The Mitral Valve Orifice Method for Noninvasive Two-dimensional Echo Doppler Determinations of Cardiac Output

DANIEL C. FISHER, M.D., DAVID J. SAHN, M.D., MARK J. FRIEDMAN, M.D., DOUGLAS LARSON, M.S., LILLIAM M. VALDES-CRUZ, M.D., SUZANA HORYOWITZ, STANLEY J. GOLDBERG, M.D., AND HUGH D. ALLEN, M.D.

SUMMARY We developed and validated a mitral valve orifice method for Doppler cardiac output determination. In 15 open-chest dogs, cardiac output was controlled and measured by a roller pump interposed between the right atrium and pulmonary artery as a right-heart bypass. Left heart flows were measured in the open-chest dog model by Doppler measurements at the mitral valve orifice and compared not only to volume flow measured by the roller pump, but to electromagnetic flow meters as well. The maximum mitral valve orifice area was measured off short-axis two-dimensional echocardiographic views by planimetry. The maximal orifice was then adjusted for its diastolic variation in size by calculating a ratio of mean-to-maximal mitral valve separation on a derived M-mode echocardiogram. Flow was sampled parallel to mitral valve inflow in a four-chamber plane. The multiplication of mean flow throughout the cardiac cycle by the mean mitral valve area after correction for diastolic size variation yielded a cardiac output determination that could be compared to the roller pump measurement. Fifty-two cardiac output determinations over roller pump values of 1-5 l/min yielded a high correlation between roller pump flows and Doppler (r = 0.97 ± 0.23/min). Our study shows that the mitral valve orifice provides an accurate site for Doppler cardiac output measurements.

A MAJOR DIFFICULTY in determining cardiac output using quantitative Doppler echocardiography is an inability in many cases to adequately visualize and quantitate internal aortic diameter in the area of Doppler sampling. In normal Doppler flow calculations, small errors in internal diameter measurement for vessels are raised to the second power when calculating cross-sectional area. Moreover, suprasternal notch aortic imaging tends to optimize Doppler flow recordings, but produces significant difficulties for determination of ascending aortic cross-sectional area. Even when aortic diameter can be accurately measured, it is unclear in the curved ascending aorta what portion of the anatomical flow cross section has a flat flow profile.

We studied a method for Doppler quantitation of transmural flow using echocardiographic views of the mitral valve that are reliably obtained in clinical two-dimensional echocardiographic examinations of adult patients. We validated this method in an open-chest animal model in which flow could be tightly controlled and accurately measured.

Methods

Validation Studies: Surgical Techniques and Animal Model

Fifteen dogs that weighed 20-25 kg were given pentobarbital, 30 mg/kg, and ventilated using a Harvard respirator. A midline sternotomy was performed and the aorta and its branch vessels were isolated and cleaned of adventitia and fat. The azygos vein was then ligated and the pericardium opened. Stab incisions were made in the lateral right atrial wall and right atrial appendage, through which retrograde cannulation of the venae cavae using ½-inch tubing was achieved. This technique has been described. These cannulas drained by gravity to a 5-liter reservoir from which a ¼-inch tube passed through a mechanical roller pump, and the return tube from the pump was sutured to the right atrial free wall and passed through the tricuspid valve into the pulmonary artery. Heparin (5000 U) was given in a bolus and the reservoir primed with 1 liter of Ringer’s lactate. Ligatures around the venae cavae and pulmonary artery were tightened as right-heart bypass was instituted. The roller pump, which had been calibrated using a stopwatch and graduated cylinder, could then be set to achieve and maintain left cardiac output within strict limits. When venous return did not keep up with forward flow, a maximum of 1 liter of Ringer’s lactate was added to the reservoir. Cardiac output using the roller pump could be varied between 0.5 and 6 l/min and Doppler flow measurement made over flows varying in increments of 0.5 l/min. Calibrated electromagnetic flow probes (Gould-Statham SP2204) were periodically also placed 2 cm distal to the aortic valve to verify roller pump accuracy, and were used in each of the dogs over two to three cardiac outputs, but not for every roller pump setting.

