Technetium-99m Pyrophosphate Uptake in Experimental Viral Perimyocarditis

Sequential Study of Myocardial Uptake and Pathologic Correlates

AKIRA MATSUMORI, M.D., KAZUNORI KADOTA, M.D., AND CHUICHI KAWAI, M.D.

SUMMARY The myocardial uptake of technetium-99m pyrophosphate (99mTc-PYP) in perimyocarditis induced by coxsackievirus B3 in BALB/c mice was studied. 99mTc-PYP uptake ratio, measured by the ratio of counts/min per gram for the heart to counts/min per gram for the skull, began to increase 5 days after virus inoculation when myocardial necrosis was evident. On the seventh day after the inoculation, 99mTc-PYP ratio reached a maximum. Histologically, fine, dystrophic calcification appeared in the necrotic fibers. 99mTc-PYP uptake was in proportion to the extent of the myocardial lesions. Thereafter, cellular infiltrations increased with time and were most severe on the fourteenth day, but 99mTc-PYP ratio had begun to fade. On the twenty-eighth day, perimyocardial fibrosis increased and calcification was still present, but 99mTc-PYP ratio had decreased. Myocardial uptake with severe pathologic lesions was visualized on a whole-body image on the seventh day after inoculation with the virus. The findings may provide a basis upon which 99mTc-PYP imaging may be applied to viral perimyocarditis in humans.

ALTHOUGH VIRUSES can seldom be demonstrated in the myocardium and clinical evidence suggesting viral infection can be obtained in only a few instances, myocarditis is probably more often caused by viral infection than has previously been suspected. Coxsackie B viruses are considered to be the most common cause of viral myocarditis in man. Coxsackie B myopericarditis is well accepted and numerous case reports have been documented.

The diagnosis of viral myocarditis is often difficult because the clinical presentation shows wide variations, ranging from total absence of clinical manifestations to sudden, unexpected death. It appears unlikely that different viruses cause specific or characteristic cardiac manifestations, although patients may have other specific systemic manifestations associated with certain viruses.

In our previous study, we showed that coxsackieviruses B3 and B4 produced significant myocarditis in mice. More recently, we found a high incidence of severe perimyocarditis in the right ventricle in weanling BALB/c mice inoculated with coxsackievirus B3 (Nancy strain).

Using this experimental model, we studied myocardial uptake of technetium-99m stannous pyrophosphate (99mTc-PYP) and scintigraphic imaging, and found that 99mTc-PYP myocardial scintigraphy may be useful for diagnosing viral perimyocarditis.

Methods

Induction of Experimental Viral Perimyocarditis

Coxsackievirus B3 (Nancy strain) was used. The virus stock was prepared in cultures of HeLa cells in serum-free 199 medium. Control fluids from HeLa cell culture were also prepared. Both virus and control fluids were stored at −70°C until used.

Inbred BALB/c mice were obtained from Charles River, Japan. This strain has been maintained continuously by brother-sister matings. At 3–4 weeks of age, mice were inoculated intraperitoneally with 0.1 ml of virus suspension containing 10^4.5 TCD_{50} (50% tissue culture infective doses) per 0.1 ml. The mice were sacrificed 3, 5, 7, 14 and 28 days after the inoculation.

Gross inspection of the heart was made for any alteration in myocardial appearance. The degree of gross pathologic involvement in each sample was graded from 0, 1+, 2+, 3+ and 4+, depending on whether the lesion was absent or present in 25, 50, 75 or 100%, respectively, of the surface of the right ventricle. After inspection, hearts were processed for histologic and virologic studies.

Three- to 4-week-old mice serving as the controls were inoculated intraperitoneally with 0.1 ml of virus-free HeLa cell culture fluid and sacrificed 7 days after the inoculation. Hearts were processed and examined in the same manner as those from mice given the virus-containing fluid.

Distribution Studies of 99mTc-PYP

Twelve mice treated with virus-free control fluid and 115 mice inoculated with coxsackievirus B3, weighing 6.5–24.5 g, were sacrificed and organs were excised 1 hour after the injection of 10 μCi of 99mTc-PYP through a vein in the tail. Tissue uptake of the tracer in the skull, heart, lung, liver, kidney, spleen...
and blood was counted in a well-type gamma scintillation counter as counts/min per gram of tissue. The concentration of the tracer was calculated by the ratio of counts/min per gram for the tissues to counts/min per gram for the skull.

