CASE REPORTS

Pulmonary Atresia with Intact Ventricular Septum and Ventriculocoronary Communications: Surgical Significance

WILLIAM N. O'CONNOR, M.D., CAROL M. COTTRILL, M.D., GREGORY L. JOHNSON, M.D., JACQUELINE A. NOONAN, M.D., AND EDWARD P. TODD, M.D.

SUMMARY The first stage of a repair of pulmonary atresia with intact ventricular septum (type I) was attempted in a 2-day-old infant. At surgery, decompression of the hypertensive small right ventricle was followed by a sudden loss of myocardial contractility and death. Postmortem examination revealed a fistula with a large orifice in the right ventricular infundibulum that communicated directly with the left main coronary artery. Severe hypertensive changes indicative of abnormally high perfusion pressure were noted in the distal left coronary artery branches. The clinical course suggests that the effect of relieving right ventricular outflow obstruction was a reduction of left main coronary artery blood flow, resulting in fatal intraoperative myocardial ischemia. This unusual case draws attention to the anomalous ventriculocoronary communications often present in pulmonary atresia and their potential for limiting a successful surgical repair.

IN SURGICAL CORRECTION of pulmonary atresia with intact ventricular septum, several factors appear to limit a successful outcome. These include the site of atresia (valvular or infundibular or both), the anatomic size of the right ventricular chamber, the competence and size of the tricuspid valve orifice and the adequacy of the opening between the right and left atrium to allow unrestricted right-to-left shunting. Right ventricular myocardial sinusoids that communicate directly with the coronary system are usually identified in this malformation of the right heart. Although Freedom and Harrington speculated that they may result in postoperative myocardial ischemia, the significance of their role in surgical outcome is not well defined.

In this report, we present a case of pulmonary atresia with intact septum and discuss the potential role of ventriculocoronary connections on the unfavorable surgical outcome.

Case Report

BF, a 3700-g full-term baby, was referred at 40 hours of age for evaluation of cyanotic congenital heart disease. He was the first-born infant of a 22-year-old mother, delivered by cesarean section because of cephalopelvic disproportion. Cyanosis was initially noted at 2 hours and a heart murmur was heard at 12 hours of age. Physical examination revealed a well-developed but deeply cyanotic infant without respiratory distress. His pulse was 120 beats/min, his respiratory rate 60 breaths/min, and his systolic blood pressure was 64 mm Hg. He had a quiet precordium. A grade 3/6 systolic regurgitant murmur was audible at the xiphoid and along the lower left sternal border. A diastolic rumble was also heard at the xiphoid, and his second heart sound was single. The lungs were clear and the liver was palpable 2 cm below the right costal margin, but otherwise the abdomen was normal. The peripheral pulses were easily palpable and symmetrical. An x-ray film of the chest revealed a large heart with decreased pulmonary flow. The ECG showed an axis of +120° with left ventricular predominance and little expression of right ventricular forces. By blood gas analysis, pH was 7.35, Pco2 19 mm Hg, and Po2 24 mm Hg with 42% saturation in room air; these values did not change in an oxygen environment. The echocardiogram was compatible with the clinical diagnosis of pulmonary atresia with intact ventricular septum; emergency cardiac catheterization (fig. 1) and right ventricular angiography confirmed the diagnosis. Contrast medium passed from the right ventricular chamber to the aorta, in retrospect via the left coronary system (fig. 2). The ductus arteriosus was not imaged. Oxygen saturation decreased from 56% in the left ventricle to 35% in the descending aorta. Because of previous unsatisfactory results with systemic-to-pulmonary shunting alone, the patient was taken directly to the operating room and placed on cardiopulmonary bypass with systemic hypothermia to 24°C and myocardial protection with cardioplegia solution. The right atrium was opened and the interatrial septum resected. The pulmonary artery was then opened and the valve was found to be completely closed, with approximately 1 cm of infundibular muscle separating it from the small right ventricle. A sized cork bore was used to resect the muscle and valve tissue, thereby connecting the pulmonary artery with the right ventricular chamber. A 4-mm side-to-side shunt from the aorta to the right pulmonary artery was also completed and the patent
ductus arteriosus was ligated. The aortic cross-clamp time was only 18 minutes, but myocardial contractility after the procedure was inadequate to maintain the circulation and the child died.