Ultrasound and Doppler Method

A prototype two-dimensional sector scanner with range-gated Doppler capability (Electronics Medicine/Honeywell) was used for both imaging and Doppler flow studies. The instrument has a 3.5-MHz mechanical transducer that is oscillated through an angle of 60-75°. A movable Doppler sample cursor allows
Maximal mitral valve orifice size at the level of the leaflet tips was then obtained by ECG gating to the greatest mitral valve leaflet separation at either the E or A point on the derived M-mode echocardiogram (figs. 1 and 2). The maximal area by the stop-frame was later checked against frame-by-frame analysis of the videotaped real-time images. A derived M-mode mitral echocardiogram hard copy at 100 mm/sec paper speed was obtained across the middle of the leaflets at the same level as the two-dimensional image and was later used to correct for variations in mitral valve orifice size during diastole (fig. 2). The transducer was then repositioned and placed lightly on the cardiac apex to obtain two- or four-chamber views, and the Doppler sample volume was placed parallel to the left ventricular inflow tract just inferior to the tips of the mitral valve leaflets (fig. 3A). The angle between Doppler sampling direction and assumed direction of mitral inflow was estimated by an angle cursor on the sample line and the view was adjusted so that this angle was always less than 15°. Although the direction of flow in the plane perpendicular to the image, the azimuthal plane, could not be determined, we attempted to maximize Doppler shift by small positional changes so as to be as close as possible to parallel to mitral inflow. Lateral beam characteristics in a water bath for this system suggest that the 6-dB attenuation at 4 cm depth is ± 2 mm, which may be assumed to be the lateral dimension of the Doppler sample volume. The sample volume length was usually set at 0.5–1 cm. Two-dimensional mitral orifice size, M-mode mitral separation during diastole and ECG and Doppler flow (recorded on an LS-8 hard-copy recorder at 100 mm/sec) (fig. 3B) were each recorded for each cardiac output determination after 5 minutes of stabilization after any changes in roller pump speed.

Data Analysis

Analysis of records and calculations of cardiac flow were performed by one examiner, who was blinded to the roller pump settings. Twenty selected records were checked by another observer whose determinations of
cardiac output never differed from the first observer by more than 5%.

For flow calculations, mitral inflow Doppler velocity flow curves from three sequential beats were digitized using a programmable graphics analyzer (Numonics) in order to obtain a mean mitral flow over time for the entire cardiac cycle. Although the scanner provides spectral analysis for quantitating all the velocities within the sample volume, the spectral output relates the number of times a particular velocity appears in the spectral determinations to the darkness of the lines during any 5 msec sampling period. The modal velocity on the printout can be approximated with a line drawn through the densest portion of the velocity trace (fig. 3B). Using this modal velocity from the spectral wave form, the area under the curve was digitized over two to three entire sinus beats at a regular heart rate to determine the mean temporal velocity of transmitral flow throughout the cardiac cycle. In obtaining the records, we avoided, as much as possible, flow in the left ventricular outflow tract, and if flow away from the transducer was recorded, it was ignored during flow tracing, as all flow curves were brought to zero during systole (fig. 3B).

An effective mean diastolic cross-sectional orifice area for the mitral valve was determined by multiplying the maximal mitral orifice area (obtained by planimetering the stop-frame two-dimensional valve orifice image through the middle of the leaflets) by the ratio of mean-to-maximal mitral valve leaflet separation on the derived M-mode echocardiogram. The purpose of using this ratio was to correct for variations in mitral valve orifice size during diastole (fig. 2). To obtain the mean/maximal ratio, the diastolic portion of an M-mode beat was divided into 0.05-second segments and leaflet separation measured and averaged to obtain the mean. Maximal separation was determined either at an E or an A point, whichever corresponded to the two-dimensional mitral orifice view.

Cardiac output using the mitral valve orifice method could then be determined using the formula RGD-CO = (V × CSA × 60)/cos θ, where RGD-CO = range-gated Doppler cardiac output (l/min), V = mean velocity throughout the entire cardiac cycle uncorrected for angle (cm/sec), CSA = the effective mean diastolic mitral valve orifice area corrected for diastolic variations (cm²), and cosine θ = the angle between the Doppler beam and blood flow.

Statistical Analysis

Doppler cardiac outputs derived from the animal studies were compared with the roller pump cardiac outputs using linear regression. When electromagnetic flowmeter and roller pump values were simultaneously obtained in the animal model, the roller pump value was used for the statistical analysis. Maximal and mean mitral valve orifice sizes were also compared to roller pump flow using regression analysis individually in five dogs.

