Thrombolytic therapy in patients with acute myocardial infarction

K. Peter Rentrop, M.D.

THROMBOLYTIC THERAPY in patients with acute myocardial infarction has received renewed attention since intracoronary infusion of streptokinase has been introduced into clinical practice.

Efficacy of intracoronary infusion of streptokinase. Intracoronary infusion of streptokinase results in recanalization of approximately 75% of completely obstructed infarct-related vessels (table 1). Modifications of the technique, such as subselective infusion of streptokinase via small catheters, increased infusion rate, or injection of a bolus at the initiation of therapy, have not resulted in reproducibly higher recanalization rates (table 1). The influence of intracoronary infusion of streptokinase on ejection fraction has been assessed in five controlled trials (table 2), but only Anderson et al. found a significant improvement in left ventricular function from the acute to the chronic stage of infarction in patients treated with streptokinase. Lack of functional improvement in the majority of trials has been attributed to a delay of more than 4 hr between onset of infarction and commencement of therapy. However, Leiboff et al. found no improvement of function in patients treated with streptokinase, although therapy was initiated within 4 hr. This negative result may be related to the relatively high reclosure rate in Leiboff's study. The published data suggest, but do not prove, that sustained early reperfusion may be associated with improvement of left ventricular function. Additionally, reperfusion after more than 4 hr may be beneficial in some subgroups of patients, as suggested by the functional improvement associated with infusion of streptokinase after 6 hr in our trial, although this finding was not statistically significant. To test these hypotheses, a much larger trial is being conducted.

Statistically significant improvement in mortality after infusion of streptokinase was reported in only one trial. The mechanism of improved survival in this study remains unclear, since there was no parallel increase in ejection fraction. Furberg pooled the survival data of eight prospective randomized trials, including the one that showed significant improvement, and calculated a mortality of 11.0% in 382 patients treated with intracoronary infusion of streptokinase compared with 12.4% in 364 control patients; this difference was not statistically significant. The influence of intracoronary infusion of streptokinase on mortality remains unknown.

Complications associated with intracoronary infusion of streptokinase. Because of the high complication rates inherent in acute myocardial infarction, it is difficult to pinpoint those complications that are the result of early intervention. The intervention-related complication rates can be assessed only by randomized trials that include a control group not subjected to angiographic examination during the acute stage of infarction. In such a trial, fatal cardiogenic shock occurred in two patients as a result of dislodgement of clot caused by manipulation of the catheter from the infarct-related left anterior descending artery to the circumflex artery. In two additional patients, fatal pump failure after injection of dye was attributed to the negative ionotropic properties of the contrast medium. Furthermore, recanalization of the right coronary artery was frequently associated with hypotension, bradycardia, and conduction delays caused by activation of the Betzold-Jarisch reflex.

Reocclusion of coronary arteries after recanalization by intracoronary infusion of streptokinase has been associated with reinfarction and death. It has been suggested that patency can be maintained by anticoagulation with heparin. Heparinization is associated with a risk of bleeding, however, which may be increased if infusion of streptokinase has resulted in a drop of fibrinogen concentration.
TABLE 1
Recanalization rates of total coronary obstruction with intracoronary infusion of streptokinase in 10 studies

<table>
<thead>
<tr>
<th>Study</th>
<th>SK dose (U/min)</th>
<th>Bolus (^a) (U SK)</th>
<th>Sub-selective (^b)</th>
<th>Recanalization rate (^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khaja et al. (^3)</td>
<td>5,000</td>
<td>15,000</td>
<td>—</td>
<td>12/20 (60)</td>
</tr>
<tr>
<td>Anderson et al. (^4)</td>
<td>5,000</td>
<td>—</td>
<td>—</td>
<td>15/20 (75)</td>
</tr>
<tr>
<td>Ganz et al. (^5)</td>
<td>4,000</td>
<td>—</td>
<td>Yes</td>
<td>17/18 (94)</td>
</tr>
<tr>
<td>Serruys et al. (^6)</td>
<td>4,000</td>
<td>—</td>
<td>Yes</td>
<td>30/36 (83)</td>
</tr>
<tr>
<td>Kennedy (^7)</td>
<td>4,000</td>
<td>—</td>
<td>Yes</td>
<td>73/108 (68)</td>
</tr>
<tr>
<td>Leiboff et al. (^8)</td>
<td>2,000-4,000</td>
<td>—</td>
<td>—</td>
<td>15/22 (68)</td>
</tr>
<tr>
<td>Mathey et al. (^9)</td>
<td>2,000</td>
<td>10,000</td>
<td>—</td>
<td>39/39 (77)</td>
</tr>
<tr>
<td>Rentrop et al. (^10)</td>
<td>2,000</td>
<td>10,000</td>
<td>—</td>
<td>17/20 (85)</td>
</tr>
<tr>
<td>Smalling et al. (^11)</td>
<td>2,000</td>
<td>10,000</td>
<td>—</td>
<td>73/100 (73)</td>
</tr>
<tr>
<td>Rentrop et al. (^12)</td>
<td>2,000</td>
<td>—</td>
<td>—</td>
<td>32/43 (74)</td>
</tr>
</tbody>
</table>

\(^{a}\) Application of a bolus of streptokinase into the infarct-related vessel before infusion.
\(^{b}\) Sub-selective infusion of streptokinase via special catheter into the infarct-related vessel.
\(^{c}\) Recanalization rate documented by sequential angiography during infusion of streptokinase.

