tr>
<tr>
<td>RES</td>
<td>+2</td>
<td>V</td>
<td>7.19 ± 0.02</td>
<td></td>
<td>61.2 ± 2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES</td>
<td>+4</td>
<td>A</td>
<td>7.25 ± 0.03</td>
<td>0.04 ± 0.01</td>
<td>49.4 ± 3.2</td>
<td>7.8 ± 1.4</td>
<td>5.9 ± 0.8</td>
<td>125 ± 10</td>
<td>75 ± 8</td>
</tr>
<tr>
<td>RES</td>
<td>+4</td>
<td>V</td>
<td>7.21 ± 0.03</td>
<td></td>
<td>57.2 ± 3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES</td>
<td>+8</td>
<td>A</td>
<td>7.26 ± 0.03</td>
<td>0.04 ± 0.01</td>
<td>50.0 ± 2.7</td>
<td>7.5 ± 1.4</td>
<td>5.6 ± 0.8</td>
<td>118 ± 8</td>
<td>77 ± 9</td>
</tr>
<tr>
<td>RES</td>
<td>+8</td>
<td>V</td>
<td>7.22 ± 0.03</td>
<td></td>
<td>57.5 ± 2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES</td>
<td>+16</td>
<td>A</td>
<td>7.32 ± 0.03</td>
<td>0.06 ± 0.01</td>
<td>42.5 ± 2.6</td>
<td>11.2 ± 1.2</td>
<td>5.1 ± 0.8</td>
<td>114 ± 9</td>
<td>82 ± 8</td>
</tr>
<tr>
<td>RES</td>
<td>+16</td>
<td>V</td>
<td>7.27 ± 0.03</td>
<td></td>
<td>53.7 ± 2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RES = resuscitated; other abbreviations are as in table 1.

*p < .001; **p < .01; ***p < .05; all p values indicate differences from baseline.
animals, a normal venous arterial Pco₂ gradient was restored (figure 1). The venoarterial Pco₂ gradient persisted during the subsequent period of observation in nonresuscitated animals.

These changes in Pco₂ were accompanied by reciprocal changes in pH so that at 2 min of EMD and CPR, the arterial pH was increased from 7.46 to 7.54. At the same time, the venous pH decreased from 7.41 to 7.31. Accordingly, the normal arterial venous pH gradient was increased from 0.06 to 0.23. After successful resuscitation, the pH gradient was promptly restored to 0.05 (figure 1). The venoarterial pH gradient persisted in the nonresuscitated animals.

The systolic arterial pressure decreased from 120 to 53 mm Hg during CPR in the animals that were successfully resuscitated and from 137 to 55 mm Hg in the nonresuscitated animals. No significant differences in arterial pressure or venoarterial gradients were observed between resuscitated and nonresuscitated animals during EMD.

A progressive decline in both arterial and venous pH of 0.02 pH units/min was accompanied by a progressive increase in arterial blood lactate from 2.1 to 3.2 mmol/liter at 2 min and to 6.4 mmol/liter at 16 min during CPR in the nonresuscitated animals. In eight animals, seven of which were successfully resuscitated, the expired CO₂ declined from a baseline level of 3.65 ± 0.15% to 0.24 ± 0.04% during ventricular fibrillation (p < .001 by paired t test). It increased to 0.10 ± 0.17% with chest compression and to 3.62 ± 0.27% after successful resuscitation (figure 2).

The gradients between arterial and mixed venous gases were solely due to an increase in venous Pco₂. This increase in venous Pco₂ was related to a concurrent decrease in the volume of expired CO₂. In figure 1, the reduction in end-tidal CO₂ at constant tidal volumes is demonstrated.

Discussion

The amount of CO₂ eliminated by alveolar ventilation is related to venous CO₂ content and pulmonary blood flow. Since pulmonary blood flow is severely reduced during CPR, even a 50% increase in venous Pco₂ fails to maintain CO₂ delivery to the lungs. Consequently, it is a critical reduction in CO₂ delivery that accounts for decreased alveolar-capillary clearance of CO₂. However, there is an increase in the ventilation-perfusion ratio accounting for decreased arterial Pco₂.

Unlike HCO₃⁻ and H⁺, increases in dissolved CO₂ are accompanied by almost instantaneous decreases in intracellular pH. Since venous rather than arterial blood more closely approximates tissue acid-base conditions, the venous acidemia accompanying cardiac arrest...
arrest is likely to be associated with intracellular acidosis. It is cellular acidosis of myocardium that is implicated as the cause of impaired myocardial contractility, as it is in the clinical setting of EMD during CPR.¹¹

We have recently demonstrated in humans undergoing CPR selective hypercapnea and marked acidemia in central venous but not in arterial blood, together with decreases in expired CO₂ comparable to those observed in our porcine preparation.¹² The administration of sodium bicarbonate has been observed to produce a striking increase in both mixed venous P₇CO₂ and arterial blood CO₂.⁴ Accordingly, bicarbonate increases the CO₂ load. Resuscitation with restoration of cardiac output and pulmonary blood flow promptly increases the volume of expired CO₂ and decreases the mixed venous P₇CO₂. This reverses the abnormal venoarterial gradient of pH and P₇CO₂, even though there is a delay in the elimination of the accumulated CO₂ load with significant increases in both venous and arterial P₇CO₂ above those observed before cardiac arrest.

These observations suggest that, during CPR, increases in venous carbon dioxide in vital organs may produce profound cellular acidosis. In particular, increases in coronary venous CO₂, which have recently been observed in our laboratory, would most likely be associated with myocardial cellular acidosis.¹³ Improved techniques of CPR would enhance pulmonary blood flow and clearance of CO₂, thereby helping to reverse venous respiratory acidosis. Administration of base buffers that do not generate CO₂ loads, such as sodium carbonate (Na₂CO₃) or tromethamine, might also prove to be appropriate interventions during CPR in an effort to reverse critical tissue acidosis.

We conclude that arterial blood gases fail to reflect the acid-base status of systemic tissues during CPR and therefore should not be used as a guide for the administration of sodium bicarbonate. Since bicarbonate therapy increases the CO₂ load, its routine use during CPR is no longer advised.¹⁴

References
4. Standards and guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiac care (ECC). JAMA 244: 453, 1980
14. Standards and guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiac care (ECC). JAMA 255: 2841, 1986

Arteriovenous carbon dioxide and pH gradients during cardiac arrest.
W Grundler, M H Weil and E C Rackow

Circulation. 1986;74:1071-1074
doi: 10.1161/01.CIR.74.5.1071

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1986 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on
the World Wide Web at:
http://circ.ahajournals.org/content/74/5/1071

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally
published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the
Editorial Office. Once the online version of the published article for which permission is being requested is
located, click Request Permissions in the middle column of the Web page under Services. Further
information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/