The influence of selective thromboxane synthetase inhibition with a novel imidazole derivative, UK-38,485, on prostanoid formation in man

Sven Fischer, Ph.D., Michael Struppler, M.D., Barbara Böhlig, C.T.A., Christine Bernutz, Wolfgang Wober, M.D., Ph.D., and Peter C. Weber, M.D.

ABSTRACT UK-38,485, a novel imidazole derivative, was used in two clinical trials with healthy male subjects to study the influence of thromboxane synthetase inhibition on prostanoid formation. In an open pharmacokinetic study, UK-38,485 administered orally in doses of 10, 20, 40, 60, and 100 mg significantly reduced serum thromboxane (TXB2) concentrations. With lower doses (10 and 20 mg) peak inhibition of serum thromboxane occurred 2 hr after dosing, with a mean percentage inhibition of 78% and 91%, respectively. For the higher doses (40, 60, and 100 mg) peak inhibition exceeded 99% 1 hr after dosing. After 8 hr the inhibition was dose related, ranging between 59% and 75%, and after 24 hr between 0 and 35%. In a second multiple-dose, double-blind, placebo-controlled, cross-over study, 50 mg UK-38,485 given twice daily for 1 week selectively inhibited thromboxane synthetase. The excretion of 2,3-dinor-TXB2, the major urinary metabolite of endogenously formed thromboxane, was significantly reduced, whereas the urinary excretion of 2,3-dinor-6-keto-PGF1α, the main metabolite of endogenous prostacyclin, and the plasma concentrations of 6-keto-PGF1α showed no significant increases compared with levels in the placebo period. In platelet suspensions stimulated ex vivo with arachidonic acid and in serum of incubated whole blood, TXB2 concentrations were reduced and a significant redirection of endoperoxide metabolism to antiaggregatory and vasodilatory prostaglandins I2, E2, and D2 was demonstrated after the influence of UK-38,485. Platelet lipooxygenase metabolites were not measurably altered. The drug was well tolerated. In both studies, no clinically relevant changes in laboratory safety and hemodynamic parameters, bleeding, or clotting time were observed. From the time course of the plasma drug concentrations, the inhibition of thromboxane synthesis, and the redirection of endoperoxide metabolism it can be concluded that UK-38,485 is rapidly absorbed and has a long-lasting effect on prostanoid formation.

Circulation 68, No. 4, 821–826, 1983.

THROMBOXANE A2 (TXA2) and prostaglandin (PG) I2 exert opposite effects on platelet aggregation and vascular resistance, and the balance between these compounds has been proposed to be one of the factors that determine platelet reactivity, endothelial thromboreistance, and vascular tone.1 Increased thromboxane formation has been found to be associated with various conditions such as vasospasm and platelet aggregation in coronary heart disease,2–4 vasoconstriction in hydronephrotic kidneys,5 incipient renal graft rejection,6 severe septic shock associated with acute respiratory distress syndrome,7 pulmonary embolism,8 and allergic bronchospasm.9 Selective inhibition of thromboxane synthesis and the redirection of endoperoxide metabolism toward PGI2, PGE2, and PGD2, will possibly offer a new therapeutic approach to those disease states in which increased thromboxane formation is critically involved.

Ex vivo and in vitro studies with thromboxane synthetase inhibitors10–12 have demonstrated that these compounds selectively inhibited thromboxane formation and partially redirected endoperoxide metabolism.13,14 However, almost no data are available to determine whether thromboxane synthetase inhibition also redirects endoperoxide metabolism under basal in vivo conditions in man. This study reports on the pharmacokinetics and the biochemical effects ex vivo and in vivo of a novel imidazole derivative, UK-38,485,15 in healthy male subjects.

The potency and specificity of action of this drug were examined by measuring formation of TXB2 and other cyclooxygenase products in serum after incubation of whole blood, by monitoring cyclooxygenase and lipooxygenase products in platelet suspensions after

From Medizinische Klinik Innenstadt der Universität München and Pfizer Clinical Research, München, F.R.G.

Supported in part by Deutsche Forschungsgemeinschaft, We 681.

Address for correspondence: Peter C. Weber, M.D., Medizinische Klinik Innenstadt der Universität, Ziemssenstrasse 1, 8000 München 2, F.R.G.

Received March 29, 1983; revision accepted June 9, 1983.
stimulation with exogenous arachidonic acid, and by analyzing the major metabolites of endogenously formed TXA₂ and PGI₂ in urine.

Subjects and methods

All subjects gave their written informed consent according to the German Drug Law.