SK = streptokinase.

below 100 mg/dl. \(^18\) Angioplasty \(^15,\) \(^16\) and coronary bypass surgery \(^10\) have been performed after intracoronary infusion of streptokinase to maintain and augment flow to the reperfused myocardium. \(^15\) These procedures may be particularly beneficial in patients with more than 90% residual stenosis and a large segment of jeopardized myocardium. \(^15\) Although they can be performed with minimal risk shortly after infusion of streptokinase, the optimal timing of their use has not been established.

Intracoronary infusion of urokinase. Urokinase has been infused into infarct-related coronary arteries at rates between 2000 and 24,000 U/min, resulting in recanalization in 62% to 94% of the vessels. \(^17-\) \(^19\) A relationship between the dosage of urokinase and recanalization rates has not been found. In a randomized study, Tennant et al. \(^18\) found that intracoronary infusions of urokinase and streptokinase were of comparable efficacy in achieving recanalization. However, infusion of urokinase was associated with a significantly less marked reduction in fibrinogen concentration and significantly fewer bleeding complications.

Value and limitations of intracoronary thrombolytic therapy. As an important research tool, intracoronary infusion of thrombolytic agents has enhanced our understanding of the pathogenesis of acute myocardial infarction. In addition, it facilitates the analysis of benefits and limitations of reperfusion. In clinical practice, however, the value of this method is limited by several factors. Since the majority of hospitals are not equipped with cardiac catheterization laboratories, and the existing laboratories are usually not sufficiently staffed to perform intracoronary infusions of streptokinase at all times, substantial investments would be necessary to make this therapy available to all patients with acute myocardial infarction. Where such facilities

TABLE 2
Change in ejection fraction after intracoronary infusion of streptokinase in five controlled clinical trials

<table>
<thead>
<tr>
<th>Study</th>
<th>IC SK (n)</th>
<th>Control (n)</th>
<th>Time to infusion (hr) (^a)</th>
<th>Recanalization rate (%)((^b))</th>
<th>Reocclusion (%)((^c))</th>
<th>ΔEF IC SK</th>
<th>ΔEF control</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson et al. (^4)</td>
<td>24</td>
<td>26</td>
<td>4.00 ± 0.75</td>
<td>75</td>
<td>0</td>
<td>3.9 ± 4.6</td>
<td>-3.0 ± 8.4</td>
<td><.001</td>
</tr>
<tr>
<td>Leiboff et al. (^5)</td>
<td>20</td>
<td>17</td>
<td>4.03</td>
<td>68</td>
<td>45</td>
<td>-2.8</td>
<td>-0.8</td>
<td>NS</td>
</tr>
<tr>
<td>Kennedy et al. (^7)</td>
<td>134</td>
<td>116</td>
<td>4.57 ± 2.15</td>
<td>68</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>NS</td>
</tr>
<tr>
<td>Khaja et al. (^8)</td>
<td>20</td>
<td>20</td>
<td>5.40 ± 1.50</td>
<td>60</td>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
<td>NS</td>
</tr>
<tr>
<td>Rentrop et al. (^12)</td>
<td>23</td>
<td>24</td>
<td>5.90 ± 2.80</td>
<td>74</td>
<td>17</td>
<td>2.1 ± 1.1</td>
<td>-1.4 ± 9.5</td>
<td>NS</td>
</tr>
</tbody>
</table>

ΔEF = change in ejection fraction; IC SK = streptokinase group; control = control group.

\(^{a}\) Time interval from onset of infarction to infusion of streptokinase.

\(^{b}\) Recanalization rate documented by sequential angiography during infusion of streptokinase.