Autopsy Findings

Postmortem examination of the heart confirmed the diagnosis of pulmonary atresia with intact ventricular septum. The right ventricular cavity measured 11 × 9 mm and the myocardium 13 mm in its sinus portion; the left ventricular free wall was 6 mm. The tricuspid valve was normally formed, competent and had a stenotic annulus 15 mm in circumference. The comparable mitral annular circumference was 23 mm. The thin-walled hypoplastic pulmonary trunk contained remnants of commissural ridges above the site of exci-

Figure 1. Cardiac catheterization data and its relationship to the central circulation. Preoperatively, a step-down in oxygen saturation from left ventricle (LV) (56%) to aorta (AO) (35%) was present. Solid arrows show the presumed effect of surgical right ventricular decompression on perfusion of the left coronary system. **LA** = left atrium; **RA** = right atrium; **ART** = arterial; **PULM** = pulmonary; **SYST** = systemic; **LMCA** = left main coronary artery.

Figure 2. Anteroposterior right ventriculogram showing contrast entering the left main coronary artery (LMCA) through the fistula and subsequently appearing in the aorta (arrows). Artist's sketch with hatched internal image depicts relationships of the fistula (F) to the left anterior descending coronary artery (LAD) and to the small main pulmonary artery (MPA). Arrow denotes direction of flow from the right ventricle (RV) into the fistula. **RA** = right atrium; **RPA** = right pulmonary artery; **LPA** = left pulmonary artery; **PDA** = patent ductus arteriosus.
sion of the atretic valve and infundibular muscle. A silk ligature occluded the ductus arteriosus, which was 20 mm long and 7 mm in circumference. There was a striking external bulge on the anterosuperior surface of the heart (fig. 3A). Upon dissection, this prominence overlay a large fistula connecting the right ventricle with the left main coronary artery. The ostium of the fistula in the right ventricular infundibulum was 11 mm in circumference and led directly into a single channel, which gradually tapered and emerged on the epicardium. Here, the lumen (fig. 3B) was 5 mm in circumference and surrounded by a dense, fibrous wall that merged with the enlarged left main coronary artery at its bifurcation into the anterior descending and circumflex branches. The ostium of the left coronary artery in the aorta was enlarged to 11 mm in circumference, and the left main coronary artery was three times larger in caliber than the proximal right coronary artery, which suggests that the blood flow in the left main coronary artery was greater than normal. Distally, the left coronary artery formed a prominent network over the entire left ventricular surface. Microscopically, both extra- and intramural branches showed adventitial fibrosis, medial muscular hypertrophy and intimal fibrous thickening with luminal narrowing (fig. 4). These changes were not identified in the right coronary artery branches. An area of dimpling over the distal left anterior descending coronary artery suggested another communication between the coronary vascular bed and the right ventricular chamber. The underlying myocardium contained an especially striking pattern of sinusoidal spaces, smaller numbers of which were present in all sections of the right ventricle. A second single channel connecting to the coronary vascular bed to correspond with the communication in the area of the cardiac apex on the preoperative angiogram (fig. 2) could not be documented at autopsy.

Upon gross inspection of the left ventricle, the entire cut surface of each papillary muscle belly was yellow; microscopically, there was a confluent zone of coagulative necrosis with patchy dystrophic calcification. However, there was no inflammatory infiltrate or evidence of resolution or fibrosis. The finding of established infarction 24-48 hours old suggests that the ischemic insult occurred immediately after birth. No other zones of infarction could be identified in representative sections of left and right ventricular myocardium.

Discussion

The right ventricle is a small, thick-walled chamber in the majority of patients with pulmonary atresia and intact ventricular septum. More than 50% of the patients in this subgroup (type I) have a competent tricuspid valve, and radiopaque dye can usually be shown to enter the coronary vascular bed from a closed, obstructed right ventricle at angiography. The generally accepted mechanism for this anomalous communication is that blood at abnormally high pressure forces channels normally present in the developing heart to remain patent. These channels have been well documented in autopsy sections of the right ventricular myocardium where compressed, slit-like spaces are commonly identified. The channels represent persistence of the intertrabecular spaces and sinusoids of the embryonic blood bed, which connects with the coronary vascular bed and form an anastomosis between it and the ventricular lumen. The most common anatomic pattern of these connections is a confluence of right ventricular sinusoids that...
coalesce into a single vessel and subsequently connect with the left coronary system, often by the left anterior descending branch. At the site of connection there may be dimpling of the cardiac surface. Cord-like thickening of the coronary vessels on the surface of the heart has also been observed, although its significance has been uncertain. In the case reported here we found thickening of extramural coronary artery branches involving only the divisions of the left main coronary artery. The right coronary artery and its external ramifications, which did not connect directly with the right ventricle, were normal. It seems reasonable to assume that the changes in the left coronary system reflect longstanding intrauterine perfusion of these vessels at high pressure from the right ventricle. This perfusion probably derived not only from the large single noncompressible fistula, but also from multiple myocardial sinusoids connecting the apical region of the right ventricle to the distal left anterior descending coronary artery. Further, the resistance provided by intramural narrowing in the left coronary system favored retrograde flow in the left main coronary artery toward the aorta; this finding was demonstrated angiographically and is supported by the greatly increased size of this artery at autopsy. These observations suggest that blood flow in the left coronary system was dependent on high right ventricular pressure. The preoperative cardiac catheterization and angiography support this flow pattern (fig. 1).