Single-dose study. The pharmacokinetic profile and the potency of orally administered UK-38,485 were determined in an open single-dose study in 10 healthy male subjects, ages 18 to 50 years and weighing between 60 and 90 kg. Subjects were studied in pairs receiving doses of 10, 20, 40, 60, and 100 mg of the compound. Subjects with abnormalities of pre-study laboratory data (including complete blood count, clinical chemistry, kidney and liver parameters, and electrocardiograms) were excluded from the study. Hospitalized subjects fasted for 10 hr before the beginning of the trial. Heart rate and blood pressure were measured at 30 min intervals and venous blood was drawn just before and at 0.5, 1, 2, 3, 4, 6, 8, and 24 hr after ingestion of the drug for determination of serum TXB₂ and plasma drug concentrations.

Multiple-dose study. UK-38,485 (50 mg) or identical placebo capsules were administered twice daily (8 A.M., 8 P.M.) in a double-blind, randomized cross-over design to 12 hospitalized healthy male subjects, ages 18 to 30 years and weighing between 61 and 79 kg. Each treatment period lasted for 6 days and was interrupted by a washout period of 8 days. Laboratory safety parameters, including a complete blood count, liver and kidney function, and postprandial blood glucose concentrations, were determined before and every other day during the treatment period. For the determination of TXB₂, PGE₂, PGE₁, and 6-keto-PGF₁₀, plasma concentrations of 6-keto-PGF₁₀ were determined before treatment and on the sixth day of the treatment periods; plasma 6-keto-PGF₁₀ was also measured 12 hr after the last dose.

Materials and analytical methods. UK-38,485, 3-(1H-imidazole-1-yl-methyl)-2-methyl-1H-indole-1-propanoic acid, was synthesized by Pfizer Central Research (Sandwich, Kent, England). The drug was provided as capsules containing 5, 20, and 50 mg of the substance. Unlabeled prostaglandin standards and 19', 19''-1H₂-2,3-dinor-6-keto-PGF₁₀, were kindly supplied by Dr. J. Pike, Upjohn Co. (Kalamazoo, MI). 1H-6-keto-PGF₁₀, 3H-TXB₂, 3H-PGE₁, 1H-PGE₁, and 14C-C20:4 were obtained from New England Nuclear (Boston); Sep-pak C₈ cartridges and µ-Bondapak C₈ reverse-phase high-performance liquid chromatography (HPLC) columns were obtained from Waters Associates; XAD-2 Amberlite was obtained from Serva (Heidelberg, F.R.G.); and liragrelate was obtained from Eastman Kodak (Rochester, NY). All other solvents and thin-layer chromatographic silica gel plates were purchased from Merck (Darmstadt, F.R.G.).

Radioimmunologic determination of TXB₂, 6-keto-PGF₁₀, PGE₁, and PGE₂ in serum. For determination of serum TXB₂, 4 ml of blood was transferred to a glass tube, incubated for 60 min at 37°C, and centrifuged at 2000 g for 10 min; the serum was stored at −20°C until assayed. TXB₂ concentrations were measured by radioimmunoassay (RIA) with a specific and sensitive TXB₂ antiserum (a gift of Dr. L. Levine, Brandeis University, Waltham, MA) as described previously. In brief, the TXB₂ antiserum was used at a final dilution of 1:190,000, the binding of 6H-TXB₂ tracer was 29 ± 4% (n = 21), the 50% percent of standard curves was 9 ± 1 pg (n = 21), and the lower limit of detection was 0.8 ± 0.15 pg. The relative cross reactions of the TXB₂ antiserum to 6-keto-PGF₁₀, PGE₂, PGE₁, HHT, and 12-HETE were below 0.01%, 0.5% to PGE₂, and 50% to 60% to 2,3-dinor-TXB₂.

Cyclooxygenase metabolites were monitored in pooled serum from incubated blood. For this purpose, 1 ml of serum was extracted with Sep-pak C₈ cartridges and the extract was fractionated on reverse-phase HPLC columns with H₂O:aceto-nitrile:acetic acid (740:600:2; v/v) as the solvent system. The fractions were screened for immunoactivity with antiserum against TXB₂, 6-keto-PGF₁₀, PGE₂, and PGE₂, and 6-keto-PGF₁₀. The 24 hr excretion of 2,3-dinor-TXB₂ was measured by RIA with 6H-TXB₂ as a tracer and TXB₂ antiserum, which showed a 50% to 60% cross reaction with authentic 2,3-dinor-TXB₂. After extraction of 30 ml of acidified urine with Sep-pak C₈ cartridges, 2,3-dinor-TXB₂ and TXB₂ were separated on reverse-phase HPLC columns with a solvent system described previously. At a HPLC flow rate of 2 ml/min, 2,3-dinor-TXB₂ eluted between 7 and 11 min and TXB₂ between 16 and 24 min from the column. The 24 hr excretion of 2,3-dinor-6-keto-PGF₁₀ was determined by combined gas chromatography--mass spectrometry with 60 ml of urine according to the method of Falardeau et al. 19', 20, 20'. 2H₂-2,3-dinor-6-keto-PGF₁₀ was used as internal standard. Ion pairs m/z 570/574 (M⁺-31) and m/z 480/484 (M⁺-90-31) were monitored. The quantitative analysis was based on standard curves, which were shown to be linear in the observed range.