99mTc-PYP Imaging

For myocardial imaging, 10 nontreated mice and 10 mice with severe cardiac lesions on the seventh day after virus inoculation were given 100 μCi of **99mTc-PYP** 1 hour before sacrifice. Whole body images were obtained in the posteroanterior view, using a Searle Radiographics Pho/Gamma HP scintillation camera fitted with a 4.7-mm pinhole collimator. Thirty thousand counts were accumulated for whole-body images and 1000 counts for excised heart images at the energy peak of 140 keV using a 25% window. After whole-body images were obtained, the heart was excised and imaging of the excised heart and the residual body was performed.

All scintigrams were interpreted independently by two observers who were unaware of the experimental conditions.

Pathologic and Virologic Studies

For attempts at virus isolation, the heart was ground with sea sand in 2.0 ml of minimum essential medium (MEM). The suspension was centrifuged and 0.1 ml of each of the supernatant was inoculated into tube culture of HeLa cells containing 1.0 ml of MEM supplemented with 2% fetal calf serum. Tubes were observed daily for the appearance of a characteristic cytopathic effect. Tissues were fixed in 10% formalin solution, sectioned transversely at the midportion of the ventricle, embedded in paraffin and stained with hematoxylin-eosin and von Kossa.

Statistical Analysis

Statistical analysis was performed by an analysis of variance. Results were expressed as the mean ± sd.

Results

Pathologic and Virologic Findings

Yellowish-white patches were seen on the surface of the right ventricle of the heart on the seventh to the twenty-eighth day after inoculation with the virus. Before the third day, no histologic abnormality was noted. On the fifth day, myocardial fibers appeared fragmented and swollen and were intensely eosinophilic. Cross striations were not evident. Inflammatory cells were sparse or had not yet appeared (figs. 1A and 1B). By the seventh day, fine dystrophic calcification was seen in the necrotic fibers stained with von Kossa (figs. 1C and 1D). These fine granules of calcification were enlarged and became somewhat homogeneous on the fourteenth day. At this stage, cellular infiltration was evident and such consisted of mainly mononuclear cells (figs. 1E and 1F). After the twenty-eighth day, perimyocardial fibrosis increased and cellular infiltrations decreased but calcification was still present (figs. 1G and 1H). These changes were limited exclusively to the pericardial side of the right ventricle. In three severely affected mice, there were also small focal lesions in the ventricular septum and/or the left ventricle.

Coxackievirus B3 was isolated from the hearts of 10 of 10 mice on the fifth day, six of 10 on the seventh and three of 10 on the fourteenth day after the inoculation with the virus. Attempts to yield a virus in mice treated with virus-free HeLa cell fluid was unsuccessful in all 12 mice.

Tissue Distribution Studies

Table 1 represents tracer distribution studies performed on the seven control mice and seven infected mice with positive myocardial lesions. The **99mTc-PYP** was found essentially in the bone and in the myocardium of positive lesions. There was no statistically significant difference between the mean activity ratios of the tissues other than the heart in control and inoculated mice.

The uptake of **99mTc-PYP** of hearts inoculated with coxsackievirus B3 did not increase before the third day (0.36 ± 0.013, mean ± sd) (fig. 2). The **99mTc-PYP** ratio of hearts with positive lesions appeared to increase 5 days after virus inoculation (0.33 ± 0.194), but there was no statistically significant difference. The uptake ratio reached a maximum on the seventh day (0.752 ± 0.586, p < 0.001 compared with controls) and decreased significantly on the fourteenth day (0.527 ± 0.576, p < 0.05), but remained positive compared with controls (p < 0.001). On the twenty-eighth day, there were no significant differences between the hearts with positive lesions (0.159 ± 0.165) and those of controls.

On the seventh day after the inoculation, **99mTc-PYP** uptake ratios in grade 0, 1+, 2+, 3+ and 4+ (each group consisted of six mice) were 0.039 ± 0.012, 0.223 ± 0.057, 0.498 ± 0.088, 1.030 ± 0.220 and 1.840 ± 0.674, respectively (fig. 3). Grade 1+ appeared high compared with controls (0.036 ± 0.011), but the difference was not significant. Grade 2+ was higher than controls (p < 0.01), grade 3+ higher than 2+ (p < 0.005) and grade 4+ higher than 3+ (p < 0.001). Increases in pathologic grade tended to be associated with increases in **99mTc-PYP** ratio.