Results

Animals

Fifty-two cardiac output values derived from Doppler velocity information were compared to simultaneous roller pump values in the dogs. For each dog, two to five cardiac output comparisons between roller pump and Doppler values were made. Not all dogs had all levels of roller pump cardiac outputs evaluated. Roller pump values ranged from 1.0 to 5.0 l/min and Doppler-derived flow values from 0.91 to 5.2 l/min. Stroke volumes calculated from Doppler information

Figure 3. (A) Apical two-chamber view shows sampling of mitral valve inflow at the level of the leaflet tips in a direction almost parallel to flow. SV = sample volume; LA = left atrium; LV = left ventricle; AO = aorta. (B) Mitral valve (MV) Doppler flow record obtained in the same open-chest dog as in figure 3A at a paper speed of 100 mm/sec. The dots superimposed on the last beat show the method of tracing through the modal velocities throughout one cardiac cycle to determine mean temporal flow.
ranged from 6.6 to 63 ml/beat. Doppler transmural
temporal mean velocity corrected for angle ranged
from 5–23.4 cm/sec and peak velocity corrected for
angle ranged from 27–117 cm/sec. An angle of 0° was
calculated between the sampling direction and the
direction of mitral flow for 80% of data points, and all
other sampling angles were less than 15°. A linear
correlation (r = 0.97) with a standard error of the
estimate of 0.23 l/min was obtained between Doppler
output and roller pump determinations (fig. 4).

Mitral Valve Orifice Area vs Cardiac Output

The effect of various roller pump settings on maxi-
mal mitral valve orifice size was studied in five dogs.
Within the range of 1.0–5.0 l/min, maximal mitral
valve orifice size and cardiac output were highly corre-
lated (r = 0.90, 0.98, 0.94, 0.85 and 0.99) in each of
the five dogs in whom we rapidly and sequentially
performed mitral imaging while changing the cardiac
output (fig. 5).

Spectral Dispersion

Spectral width for mitral flow (± 6 db) in the dogs
(even at high flows) was less than ± 10 cm/sec.

Mean to Maximal Mitral Valve Leaflet Separation

The ratio of mean to maximal mitral valve separa-
tion used for correction of the two-dimensional eco-
charadiographic orifice area on derived M-mode eco-
chardiograms was 0.70–0.85 (mean 0.81).

Discussion

We1, 4, 5 and others2, 3, 6, 7 have used Doppler-derived
flow from the aorta to quantitate cardiac output. Al-
though the results using ascending aortic measure-
ments have been encouraging, difficulty in the accu-
rate determination of internal aortic cross-sectional
area by echocardiography represents a major problem
for accurate flow prediction.1 Significant echo drop-
out occurs in suprasternal aortic imaging as a result of
the aortic walls being parallel to the ultrasound beam, and

the aorta remains the same size, even in low cardiac
output states, where only a central stream may emerge
from a partially opened aortic valve.

Imaging and Doppler flow recording at the mitral
valve orifice offers a number of advantages over su-
prasternal recording. Short-axis views allow the mitral
valve leaflet tips to be imaged in a plane roughly pend-
icular to the ultrasound beam, while in the four-
chamber view, Doppler flow into the left ventricle is
recorded parallel to the interrogating ultrasound beam.
Using this method, ambiguity in determination of
cross-sectional area is therefore minimized, while
Doppler flow velocities are optimized. Also, by using
the cross-sectional short-axis orifice view, the mitral
orifice area could be determined by planimetry, avoid-
ing the need to raise a diameter to the second power in
the calculation of cardiac output. Further, the change
in mitral valve orifice size with roller pump flows
suggests that the mitral valve orifice adapts to encap-
sus the flow stream passing through it. In this respect,
our data confirmed work by Rasmussen and co-work-
ers, who demonstrated a method for calculating stroke
volume in humans using mitral valve motion.9 In
the individual dogs the correlation between maximal
mitral valve orifice size and roller pump flow was 0.85–
0.99. The implication of this finding for clinical use
suggests that it is not enough to follow serial changes
in left ventricular inflow velocities without also obtain-
ing corrected mitral valve orifice sizes, nor is it enough
to record mitral orifice size alone as an estimate of
cardiac output, because presumably, the maximal or-
ifice available plateaus at high cardiac output and is
ultimately limited by left ventricular cavity dimen-
sions. In the two smallest of the five dogs studied in
this fashion, a leveling off of mitral valve orifice size
was seen at cardiac outputs approaching 5 l/min, the
highest roller pump setting we used. Individual data
points are shown on figure 5 for one of those dogs.
Our animal results in which rigidly controlled roller pump cardiac output was compared to Doppler flow using the mitral valve orifice method achieved excellent correlation \(r = 0.97 \). These results may be explained in part by the simultaneous measurements, lack of beat-to-beat variation, and consistency of heart rates, since all the necessary views could be obtained in 1–2 minutes. The technique of using the roller pump as a right-heart bypass to control left-heart inflow and outflow further avoids the 10–15% variations inherent in thermodilution techniques\(^{9}\) and also probably contributed to the accuracy of the results.