For determination of plasma 6-keto-PGF₁₀ levels, venous blood (50 ml) was drawn on EDTA/meclofenamate (4 mM/40 μM final concentration), chilled on ice, and centrifuged at 3000 g for 20 min. The obtained plasma (20 ml) was equilibrated with 1H-6-keto-PGF₁₀, acidified with formic acid to pH 3.2, applied to a XAD-2 Amberlite column, and washed with distilled water and n-heptane. Prostaglandins were then eluted with methanol and separated by thin-layer chromatography (TLC) with ethyl-tate-isooctane-acetic acid:H₂O (110:50:20:100; v/v) as solvent system. The zone corresponding to authentic 6-keto-PGF₁₀ was further purified on reverse-phase HPLC columns. Fractions containing the tracer were analyzed with a specific 6-keto-PGF₁₀ RIA. In brief, the 6-keto-PGF₁₀ antiserum was used at a final dilution of 1:21,000, the binding of 1H-6-keto-PGF₁₀ tracer was 30 ± 3% (n = 21), the 50% intercept of standard curves was 54 ± 8 pg (n = 21), and the lower limit of detection was 7 ± 4 pg. The relative cross reactions of the 6-keto-PGF₁₀ antiserum to TXB₂, PDE₂, and 6-keto-PGF₁₀ were below 0.05% and were between 1.5% and 7% to PGF₁₀, 6-keto-PGE₁, 2,3-dinor-6-keto-PGF₁₀-lactone, and PGE₁.

Measurement of cyclooxygenase and lipoxygenase products in platelets. A 100 μl volume of platelet suspension (3 × 10⁸ platelets) were incubated with 0.5 μCi [¹⁴C]-C20:4 to give a final volume of 0.5 ml. After 6 min at 37°C the sample was acidified to pH 3.2 (1N HCl) and extracted with chloroform:methanol (2:2; v/v). The cyclooxygenase metabolites were separated by TLC in chloroform:methanol:acetic acid:H₂O (90:80:1:0.8; v/v) and the lipoxygenase metabolites in liragrelate diethylether:acetic acid (40:60:1; v/v). The metabolites were located by radio-scanning and identified with authentic standards. Two sets were eluted and an aliquot of 1/6 was quantified by liquid scintillation counting.

Plasma drug concentrations. UK-38,485 plasma concentra-
Serum Concentration
Plasma was concentration was obtained between 0.5 and 1 hr, indicating a rapid absorption for all dosages. Mean plasma elimination half-life was calculated to be 0.76 hr and was independent of the dose. Mean percentage urinary recovery of unchanged drug was 52.8% and was not dose dependent.

The dose-dependent reduction of serum TXB₂ concentrations is shown in figure 2. For the 10 and 20 mg doses, peak inhibition of TXB₂ occurred 2 hr after dosing, with a mean inhibition of 78% (from 180 to 40 ng/ml TXB₂) and 91% (from 142 to 12.5 ng/ml TXB₂), respectively. For 40, 60, and 100 mg, peak inhibition exceeded 99% (from 180 to 305 ng/ml to 1.5 to 2.5 ng/ml TXB₂) 1 hr after dosing. After 8 hr the inhibition was dose-related, ranging between 59% and 75%. By 24 hr TXB₂ concentrations had returned to 65% to 100% of control.

Extensive screening of laboratory parameters, including complete blood counts, liver and kidney function tests, bleeding and clotting time, and monitoring of hemodynamic parameters, showed no clinically relevant changes in comparison to predose data. Two subjects reported side effects. One suffered mild headache and dizziness after receiving 20 mg and one reported headache and tiredness after a 60 mg dose. It was uncertain whether the symptoms were drug related. Otherwise the drug was well tolerated.

In the subsequent multiple-dose study, inhibition of TXB₂ formation was about 65% 1 hr after the first dose (with a scattering between 0% and almost 100%), whereas at 1 hr after dosing on the following days of treatment, the inhibition of TXB₂ formation was almost complete (figure 3). Twelve hours after the last dose, TXB₂ serum concentrations had returned to about 50% of the baseline.