99mTc-PYP Imaging

Tracer uptake in the chest in mice with severe perimyocarditis was high. After the removal of the heart, repeated imaging was performed and a definite defect was evident in the chest. The image of the excised heart was compatible with imaging defect in the chest (fig. 4). In control mice, whole-body images were unchanged after the removal of the heart and the image of the excised heart was not visualized.

Discussion

This study demonstrated that measurement of **99mTc-PYP** uptake of the heart is an extremely sen-
somewhat stain for are B), and perimyocardial day, the On decreased at 1.

TABLE

<table>
<thead>
<tr>
<th>Skull</th>
<th>Heart</th>
<th>Lung</th>
<th>Liver</th>
<th>Spleen</th>
<th>Kidney</th>
<th>Blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls (n = 7)</td>
<td>1.000</td>
<td>0.036</td>
<td>0.076</td>
<td>0.051</td>
<td>0.028</td>
<td>0.343</td>
</tr>
<tr>
<td>(\pm SD)</td>
<td>(\pm 0.011)</td>
<td>(\pm 0.056)</td>
<td>(\pm 0.008)</td>
<td>(\pm 0.005)</td>
<td>(\pm 0.061)</td>
<td>(\pm 0.019)</td>
</tr>
<tr>
<td>Seven days after inoculation (n = 7)</td>
<td>1.000</td>
<td>1.128</td>
<td>0.102</td>
<td>0.081</td>
<td>0.049</td>
<td>0.399</td>
</tr>
<tr>
<td>(\pm SD)</td>
<td>(\pm 0.561)</td>
<td>(\pm 0.031)</td>
<td>(\pm 0.062)</td>
<td>(\pm 0.032)</td>
<td>(\pm 0.113)</td>
<td>(\pm 0.025)</td>
</tr>
<tr>
<td>(p)</td>
<td>< 0.005</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Figure 2. Sequential study of technetium-99m pyrophosphate (\(\text{99mTc-PYP}\)) uptake ratio of the heart of mice inoculated with coxsackievirus B3. (+) = positive, (−) = negative pathologic findings. The uptake ratio was highest on the seventh day and decreased significantly on the fourteenth day, but remained high compared with controls.

sitive technique for detecting acute viral perimyocarditis in the experimental animal. The \(\text{99mTc-PYP}\) uptake ratio of the heart began to increase 5 days after virus inoculation when myocardial necrosis was evident but cellular infiltration was sparse or had not yet appeared. On the seventh day after the inoculation, \(\text{99mTc-PYP}\) ratio of the heart reached a maximum and histologically, fine dystrophic calcification was seen in the necrotic fibers that were stained with von Kossa. At this stage, increases in pathologic grade tended to be associated with increases in \(\text{99mTc-PYP}\) ratio. Thereafter, cellular infiltrations increased over time and were most severe on the fourteenth day, but \(\text{99mTc-PYP}\) ratio had begun to fade. After the twenty-eighth day, perimyocardial fibrosis increased and cellular infiltrations gradually decreased, but calcification was still present. The \(\text{99mTc-PYP}\) uptake ratio had decreased at this stage.

Why the pathologic lesions were exclusively limited to the right ventricle is not known, but genetic factors are probably involved, as these lesions were not limited to the right ventricle in other strains of mice (e.g., A/J strain) inoculated with coxsackievirus B3 (unpublished data).

Previous studies in experimental animals and man have indicated that \(\text{99mTc-PYP}\) is an extremely sensitive technique for detecting acute myocardial infarction.\(^{11-13}\) Abnormal \(\text{99mTc-PYP}\) uptake was also observed in instances of left ventricular aneurysm,\(^{14}\) experimental and human myocardial contusion,\(^{16}\) biventricular,\(^{16, 17}\) calcific valvular heart disease\(^{18}\) and experimental streptococcal endocarditis.\(^{19}\)

Although the mechanism by which the infarct imaging agent accumulates in the damaged myocardium is unknown, it is clear that these agents concentrate selectively in an acutely necrotic myocardium, irrespective of the cause of the cardiac necrosis.\(^{20}\) Buja and co-workers\(^{20}\) considered uptake of \(\text{99mTc-PYP}\) and

