Effect of Acute Coronary Artery Occlusion on Local Myocardial Extracellular K+ Activity in Swine

JEFFREY L. HILL, PH.D., AND LEONARD S. GETTES, M.D.

SUMMARY We studied the time course, magnitude and homogeneity of the change in extracellular myocardial potassium activity after acute ligation of the left anterior descending coronary artery in pigs using potassium-sensitive electrodes made from a valinomycin-polyvinyl chloride matrix membrane. We also studied the relationship between the changes in potassium activity and the simultaneous changes in ventricular activation using the reference barrel of the K+ electrode to record ventricular electrograms. We found that the K+ rose sooner, more rapidly and to higher levels than previously reported. The K+ changes occurred in three phases: a phase of rapidly rising K+ that began within seconds of the ligation and lasted 5-15 minutes, a plateau phase that lasted approximately 15 minutes and a phase of slowly rising K+ that extended throughout the longest occlusion (60 minutes) used in this study. The K+ changes were reversed by release of the occlusion during the rapidly rising and plateau phases, but were not reversed by release of the occlusion during the phase of slowly rising K+. Inhomogeneities in the K+ rise appeared between the center and lateral margins of the midmyocardial ischemic zone, between the subendocardium and the subepicardium in the center of the ischemic zone, and between closely spaced electrodes located in the midmyocardial center of the ischemic zone. Thus, the change in K+ activity, as recorded by our electrodes, can be considered an excellent marker of ischemia. Changes in ventricular activation paralleled the K+ rise, the inhomogeneities of K+ rise and the reversal of the K+ rise after release but could not be entirely explained by the change in K+.

THE ACCUMULATION of substances released by the ischemic myocardium is thought to play an important role in the genesis of ischemia-related arrhythmias. Harris and co-workers demonstrated that the ischemic myocardium lost K+ into the extracellular space after acute coronary artery ligation. They also showed that the intracoronary injection of KCl produced electrocardiographic changes and ventricular arrhythmias similar to those induced by coronary artery ligation. Harris et al. concluded that the rise in extracellular K+ was a major cause of ischemia-induced ventricular fibrillation. These observations have been confirmed by other investigators. Recently, Downar et al. recently presented data that suggest that factors other than or in addition to the ischemia-induced K+ rise cause the associated electrophysiologic changes. In all prior experiments, K+ was measured in the vein draining the ischemic zone. Thus, the K+ values were only an approximation of the actual myocardial extracellular K+ and the evidence for or against a

From the Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina.

Supported in part by NHLBI grant HL 23624.

Part of this work was included in a dissertation submitted to the University of Kentucky by Jeffrey L. Hill in partial fulfillment of the requirements for a Ph.D. degree.

Address for correspondence: Jeffrey L. Hill, Ph.D., Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27514.

Received May 12, 1979; revision accepted September 12, 1979.

Circulation 61, No. 4, April 1980.
primary etiologic role of \(K^+ \) was indirect. The development of flexible \(K^+ \)-sensitive electrodes in our laboratory\(^{11,12} \) permits the direct assessment of the changes in myocardial extracellular \(K^+ \) activity \((a_{K^+}) \) during acute ischemia. The studies reported in this article were designed to determine the magnitude, rate, time course, homogeneity and reversibility of the changes in myocardial extracellular \(a_{K^+} \) after acute coronary occlusion. By simultaneously recording ventricular electrograms using the same electrodes, we could determine the relationship of the changes in myocardial extracellular \(a_{K^+} \) to changes in intramyocardial conduction, and to the development of ventricular fibrillation. Preliminary results have been reported in abstract.\(^{13} \)

Methods

Twenty-four domestic pigs of either sex weighing 25-40 kg and anesthetized with pentobarbital (30 mg/kg) were used in these studies. Respiration was maintained with room air supplemented with 95% O\(_2\)-5% CO\(_2\) through an endotracheal tube by a Harvard pump at rates adjusted to maintain arterial blood saturation above 95% and pH at 7.40 ± 0.03. Core temperature was monitored using a Yellow Sprins Instruments #403 rectal probe. Polyethylene catheters (1.5 mm o.d.) were placed in the femoral artery and femoral vein for blood pressure monitoring and blood sampling.

The heart was exposed through a midsternal thoracotomy and cradled in the pericardium. In five experiments, the sinus node was crushed and the right atrium paced at a constant rate of 90-180 beats/min using platinum bipolar plunge electrodes coupled to a Grass model S88 stimulator. In the remaining 19 experiments, the heart beat spontaneously at rates of 100-200 beats/min. A snare of 1-0 silk suture was positioned around the left anterior descending coronary artery just distal to the origin of the first diagonal branch.

Miniature \(K^+ \)-selective, double-barrel electrodes (0.25 mm o.d./barrel) (fig. 1) that could accurately measure in vivo myocardial extracellular \(a_{K^+} \) were constructed from polyvinyl chloride (PVC) tubing and PVC-valinomycin matrix membrane and tested as previously described.\(^{11,12} \) The \(K^+ \) electrodes used in these experiments had a calibration slope of 57-61 mV per decade change in \(K^+ \) activity, an impedance of 10-15 MΩ and a time constant of 40-50 msec.

