Mitral Annuloplasty vs Valve Replacement for Mitral Insufficiency

To the Editor:
Attie et al.,1 reported their experience with valve replacement in children with mitral insufficiency. They divided their patients in three groups, depending on the type of prosthesis: mechanical valves, porcine xenografts and dura mater valves. Follow up times were 6.3, 3.3 and 1.9 years, with death rates of 1.3%, 14% and 2.3% per patient/year. Thromboembolism, valve dysfunction and infective endocarditis were listed as chief complications.

When advising a patient on surgery, we should strive to present options, weigh risks and benefits. Some mitral valves are so severely diseased that valve replacement is mandatory. However, it is regrettable that the option of mitral annuloplasty was not considered by Attie et al. even as a theoretical possibility. The long-range survival after annuloplasty is at least as good as that after valve replacement. Embolic phenomena and infective endocarditis are virtually nonexistent. (When judging results, the patient’s age and associated cardiac lesions are highly important.) Including our earlier experience,2 we have done mitral annuloplasties on 22 children without mortality (early and late), and with marked improvement in clinical status in all but one. None of our patients developed mitral stenosis or any other late complications. Figure 1 shows pre- and postoperative chest x-rays of a 16-year-old girl who repeatedly had pulmonary edema and severe pulmonary hypertension before the family agreed to surgery. She is now in New York Heart Association functional class I and has mild residual mitral insufficiency.

As valve replacement is far from being a perfect art, annuloplasty should be seriously considered by cardiologists and surgeons for treatment of mitral insufficiency, especially when the patient is a child.

OttO G. Thilenius, M.D.
Robert L. Replogle, M.D.
University of Chicago
Chicago, Illinois

Corrections

On page 654, the formulas for PVR and Vcf were printed incorrectly. The correct formulas are

\[
PVR = \frac{(\text{mean PAP} - \text{mean PCWP})}{\text{CO}}
\]

\[
Vcf = \left(\frac{d_{ED} - d_{ES}}{d_{ED}} \right) \times \text{ejection time.}
\]

On page 702, the sentence beginning on line 26 of the left-hand column should read: An induced increase in heart rate averaging 34 beats/min produced an increase in mean Vcf of 13% in human subjects, and a phenylephrine-induced increase in systolic blood pressure of 38 mm Hg reduced mean Vcf by 21%.

References

Mitral annuloplasty vs valve replacement for mitral insufficiency.
O G Thilenius and R L Replogle

Circulation. 1982;65:1534
doi: 10.1161/01.CIR.65.7.1534
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1982 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/65/7/1534.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/