We recently attempted to apply this method in 18 adult patients who were studied in the coronary care unit to determine the clinical value of the mitral valve method. Admission diagnoses included myocardial infarction in 12 patients, pulmonary embolism in one patient and sepsis in one patient. Four patients had undergone coronary artery bypass grafting. None had mitral valve disease or mitral insufficiency. The criteria for inclusion in the clinical study were previous clinically indicated placement of Swan-Ganz thermodilution catheter and the ability to image the mitral valve orifice and to record Doppler flow from apical views. In this unstable and critically ill population, 15 of the 18 patients were successfully imaged. Examinations lasted 10–15 minutes. The procedure for obtaining flow data and orifice imaging data was similar to that used in the animal studies, but a sample length of 1–2 cm was used in human studies (fig. 6). Mitral valve flow measurements by Doppler were compared to standard thermodilution cardiac outputs performed with a thermodilution computer system (Edwards Instruments, 9510-A) as an average of five injections. In this preliminary study in humans, though on a small number of patients, the correlation between Doppler and thermodilution cardiac outputs was 0.94, with a standard error of the estimate of \(\pm 0.38 \text{ l/min} \). Twelve of the 15 values of Doppler cardiac output were within 10% of the thermodilution determination. These encouraging preliminary results were obtained over thermodilution cardiac outputs of 2–8.4 l/min.

That mean diastolic mitral valve orifice size may be used to determine cross-sectional flow area is an empirical finding. Our attempts to use the mitral valve annulus\(^{10}\) cross-sectional area measured from the echo

Figure 6. (A) Short-axis view in a patient with a dilated left ventricle and poor left ventricular function shows the mitral valve orifice area. The mitral valve sits in the middle of the dilated cavity and does not appear completely open, but this was in fact the widest opening of the valve in this patient. (B) Four-chamber view shows placement of a 1-0-cm-long sample volume (SV) in the left ventricular inflow tract parallel to the direction of mitral flow. LV = left ventricle; LA = left atrium; RV = right ventricle; RA = right atrium. (C) Mitral Doppler flow curve from a human subject shows the characteristic wave form of the mitral valve velocities and the method of tracing velocities throughout a complete cardiac cycle to determine mean velocity over time.
recording was to avoid the left ventricular outflow area in which flow moves away from the transducer in systole. This problem could be minimized by directing the sampling volume as laterally as possible while still maximizing forward flow. Determining whether systolic negative flow observed in the mitral trace is mitral regurgitation or merely recording of a portion of the left ventricular outflow tract is important because the mitral valve orifice technique for calculating cardiac output presupposes that all left ventricular inflow will leave the left ventricular outflow, which will not occur in patients with mitral regurgitation.

Digitization of maximal mitral valve two-dimensional orifice size required practice and internal laboratory validation. Small differences in planimetry of mitral valve orifice size greatly affect resulting hemodynamic predictions. By using a roller pump to rigidly control left ventricular inflow and outflow, we could, in effect, work backwards to determine the appropriate place to digitize images. Digitizing through the middle of the normal mitral valve leaflet echocardiograms once optimal gain settings were established attained the best results. Martin et al.11 determined that the internal edges of the mitral valve orifice correlated best with Gorlin formula valve areas in mitral stenosis patients. We do not consider our method of tracing area to be significantly in conflict, as we did not deal with any abnormally thickened valves.

We would conclude from our studies that cardiac output may be determined noninvasively by Doppler echocardiography using the mitral valve orifice method and that the results correlate well with other methods of cardiac output measurement. Moreover, some of the problems inherent in suprasternal aortic imaging are circumvented using this technique, and the views necessary can usually be obtained without discomfort in most adult patients and almost all children and infants. In addition to validating the technique against a highly accurate roller pump model in animals, we believe, based on our preliminary experience, that our method can accurately predict thermodilution cardiac output values in critically ill patients. We would expect that this method will enhance the clinical value of two-dimensional Doppler echocardiography for providing noninvasive measurements of cardiac output.

References

The mitral valve orifice method for noninvasive two-dimensional echo Doppler determinations of cardiac output.
D C Fisher, D J Sahn, M J Friedman, D Larson, L M Valdes-Cruz, S Horowitz, S J Goldberg and H D Allen

Circulation. 1983;67:872-877
doi: 10.1161/01.CIR.67.4.872
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1983 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/67/4/872

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/