Apart from functioning as an egress for blood from the right ventricle and forming the anatomic basis for a right-sided shunt, the anomalous connections between the right ventricular lumen and coronary arteries may contribute to myocardial ischemia by impeding normal diastolic filling of the coronary arteries from the aorta in the unoperated state. We have morphologic evidence of this in the finding of recent infarction involving the left ventricular papillary muscles. Microscopic findings are consistent with the infarction having occurred soon after birth, probably resulting from the postnatal decrease in oxygen content of the blood in the right ventricle.

The effects of the ductus arteriosus on diastolic coronary perfusion should also be considered. When patency persists after birth, it may provide a steal from the aorta once the pressure and resistance in the pulmonary circulation decrease, and thus might contribute to a reduction in coronary flow. Although anatomic patent at surgery in the case described, the ductus arteriosus was not seen during angiocraphy, which suggests that it was not the source of a significant coronary steal.

The existence of a significant right ventricular-to-coronary arterial shunt was of major surgical importance. The pathologic and hemodynamic data indicate that coronary perfusion was at least partly maintained by high pressure in the right ventricle. The surgical approach resulted in decompression of this chamber. Although not proved, it would be expected that the left main coronary arterial perfusion deprived of a portion of right ventricular supply would be compromised and could have led to global myocardial ischemia. The more effective the operation was in reducing the right ventricular pressure by extensive valvulotomy and infundibulotomy, the more likely it was to decrease left coronary perfusion. Although the possibility of a postoperative steal from the left coronary system to the right ventricle could also be raised in this case, it cannot be proved.

Considering the anatomy, one could suggest that the fistula should also be closed at surgery. However, two factors would have made this approach impractical in the case presented here. First, the extensive hypertensive narrowing of the left ventricular vascular bed suggests that after closure of the fistula, normal coronary perfusion pressures from the aorta would have been inadequate to maintain myocardial coronary perfusion. Second, the usually diffuse fistulous communications in the newborn infant might preclude their surgical closure. In addition, there is
evidence that the intramyocardial connections in time close spontaneously by progressive sclerosis.

The unusual sequence of events in this case sug-
gests that the surgical approach in patients with
pulmonary atresia who have fistulas should be differ-
ent from that in patients who do not. In patients
with significant sinusoidal-coronary shunts, a hypertensive
right ventricle and an intact ventricular septum, a
staged approach may be indicated. After successful
balloon atrial septostomy, a systemic-to-pulmonary
shunt procedure should be considered (stage I). Be-
fore opening of the right ventricular outflow tract
(stage II), serious consideration should be given to
occluding the significant left coronary artery—right
ventricular fistulas. By preventing a reduction in left
coronary perfusion, left ventricular ischemia or infarc-
tion may be avoided.

Acknowledgment

The authors thank Dr. Jesse E. Edwards for his helpful sugges-
tions.

References

1. Gersony WM, Bernhard WF, Nadas AS, Gross RE: Diagnosis and surgical treatment of infants with critical pulmonary out-
3. Celermajer JM, Bowdler JD, Bengos DC, Cohen DH, Stuckey DS: Pulmonary valve fusion with intact ventricular septum. Am
J Heart 76: 452, 1968
4. Trusler GA, Fowler RS: The surgical management of pulmo-