The selectivity of inhibition of TXB₂ formation and

FIGURE 1. Plasma drug concentrations after single doses of UK-38,485. Mean values from two subjects at each dose level. The asterisks at 8 hr after dosing are means of pairs in which one value of each was not detectable. At 24 hr no drug concentration was detectable. The dotted lines below the detection limit indicate that these data are extrapolated.

FIGURE 2. TXB₂ concentrations in serum of incubated whole blood after single doses of UK-38,485. Mean values from two subjects at each dose level.

FIGURE 3. TXB₂ concentrations in serum of incubated whole blood obtained 1 hr after dosing (or 12 hr after dosing, day 8) during the multiple-dose study. Dosages of 2 × 50 mg UK-38,485 or placebo were administered daily. Values are mean ± SEM from 12 subjects.
concomitant redirection of platelet endoperoxide metabolism into PGE₂ and PGD₂, was demonstrated during treatment with UK-38,485 after ex vivo incubation of platelet suspensions with ¹⁴C-C20:4. No change in concentration of the platelet lipoxigenase product 12-HETE was observed (figure 4, table 1). On treatment with UK-38,485, formation of 6-keto-PGF₁α, PGE₂, and PGF₂α was demonstrated in serum of incubated whole blood (table 2).

Urinary excretion of 2,3-dinor-TXB₂ was significantly reduced during treatment with UK-38,485, indicating effective inhibition of basal, endogenous thromboxane formation by this regimen (figure 5). The excretion of 2,3-dinor-6-keto-PGF₁α, the major urinary metabolite of endogenously formed PGI₂ increased slightly but not significantly. Plasma levels of 6-keto-PGF₁α remained unchanged during treatment with UK-38,485 (figure 5).

Physical examination and extensive laboratory screening during the active and placebo treatment periods and thereafter revealed no drug-related side effects. One subject complained of tiredness and dizziness on 3 days of the active treatment period; another subject reported mild dizziness on 6 days of the active treatment period, 15 min after dosing. Otherwise, the drug was well tolerated.

Discussion

In the single-dose study, single oral doses of UK-38,485 were rapidly absorbed. The plasma drug concentrations and the inhibition of TXB₂ formation were dose dependent. During the control stage, serum concentrations of TXB₂ ranged from 142 to 305 ng/ml and were in the same range as reported recently in normal subjects. With doses of 40 mg of UK-38,485 and higher, the TXB₂ concentrations in serum were reduced to 1.5 to 2.5 ng/ml 1 hr after dosing, a 95% to 99% reduction of TXB₂ formation. Compared with another imidazole derivative, dazoxiben, the time course of TXB₂ inhibition was prolonged and the effective doses were considerably lower (by a factor of 3 to 5). Although the plasma half-life is short (0.76 hr) and in most of the subjects plasma concentrations of UK-38,485 were barely detectable 8 hr after ingestion of the single doses, the simultaneously measured TXB₂ concentrations were still reduced by 60% to 70% of control (from 142 to 305 ng/ml to 55 to 98 ng/ml TXB₂; see figure 2) for doses higher than 40 mg. A possible explanation for this finding could be the accumulation of UK-38,485 in or on platelets or other blood cells.

After the first dose of the multiple-dose study (figure 3) the degree of inhibition of thromboxane synthesis showed a broad scattering (from 0 to almost 100% inhibition), suggesting interindividual variations of absorption of the drug. The almost complete inhibition of

TABLE 1

Quantification of cyclooxygenase and lipoxygenase products in platelet suspensions (as shown in figure 4)

<table>
<thead>
<tr>
<th></th>
<th>PGE₂ +</th>
<th>TXB₂</th>
<th>PGD₂</th>
<th>12-HETE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>8.0 ± 2.2ᵃ</td>
<td>1.1 ± 0.2</td>
<td>9.1 ± 2.6</td>
<td></td>
</tr>
<tr>
<td>1 hr after UK-38,485 (50 mg)</td>
<td>2.8 ± 2.0ᵇ</td>
<td>8.0 ± 3.6ᵇ</td>
<td>8.8 ± 2.6</td>
<td></td>
</tr>
<tr>
<td>12 hr after UK-38,485 (50 mg)</td>
<td>4.6 ± 1.5ᵇ</td>
<td>4.0 ± 0.8ᵇ</td>
<td>8.6 ± 2.9</td>
<td></td>
</tr>
</tbody>
</table>

ᵃValues expressed as cpm × 10⁻¹⁰; mean ± SD from six subjects.
ᵇp < .01 vs control and the preceding value.