\(^{c}\) Reocclusion rate as assessed by repeat angiography in the chronic stage of infarction.
do exist, initiation of therapy is delayed while the cardiac catheterization laboratory is prepared and baseline angiographic studies are initiated.20, 21

Intravenous infusion of streptokinase. The influence of prolonged intravenous infusion of streptokinase on mortality was assessed in several controlled trials during the 1960s and 1970s.22 However, the recanalization rates associated with the dosage schedules used in these trials were not studied. After the introduction of intracoronary infusion of streptokinase, the concept of a short-term, high-dose intravenous infusion of streptokinase was developed. Pooled data of five studies in which intravenous infusion of streptokinase was preceded by baseline angiographic studies show a recanalization rate of 45\% with a range of 10\% to 62\%.23-27 (table 3). There is no relationship between the dose of streptokinase and recanalization rates. Several authors attempted to determine recanalization rates on the basis of indirect parameters without performing baseline angiographic studies. The most commonly used indirect parameters were patency of the infarct-related vessel at angiographic examination performed with some delay after the intervention, and an early peak of the creatine kinase level. Pooled data of five such studies show a recanalization rate of 84\% with a range of 73\% to 96\%.20, 21, 25, 28, 29 (table 4). These recanalization rates are much higher than those found in studies that carried out preintervention angiographic examination.

This discrepancy may be explained by two factors. First, in most studies documentation of recanalization by sequential angiographic studies is limited to approximately 1 hr. Since it is likely that recanalization can occur beyond this time frame, sequential angiographic studies probably underestimate recanalization rates. On the other hand, experimental and clinical data suggest that the value of recanalization in salvaging myocardium decreases rapidly with time.1 Second, preintervention angiographic studies revealed incomplete obstruction of the infarct-related vessel in 5\% to 33\% of the patients (table 5); these patients were excluded from the analysis of recanalization rates. Such a differentiation is not possible without the use of preintervention angiographic evaluation. Early peaking of creatine kinase levels does not reliably identify streptokinase-induced recanalization, since creatine kinase levels also peak early in patients with incomplete coronary obstruction at baseline angiographic examination.12 Therefore, in the absence of preintervention angiograms, recanalization rates are likely to be overestimated. Complications associated with intravenous infusion of streptokinase are primarily related to bleeding. The reported incidence of bleeding with high-dose, short-term intravenous infusion of streptokinase varies between 0\% and 21\%.20, 21, 23, 25, 26, 28 This variation may be related to relatively small sample size in the studies, lack of a standard definition of complica-

TABLE 3
Recanalization rates with intravenous infusion of streptokinase (preintervention angiograms)

<table>
<thead>
<tr>
<th>Study</th>
<th>SK dose (U)</th>
<th>Recanalization rates(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roger et al.23</td>
<td>500,000</td>
<td>n/n 10%</td>
</tr>
<tr>
<td>Saltups et al.24</td>
<td>500,000</td>
<td>3/10 30%</td>
</tr>
<tr>
<td>Schroeder et al.25</td>
<td>500,000</td>
<td>11/21 52%</td>
</tr>
<tr>
<td>Alderman et al.26</td>
<td>725,000</td>
<td>8/13 62%</td>
</tr>
<tr>
<td>Spann et al.27</td>
<td>850,000</td>
<td>6/13 46%</td>
</tr>
<tr>
<td>Roger et al.23</td>
<td>1 million</td>
<td>7/16 44%</td>
</tr>
<tr>
<td>Spann et al.27</td>
<td>1.5 million</td>
<td>15/31 48%</td>
</tr>
<tr>
<td></td>
<td>(\Sigma 51/144)</td>
<td>45%</td>
</tr>
</tbody>
</table>

SK = streptokinase.
\(^a\)Recanalization rates documented by sequential angiography during intravenous infusion of streptokinase.
tions, and investigator bias. To date, the risk-benefit ratio of high-dose, short-term intravenous infusion of streptokinase has not been assessed in a large controlled trial.

Second-generation thrombolytic agents. Recently, clinical testing of acylated plasmin streptokinase and recombinant tissue-type plasminogen activator (rt-PA) has begun. These substances possess some degree of clot selectivity; that is, they can effect thrombolysis without inducing a lytic state. More importantly, a review of angiographic studies reveals that the recanalization rates associated with intravenous application of these drugs are considerably higher than recanalization rates achieved by intravenous infusion of streptokinase and are comparable to the results reported with intracoronary infusion of streptokinase. A trial directly comparing recanalization rates in patients treated with intravenous infusion of streptokinase and those treated with intravenous infusion of rt-PA is in progress. If the results confirm that recanalization rates are significantly higher in the rt-PA group, additional trials will be necessary to assess the efficacy of second-generation thrombolytic agents in preserving left ventricular function and reducing infarct-related mortality.

References

Thrombolytic therapy in patients with acute myocardial infarction.
K P Rentrop

Circulation. 1985;71:627-631
doi: 10.1161/01.CIR.71.4.627

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1985 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on
the World Wide Web at:
http://circ.ahajournals.org/content/71/4/627.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally
published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the
Editorial Office. Once the online version of the published article for which permission is being requested is
located, click Request Permissions in the middle column of the Web page under Services. Further
information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/