10. Graham TP, Bender HW, Atwood GF, Page DL, Sell CGR:
Increase in right ventricular volume following valvulotomy for
pulmonary atresia or stenosis with intact ventricular septum.
Circulation 50 (suppl 11): II-69, 1974
11. Freedom RM, White RJ, Ho CS, Ingels RG, Gersony WM, Ellis K:
Pulmonary atresia with intact ventricular septum. J Thorac
Cardiovasc Surg 61: 85, 1971
12. Shams A, Fowler RS, Trusler GA, Keith JD, Mustard WT:
Pulmonary atresia with intact ventricular septum: report of 50
cases. Pediatrics 47: 370, 1971
13. Luckstead EF, Mattioli L, Crosby IK, Reed WA, Diehl AM:
Two-stage palliative surgical approach for pulmonary atresia
with intact ventricular septum (type I). Am J Cardiol 29: 490,
1972
Novak G, Hastedre AR: Pulmonary atresia: anatomic consid-
erations. In The Child with Congenital Heart Disease After
Surgery, edited by Kidd BSL, Rowe RD. Mt. Kisco, New
York, Futura, 1976, p 103
15. Trusler GA, Yamamoto M, Williams WG, Izuwaka T, Rowe
RD, Mustard WT: Surgical treatment of pulmonary atresia with
intact ventricular septum. Br Heart J 38: 957, 1976
16. Dobell ARC, Grignon A: Early and late results in pulmonary
atresia with intact ventricular septum: open heart surgical con-
struction at 32 hours. Br Heart J 39: 573, 1977
18. Freedom RM, Dias RC, Rowe RD: The tricuspid valve in
pulmonary atresia and intact ventricular septum. Arch Pathol
Lab Med 102: 28, 1978
19. Zuberbuhler JR, Anderson RH: Morphological variations in
pulmonary atresia with intact ventricular septum. Br Heart J
41: 281, 1979
20. Patel RG, Freedom RM, Moes CAF, Bloom KR, Olley PM,
Williams WG, Trusler GA, Rowe RD: Right ventricular volume
determinations in 18 patients with pulmonary atresia and
21. Grant RT: An unusual anomaly of the coronary vessels in the
malformed heart of a child. Heart 13: 273, 1926
22. Williams RR, Kent GB, Edwards JE: Anomalous cardiac blood
vessel communicating with the right ventricle. Arch Pathol
52: 458, 1951
23. Davignon AL, Greenwold WE, DuShane JW, Edwards JE:
Congenital pulmonary atresia with intact ventricular septum:
clinicopathologic correlation of two anatomic types. Am Heart
J 62: 591, 1961
CW, Edwards JE: Congenital communication of a coronary
artery with a cardiac chamber or the pulmonary trunk (coro-
25. Kauffman SL, Andersen DH: Presistent venous valves, mal-
development of the right heart, and coronary artery-ventricular
26. Elliott LP, Adams P, Edwards JE: Pulmonary atresia with int-
27. Lauer RM, Fink HP, Petry EL, Dunn MI, Diehl AM: Angio-
graphic demonstration of intramyocardial sinusoids in pulmo-
nary valve atresia with intact ventricular septum and hypoplast-
28. Sissman NJ, Abrams HL: Bidirectional shunting in coronary
artery-right ventricular fistula associated with pulmonary
atresia and an intact ventricular septum. Circulation 32: 582,
1965
29. Cornell SH: Myocardial sinusoids in pulmonary valvular
atresia. Radiology 86: 421, 1966
30. Freedom RM, Keith JD: Pulmonary atresia with normal aortic
root. In Heart disease in Infancy and Childhood, edited by
Keith JD, Rowe RD, Vlad P. New York, Macmillan, 1978, p
508
31. Desilets DT, Marcano BA, Emmanouilides GC, Gypesw
TC: Pulmonary valve stenosis and atresia. Radiol Clin North
Am 6: 367, 1968
Springfield, III, Charles C Thomas, 1968, p 324
33. Freedom RM, Harrington DP: Contributions of intramyocard-
dial sinusoids in pulmonary atresia and intact ventricular sep-
tum to a right-sided circular shunt. Br Heart J 36: 1061, 1974
34. Benton JW, Elliott LP, Adams P, Anderson RC, Hong CY,
Lester RG: Pulmonary atresia and stenosis with intact ventricu-
35. Rittenhouse EA, Doty DB, Ehrenhaft JL: Congenital coronary
terary-cardiac chamber fistula. Ann Thorac Surg 20: 468,
1975
36. Dusek J, Ostadal B, Duskova M: Postnatal persistence of spon-
y myocardium with embryonic blood supply. Arch Pathol
90: 312, 1973
37. Lenox CC, Briner J: Absent proximal coronary arteries associ-
ated with pulmonary atresia. Am J Cardiol 30: 666, 1972
38. Vigorita V: Epicardial nodules: a possible sign of coronary
endarteritis with hypoplastic right heart syndrome. Johns
39. Rudolf AM: The ductus arteriosus and persistent patency of the
ductus arteriosus. In Congenital Diseases of the Heart. Chi-
cago, Year Book Medical Publishers, 1974, p 189
Pulmonary atresia with intact ventricular septum and ventriculocoronary communications: surgical significance.

W N O'Connor, C M Cottrill, G L Johnson, J A Noonan and E P Todd

Circulation. 1982;65:805-809
doi: 10.1161/01.CIR.65.4.805

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1982 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/65/4/805

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/