TABLE 2

Concentration of cyclooxygenase products (ng/ml) in pooled serum from six subjects after incubation of whole blood for 1 hr at 37°C

<table>
<thead>
<tr>
<th></th>
<th>6-keto-PGF₁α</th>
<th>PGF₂α</th>
<th>PGE₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>135.0</td>
<td>0.07</td>
<td>2.4</td>
</tr>
<tr>
<td>1 hr after UK-38,485 (50 mg)</td>
<td>17.8</td>
<td>9.1</td>
<td>14.9</td>
</tr>
<tr>
<td>12 hr after UK-38,485 (50 mg)</td>
<td>100.8</td>
<td>0.47</td>
<td>7.2</td>
</tr>
</tbody>
</table>
TXB₂ formation in serum (1 to 3 ng/ml TXB₂) found 1 hr after dosing on the second day of treatment and thereafter probably results from the residual inhibition of thromboxane synthesis after the preceding dose.

The selectivity of inhibition of thromboxane synthetase by UK-38,485 and redirection of the metabolism of endoperoxides toward PGE₂ and PGD₂ were evident from experiments with platelet suspensions incubated ex vivo with ¹⁴C-C20:4 (figure 4, table 1). The unchanged 12-HETE concentrations found in platelet incubations showed that no overflow toward the 12-lipoxygenase pathway occurred (table 1). The concentrations of 6-keto-PGF₁α increased about 100-fold in serum obtained from whole blood incubated ex vivo after oral treatment with UK-38,485 (table 2). A similar increase has been previously reported in dogs. This finding suggests that during selective inhibition of thromboxane synthesis, white blood cells can effectively utilize accumulated platelet-derived endoperoxides. Indeed, previous in vitro experiments with selective thromboxane synthetase inhibitors have demonstrated diversion of endoperoxide metabolism to PGF₂α and PGE₂ in lung, spleen, and platelets and to PGI₂ in platelet-endothelial cell mixtures and in incubated whole blood. This increased formation of 6-keto-PGF₁α in whole blood could occur in monocytes, which have been shown to possess a considerable capacity to synthesize PGI₂ from endoperoxides. Furthermore the obtained data are comparable with the results of a recent study demonstrating increased ex vivo formation of 6-keto-PGF₁α after selective inhibition of thromboxane synthetase with dazoxiben in patients with angina pectoris and in healthy subjects.

In addition to these ex vivo experiments, we investigated whether selective inhibition of thromboxane synthetase by UK-38,485 induces a measurable reorientation of basal, endogenous endoperoxide metabolism. The plasma concentrations of 6-keto-PGF₁α were very low under basal conditions and comparable to values reported recently. The basal urinary excretion of 2,3-dinor-6-keto-PGF₁α was in the same range as reported recently. Both 6-keto-PGF₁α in plasma and 2,3-dinor-6-keto-PGF₁α in urine were found to be unchanged or only slightly increased during the treatment with UK-38,485. However, the excretion of 2,3-dinor-TXB₂ was significantly reduced, indicating effective inhibition of basal endogenous thromboxane formation. Thus, under this regimen a measurable redirection of endogenously formed (probably platelet-derived) endoperoxides into PGI₂ does not occur in vivo in healthy subjects, presumably devoid of increased platelet aggregation and elevated thromboxane formation. In support of this, alterations of hemodynamic parameters, indicating enhanced systemic production of PGI₂, were not observed.

In conclusion, the data obtained in this study show that UK-38,485 is an orally active and selective inhibitor of thromboxane synthetase. The pharmacokinetic profile and the biochemical effects indicate that this novel imidazole derivative has a greater potency and longer duration than a similar compound, dazoxiben, currently being evaluated in man. The absence of any clinically relevant side effects of this imidazole derivative in conjunction with its attractive therapeutic potential in those clinical conditions that may result from elevated intrinsic thromboxane formation should emerge further study of this compound.

We thank Mrs. C. Hasselmann, Mrs. E. Schmid, Mr. U. Katzner, and Dr. R. Steyerer for invaluable technical assistance, and Drs. A. Dörge and H. Tyler for fruitful discussions.
References

The influence of selective thromboxane synthetase inhibition with a novel imidazole derivative, UK-38,485, on prostanoid formation in man.
S Fischer, M Struppler, B Böhlig, C Bernutz, W Wober and P C Weber

Circulation. 1983;68:821-826
doii: 10.1161/01.CIR.68.4.821
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1983 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/68/4/821.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/