Figure 1. Histologic findings of the heart of mice inoculated with coxsackievirus B3. On the fifth day after the inoculation (A and B), necrosis of myocardial cell is evident but cellular infiltrations are minimal. Von Kossa positive calcification is not noted. On the seventh day (C and D), there is fine calcification in the necrotic fibers. Fine granules of calcification become enlarged and somewhat homogeneous on the fourteenth day. Cellular infiltrations are marked in this stage (E and F). On the twenty-eighth day, perimyocardial fibrosis increases, cellular infiltration decreases but calcification is still present (G and H). All of these changes are exclusively limited to the right ventricle. Hematoxylin and eosin stain were used for A, C, E and G and von Kossa stain for B, D, F and H; A and B magnification \(\times 160\), C-H magnification \(\times 80\).
related phosphate in infarcted myocardium and other tissues to be a multifactorial phenomenon in which concentration of the agents results from complexing with various soluble and insoluble forms of tissue calcium stores, including amorphous calcium phosphate, crystalline hydroxyapatite and calcium complexed with organic macromolecules, possibly supplemented by calcium-independent complexing with tissue constituents. On the other hand, Dewanjee and Kahn proposed that the binding of 99Tc-PYP in the soluble muscle proteins and enzymes in different cardiac abnormalities probably plays a major role and calcium phosphate has only a minor role.

The 99Tc-PYP uptake in viral perimyocardial lesions may be related to the presence of both calcium and denaturated protein macromolecule in the necrotic debris. The necrotic and cellular process resulting from viral perimyocarditis may be a model for further study of the mechanism of 99Tc-PYP cardiac uptake.

Whole-body scans do not convincingly demonstrate the myocardial uptake of 99Tc-PYP, even when a pinhole collimator is used. However, imaging of the excised heart and observation of the imaging defect in the chest on the residual-body image clearly demonstrated uptake of 99Tc-PYP by the cardiac tissue. In the excised heart, right and left ventricular myocardium could not be discriminated because of the small size of the heart.

In the experimental work of myocardial infarction, 99Tc-PYP images were positive when the extent of myocardial infarction was greater than 1 g. The weight of the heart at the time of our scintigraphic study was 61.5 ± 11.9 mg. Mice may be too small to obtain a completely adequate scintigram. Studies are under way to obtain a better scintigram using a larger animal.

Olson and co-workers reported patients with acute pericarditis who had a positive 99Tc-PYP scintigram, a localized pattern in six patients and diffuse pattern in five. A positive 99Tc-PYP scintigram during acute pericarditis is more likely if ST-segment elevation is present on the ECG. A positive scintigram has also been reported in a case of cholesterol pericarditis and in a case of pericarditis after acute myocardial infarction.

Other workers have described normal 99Tc-PYP images in patients with acute pericarditis. However, it cannot be ruled out that the disease was inactive or in a healing phase at the time of study. Alternatively, as

![Figure 3](image3.png)

Figure 3. Relationship of pathologic grade to technetium-99m pyrophosphate (99Tc-PYP) uptake ratio on the seventh day after virus inoculation. Pathologic grade correlated closely with 99Tc-PYP uptake ratio. Each group included six mice.

![Figure 4](image4.png)

Figure 4. Technetium-99m pyrophosphate (99Tc-PYP) images (posteroanterior view) of a mouse with severe perimyocarditis. Note higher uptake in the chest on a whole body image (A) and after the removal of the heart, definite defect was evident in the chest (B, arrow). The excised-heart image (C) was compatible with imaging defect in the chest. Accumulation of the tracer was evident in the skeleton, kidneys and tail. The tracer was injected into a tail vein.
shown in an experimental study,27 the absence of sub-
epicardial necrosis may have resulted in a negative im-
ing.

The marked sensitivity of 99mTc-PYP uptake in
viral perimyocarditis, at least in the experimental
model, offers great promise as a reliable, noninvasive
method. The present findings provide a basis upon
which radionuclide imaging may be applied to
perimyocarditis in humans.

Acknowledgment

We thank R. Ochi for technical assistance and M. Ohara for per-
tinent advice on the manuscript.

