The Effect of Intermittent Bundle Branch Block on the Coupling Interval of Ventricular Premature Depolarizations

STUART A. BILIACK, M.D., AND PABLO DENES, M.D.

SUMMARY The mechanism of origin of ventricular premature depolarizations (VPDs) is explained by automaticity or reentry. We studied three patients with intermittent left bundle branch block (LBBB) and unifocal VPDs of right bundle branch block (RBBB) morphology (assumed left ventricular origin). We examined the effect of different types of intraventricular conduction on the coupling intervals of the VPDs. Specifically, we proposed that the coupling intervals of VPDs would be longer during LBBB conduction of sinus beats (ipsilateral to the ventricle of origin of VPDs) compared with the coupling intervals during normal intraventricular conduction. We found that the coupling intervals during LBBB were significantly longer than those during normal conduction in all three cases. We also examined the length of the preceding RR intervals and counted sinus beats intervening between successive VPDs (S values). One case demonstrated S values suggestive of concealed bigeminy; the other cases had S values suggesting concealed trigeminy and its variants. We have demonstrated that some VPDs are dependent on an initiating sinus beat. This dependence on a preceding beat is consistent with both a reentrant mechanism or triggered automaticity.

IN 1930, Scherf and Schott noted that some ventricular premature depolarizations (VPDs) are dependent on a preceding beat. They attributed this finding to the triggering of a "circumscribed focus." Schamroth and Marriott analyzed long rhythm strips of patients with unifocal VPDs. They counted the number of sinus beats intervening between successive VPDs (S values) and demonstrated patterns that they called concealed bigeminy and concealed trigeminy. Based upon their observations, they proposed that the mechanism of origin of VPDs was automaticity. Kerin et al., Levy et al., and Kinoshita reassessed these phenomena and attributed them to a reentrant mechanism. They also described variants of concealed bigeminy and trigeminy. Moe et al., using microelectrode techniques in isolated dog Purkinje fibers, developed a computer model that showed that these phenomena may also be produced by an entrained parasystolic discharge.

We describe three cases with intermittent left bundle branch block (LBBB) and unifocal VPDs. These VPDs had right bundle branch block (RBBB) morphology (upright QRS in V, and assumed left ventricular origin) and their coupling intervals varied, depending on the conduction pattern of the preceding sinus beat. Specifically, the coupling intervals of VPDs during LBBB conduction were significantly longer than during normal conduction. We interpret these findings as a further support for the hypothesis that some unifocal VPDs are dependent on the preceding beat.

From the Section of Cardiology, Department of Medicine, Rush-Presbyterian-St. Luke’s Medical Center, Chicago, Illinois.

Address for correspondence: Pablo Denes, M.D., Department of Medicine, Section of Cardiology, Rush-Presbyterian-St. Luke’s Medical Center, 1753 West Congress Parkway, Chicago, Illinois 60612.

Received November 30, 1981, revision accepted April 5, 1982.

Methods

Twenty-four-hour, two-channel ambulatory electrocardiographic recordings were obtained using Del Mar Avionics models 445A and 445B Electrocardiographs. Scanning of the tapes was done with a Del Mar Avionics Electrocardiograph model 660B. Tapes were scanned by technicians for the presence of VPDs. All selected rhythm strips were used for analysis. The paper speed was 25 mm/sec. Intervals were measured by the authors, using calipers, with an accuracy of 20 msec.

Modified electrocardiographic leads V and V were used. Leads V and V were placed at the fourth right intercostal space parasternally, and at the fifth intercostal space at the anterior axillary line, respectively. The QRS morphology of VPDs was considered to be RBBB morphology if positive in lead V.

Standard electrocardiographic criteria were used for diagnosis of LBBB. Statistical analysis was done using a t test. The S values were examined by counting the number of sinus beats intervening between successive VPDs. When the numbers of intervening sinus beats (S values) are equal to 2n1 (n = any positive integer), concealed bigeminy is suggested. S values of 3n1 suggest the presence of concealed trigeminy.

Results

Two patients had rate-dependent phase 3 bundle branch block; one had non–rate-dependent intermittent bundle branch block. All three had VPDs with upright QRS complexes in V. All three were in sinus rhythm. Analysis of rhythm strips did not show evidence of ventricular parasystole (i.e., variable coupling with fusion beats and interectopic intervals that are multiples of a common denominator) in any of the cases.