In 22 experiments, two to five flexible \(K^+ \) electrodes were inserted into the midmyocardium of the left ventricular anterior free wall (5-6 mm below the epicardial surface) using a plastic catheter introducer as a guide. The electrodes were positioned at various sites in the anticipated ischemic zone and in the anticipated nonischemic zone. In two experiments, two double-barrel \(K^+ \) electrodes were fused together, with their tips positioned 8 mm apart. These electrodes were inserted into the anticipated center of the ischemic zone to measure the subendocardial and subepicardial \(a_{K^+} \) change simultaneously. In six experiments, the reference barrel of the \(K^+ \) electrode was used to record the local unipolar electrogram versus a central terminal. In eight experiments, an additional reference electrode (0.25 mm o.d.) was positioned within 1 mm of the \(K^+ \) electrode tip, creating a triple-barrel electrode. The two reference barrels were then used to record local bipolar electrograms. Midmyocardial and epicardial temperatures within the anticipated ischemic zone were monitored using Yellow Springs Instruments model 511 (1 mm o.d.) flexible probes and #42112-4 surface probes, respectively. The DC voltage from the intramyocardial \(K^+ \) probes, local ventricular electrograms (50-500 Hz), local myocardial temperatures, and the Y-lead surface ECG (0.05-20 Hz) were simultaneously displayed on an oscilloscope monitor and strip-chart recorder, and recorded on an oscillographic recorder and FM tape recorder.

The \(K^+ \) electrodes were calibrated immediately

Figure 1. A) Photograph of the double-barrel mini-electrode used to measure changes in extracellular \(K^+ \) activity \((a_{K^+}) \). The \(K^+ \)-sensitive barrel is prepared by dip casting a polyvinyl (PVC)-valinomycin membrane over the tip of a PVC barrel that has been filled with 0.5 M KCl. An identical PVC barrel is filled with 1 M NaCl and fused to the \(K^+ \) barrel using tetrahydrofuran. Ag/AgCl wires are used to measure the DC potential between \(K^+ \) and reference barrel tips. B) Photomicrograph of the mini-electrode tip illustrating the smooth \(K^+ \)-sensitive membrane on the \(K^+ \) barrel, the adjacent reference electrode barrel, and the PVC-insulated stainless steel (s.s.) hook used to anchor the electrode in the myocardium. (With permission of the American Physiological Society.\(^{11} \))
before and after each experiment as previously described.11, 12 If the pre- and postcalibrations differed in any electrode, the data obtained from that electrode were disregarded. The electrodes were also calibrated in situ by injecting 2 mEq KC1 within 15 seconds into the femoral vein. Electrodes were replaced if the maximum rate of rise in response to the K\(^+\) bolus was less than 0.5 mM aK\(^+\)/min or 0.2 mM aK\(^+\)/min different than the other electrodes. They were also replaced if a baseline drift of more than 0.2 mM occurred during the pre-ischemic phase of the experiment. These problems were rarely encountered.

In 18 experiments, a 1.5-mm o.d. K\(^+\) electrode11 was inserted via the jugular vein into the right atrium to monitor systemic K\(^+\) activity.

The left anterior descending coronary artery (LAD) was acutely occluded by abruptly tightening the snare. Electrical potentials were recorded continuously throughout the duration of the occlusion and after release. In the five experiments using sinus node crush and atrial pacing, consecutive occlusions of 2–3 minutes duration with an interocclusion period of 45–60 minutes were performed. In these experiments, the pacing rate was either maintained at 90 beats/min (three experiments), changed from 90 to 140 beats/min between occlusions (two experiments), or increased from 90 to 180 beats/min during the occlusion (two experiments). The results are presented in mM K\(^+\) activity (aK\(^+\)) and mM K\(^+\) concentration ([K\(^+\)]) calculated from aK\(^+\) using an activity coefficient of 0.746.11 Statistical analysis was performed using t tests for paired and unpaired data.

Results

Insertion of the K\(^+\) electrodes into the myocardium caused an increase in the local aK\(^+\) to a maximum of 30 mM, which fell rapidly (t\(1/2\) = 2 minutes) to steady-state levels. The mean difference between the simultaneously measured steady-state myocardial extracellular and intravenous aK\(^+\) values was 0.1 ± 0.02 mM.11 These K\(^+\) values remained stable for at least three hours after electrode insertion. After acute coronary occlusion, the myocardium supplied by the distal LAD became cyanotic, ceased to contract and began to bulge. The area of cyanosis was sharply demarcated and ranged from 20–30 cm\(^2\). Epicardial surface temperature within the ischemic zone decreased 1–3°C within five minutes of the occlusion. However, the midmyocardial temperature recorded at the site of the K\(^+\) electrode tip fell 1°C or less during the entire occlusion. Thirteen of the 24 animals developed ventricular extra beats after coronary occlusion; two had short episodes of ventricular tachycardia without ventricular fibrillation, and 11 developed ventricular fibrillation within 2.25–23 minutes. The spontaneous sinus rate, arterial blood pressure, and Y-lead ECG changed little during the occlusion.