References

1. Kawai C, Matsumori A, Kitaura Y, Takatsu T: Viruses and the
heart: viral myocarditis and cardiomyopathy. Prog Cardiol 7:
141, 1978
2. Abelmann WH: Clinical aspects of viral cardiomyopathy. In
Myocardial Diseases, edited by Fowler NO. New York, Grune
and Stratton, 1973, p 253
35: 765, 1971
4. Kawai C, Takatsu T: Clinical and experimental studies on car-
5. Smith WG: Coxsackie B myopericarditis in adults. Am Heart J
80: 34, 1970
6. Grist NR, Bell EJ: A six-year study of Coxsackie virus B in-
fecions in heart disease. J Hyg (Camb) 73: 165, 1974
7. Sainani GS, Dekate MP, Rao CP: Heart disease caused by
Coxsackie virus B infection. Br Heart J 37: 819, 1975
Coxsackie virus B-3 and B-4 myocarditis in mice. Jpn Circ J 42:
43, 1978
9. Matsumori A, Kawai C: Coxsackie virus B3 perimyocarditis in
BALB/c mice: experimental model of chronic perimyocarditis
in the right ventricle. J Pathol. In press
Amer, Iowa, Iowa State Univ Press, 1967
11. Bonte FJ, Parkey RW, Graham KD, Moore JG, Stokely EM:
A new method for radionuclide imaging of myocardial in-
12. Parkey RW, Bonte FJ, Meyer SL, Atkins JM, Curry GL,
Stokely EM, Willerson JT: A new method for radionuclide im-
aging of acute myocardial infarction in humans. Circulation 50:
540, 1974
13. Willerson JT, Parkey RW, Bonte FJ, Meyer SL, Stokely EM:
Acute subendocardial myocardial infarction in patients. Its
detection by technetium-99m stannous pyrophosphate myocar-
dial scintigrams. Circulation 51: 436, 1975
14. Ahmad M, Dubiel JP, Verdon TA, Martin RH: Technetium-
99m stannous pyrophosphate myocardial imaging in patients
with and without left ventricular aneurysm. Circulation 53: 833,
1976
15. Chiu CL, Roelof JD, Go RT, Doty DB, Rose EF, Christie JM:
Coronary angiograms and scintigraphic findings in experi-
mental cardiac contusion. Radiology 116: 679, 1975
16. Pugh BR, Buja LM, Parkey RW, Poliner LR, Stokely EM,
Bonte FJ, Willerson JT: Cardioversion and "false positive"
technetium-99m stannous pyrophosphate myocardial scin-
tigrams. Circulation 54: 399, 1976
17. DiCola VC, Freedman GS, Downing SE, Zaret BL: Myocard-
ial uptake of technetium-99m stannous pyrophosphate following
direct current transthoracic countershock. Circulation 54:
980, 1976
cific valvular heart disease in Tc-99m pyrophosphate myocar-
19. Riba AL, Downs J, Thakur ML, Gottschalk A, Andriole VT,
Zaret BL: Technetium-99m stannous pyrophosphate imaging of
experimental infective endocarditis. Circulation 58: 111,
1978
pyrophosphate infarct scintigram. Circulation 56: 335, 1977
Francis MD, Bonte FJ, Willerson JT: Sites and mechanisms of
localization of technetium-99m phosphorus radiopharma-
ceuticals in acute myocardial infarcts and other tissues. J Clin
Invest 60: 724, 1977
22. Dewanjee MK, Kahn PC: Mechanism of localization of 99mTc-
labeled pyrophosphate and tetracycline in infarcted myocard-
23. Bruno FP, Cobb FR, Rivas F, Goodrich JK: Evaluation of
99mtechnetium stannous pyrophosphate as an imaging agent in
24. Olson H, Lyons K, Aronow W, Cooper L: Technetium-99m
pyrophosphate myocardial scintigraphy and pericardial disease.
(abstr) Circulation 56 (suppl III): III-62, 1977
25. Huckell VF, Staniloff HM, Feiglin DH, Flintoff V, Morch JE:
Massive epicardial effusion due to idiopathic cholesterol
pericarditis detected during 99mTc-pyrophosphate imaging. Clin
Nucl Med 3: 409, 1978
26. Singh A, Usher M, Raphael L: Pericardial accumulation of Tc-
99m methylene diphosphonate in a case of pericarditis. J Nucl
Med 18: 1141, 1977
27. Fleg JL, Siegel BA, Williamson JR, Roberts R: 99mTc-
pyrophosphate imaging in acute pericarditis. A clinical and ex-
Sequential study of myocardial uptake and pathologic correlates.

A Matsumori, K Kadota and C Kawai

Circulation. 1980;61:802-807
doi: 10.1161/01.CIR.61.4.802

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/61/4/802

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/