The range and mean of coupling intervals of VPDs and the preceding RR intervals during normal intraventricular conduction and LBBB for all three patients are shown in Table 1. The coupling intervals of VPDs were significantly longer during LBBB conduction when
TABLE 1. Electrophysiologic Data

<table>
<thead>
<tr>
<th>Type of conduction</th>
<th>Preceding RR interval (range, msec)</th>
<th>Preceding RR interval (mean ± SEM, msec)</th>
<th>Coupling interval (range, msec)</th>
<th>Coupling interval (mean ± SEM, msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>800–1000</td>
<td>896 ± 20*</td>
<td>460–530</td>
<td>484 ± 5*</td>
</tr>
<tr>
<td>LBBB</td>
<td>680–840</td>
<td>800 ± 15</td>
<td>540–600</td>
<td>596 ± 7</td>
</tr>
<tr>
<td>Patient 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>640–740</td>
<td>696 ± 11†</td>
<td>480–600</td>
<td>534 ± 11*</td>
</tr>
<tr>
<td>LBBB</td>
<td>600–800</td>
<td>705 ± 13</td>
<td>560–720</td>
<td>639 ± 9</td>
</tr>
<tr>
<td>Patient 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>600–1040</td>
<td>815 ± 17*</td>
<td>320–400</td>
<td>382 ± 9*</td>
</tr>
<tr>
<td>LBBB</td>
<td>580–800</td>
<td>693 ± 9</td>
<td>420–480</td>
<td>444 ± 4</td>
</tr>
</tbody>
</table>

* _p < 0.005.
† NS.
Abbreviation: LBBB = left bundle branch block.

compared to the coupling intervals during normal intraventricular conduction. This difference in the duration of coupling intervals did not relate to the length of the preceding RR intervals (figs. 1 and 2). S values were counted, and in case 3, they were consistent with concealed bigeminy. The other two cases showed S values that suggested concealed bigeminy and its variants.1-6

Discussion

The dependence of some VPDs upon the preceding sinus impulse has been recognized since early in this century.1 In the present report, a similar phenomenon is described in a clinical situation. The three patients had VPDs with upright configuration in lead V1, suggesting left ventricular origin.10 During intermittent LBBB, the coupling interval is prolonged, again presumably owing to the longer time required for the sinus impulse to reach the site of initiation of the VPDs.

The mechanism of supraventricular tachycardia (SVT) is better understood. Specific criteria have been developed to demonstrate the presence of a reentrant pathway.12 One of these relates to the effect of ipsilateral bundle branch block on the rate of SVT in the presence of an atrioventricular bypass tract.12-14 The cycle length of SVT is prolonged in the presence of

![Figure 1. Holter monitor strips demonstrating increase in coupling interval of ventricular premature depolarizations during left bundle branch block (LBBB).](http://circ.ahajournals.org/)

Downloaded from http://cir.ahajournals.org/ by guest on October 4, 2017
intermittent bundle branch block (ipsilateral to the bypass tract) compared with the cycle length of SVT during normal conduction. This lengthening of the cycle during bundle branch block is explained by the additional time required for the antegrade impulse to traverse the septum and return to the bypass tract to complete the retrograde limb of the circuit. This time interval has been described as the "transseptal conduction time." In the cases of the present report, as well as in the earlier experimental work of Scherf, the lengthening of coupling intervals of left ventricular VPDs during LBBB is analogous to the prolongation of the cycle length of reentrant SVT during ipsilateral bundle branch block. In our cases, the differences in

![Figure 2](http://circ.ahajournals.org/)

Figure 2. Coupling intervals of ventricular premature depolarizations and preceding RR intervals of sinus beats. LBBB = left bundle branch block.

![Figure 3](http://circ.ahajournals.org/)

Figure 3. Proposed mechanism for ventricular premature depolarizations. (A) Normal atrioventricular conduction. The impulse reaches the reentrant pathway through the left bundle branch and Purkinje system. (B) Left bundle branch block. The impulse must traverse the myocardium from the right to left ventricle before entering the reentrant pathway. This transseptal conduction time causes a delay that is manifested as a prolonged coupling interval. An exact location of the reentrant pathway is not being proposed, but it is presumed to exist somewhere within the left ventricular myocardium. The presence of a triggered automatic focus rather than a reentrant pathway cannot be excluded.
coupling intervals of VPDs during normal conduction and LBBB varied from 58 to 98 msec, which is consistent with the previously described transseptal conduction time in man. Figure 3 shows a proposed mechanism based on VPDs being reentrant in nature; however, we cannot exclude triggered automaticity (impulse formation from an ectopic focus) as an alternative mechanism of the arrhythmia. Since this was a retrospective study, no physiologic or pharmacologic maneuvers were performed to differentiate between the two mechanisms. The use of a slow-channel blocker, such as verapamil, in these patients may be helpful in differentiating triggered automaticity, which is slow-channel-dependent, from reentry.

Acknowledgment
We thank Jerry Jones for her assistance in the statistical analysis of the data. We also acknowledge Lillian Linares' secretarial help in the preparation of the manuscript. We thank Drs. Goren and Gabster for their helpful contribution in writing the manuscript.

References
2. Schamroth L, Marriott HJL: Intermittent ventricular parasystole with observations in its relationship to extrasystolic bigeminy. Am J Cardiol 7: 799, 1961
The effect of intermittent bundle branch block on the coupling interval of ventricular premature depolarizations.
S A Biliack and P Denes

Circulation. 1982;66:1120-1123
doi: 10.1161/01.CIR.66.5.1120

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1982 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/66/5/1120

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/