Changes in Local Myocardial K\(^+\)

The time course, magnitude and inhomogeneity of changes in myocardial K\(^+\) activity induced by acute LAD occlusion are shown in figures 2–6. In figure 2 extracellular aK\(^+\) in the center began to rise within 15 seconds of the occlusion, reaching a level of 8.5 mM after 7 minutes ([K\(^+\)] = 11.5 mM). At the margin of the ischemic zone, the extracellular aK\(^+\) rose more slowly and to a lower level (5.5 mM). No changes in aK\(^+\) were recorded in the nonischemic zone. After release, the K\(^+\) activity at both the center and margin of ischemic zone fell rapidly to levels near control.
In the experiment illustrated in figure 3, the increase in a_{K^+} recorded by the two electrodes positioned in the center of the ischemic zone rose more rapidly and to a higher level than that recorded in the marginal zone. A steady rate was achieved within 5–8 minutes and persisted for approximately 20 minutes. A second, slower rise in a_{K^+} then occurred at all three sites. The a_{K^+} recorded by the electrode located in the center of the ischemic zone reached 14.9 mM ($[K^+] = 20.0$ mM) after 60 minutes. Release of the occlusion at 56 minutes failed to reverse the increase in extracellular a_{K^+}. Systemic a_{K^+} measured by the K+ electrode in the right atrium did not change by more than 0.2 mM during the entire occlusion period. In the two other experiments of this type, the a_{K^+} reached levels of 19.5 and 21.0 mM ($[K^+] = 26.1$ and 28.0 mM, respectively).

The results from the 22 experiments in which the midmyocardial probes were used are summarized in figure 4. The mean value of the extracellular a_{K^+} in all zones before occlusion was 3.5 ± 0.1 mM. The difference in control a_{K^+} values recorded at different sites in any given experiment varied from 0.1–0.5 mM. These differences were not statistically significant. The time after occlusion at which a_{K^+} began to rise (figure 4A) was, on the average, less in the center than at the margin of the ischemic zone, although in some experiments similar onset times were observed.

Figure 3. Time course of midmyocardial extracellular K^+ activity (a_{K^+}) rise recorded at two sites in the center of the ischemic zone (CZ) and inside margin of ischemic zone (MZ1) during a 56-minute occlusion. The a_{K^+} rose more rapidly and to greater levels in the center of the ischemic zone than at the margin. The rate of a_{K^+} rise slowed significantly and entered the plateau at all three sites 5–10 minutes after occlusion. Approximately 25 minutes after the occlusion, a second slower rise in a_{K^+} occurs at all three sites. This rise continues after release of the occlusion at 56 minutes (arrow R). The systemic a_{K^+} measured by an intravenous probe (electrode 4) did not change during the entire occlusion period. Note especially the inhomogeneity in the a_{K^+} rise in the center of the ischemic zone.
maximum rate of rise of a_{K^+} (fig. 4B) was significantly greater in the center than at the margin of the ischemic zone. Rates as high as 2.9 mM a_{K^+}/min were recorded in the center of the ischemic zone. The highest a_{K^+} level achieved after 2.75–31 minutes of occlusion, including data from the nine experiments in which early release or ventricular fibrillation precluded the attainment of the plateau phase (fig. 4C), was significantly greater in the center than at the margin, and significantly greater at the inside margin than at the outside margin. The data in figure 4C do not include the a_{K^+} values recorded during the slow phase of the K^+ rise that occurred after the plateau. In 13 experiments, a plateau level was observed (fig. 4D). In summary, the K^+ changes occurred earlier, rose more rapidly and rose to higher levels in the center of the ischemic zone than at the margins. Our results also indicate that a slight increase in a_{K^+} occurs at sites 0.5 cm outside the epicardial cyanotic margin.

The results shown in figures 2–4 indicate that significant inhomogeneities in the rate and magnitude of a_{K^+} exist between the center and margin of the ischemic zone. Figures 3, 5, and 6 indicate that inhomogeneities of a_{K^+} also existed within the center of ischemic zone. In the experiment shown in figure 5, two midmyocardial K^+ electrodes were positioned 1
barrel electrodes located in the center of the ischemic zone and in the nonischemic zone. In this experiment, slight changes in ischemic zone activation were noted within 1 minute of the coronary occlusion even though \(a_{K^+} \) had increased by only 0.5 mM. The local activation spikes became progressively delayed and widened during the most rapid phase of the \(a_{K^+} \) rise, with marked fractionation occurring at 5 minutes. Between minutes 6 and 14, the activation abnormalities lessened. In this interval \(a_{K^+} \) continued to rise, but at a somewhat slower rate than in the preceding 6 minutes. By 18 minutes, the local activation spike was again more delayed. At this time, the plateau phase of the \(K^+ \) rise had been reached and only slight changes in \(a_{K^+} \) occurred. The \(a_{K^+} \) and electrograms recorded from the nonischemic zone were essentially unchanged throughout this period. The changes illustrated in this figure are typical of the changes in the midmyocardium of the center of the ischemic zone recorded in other experiments.

Figure 9 illustrates that the changes in local ventricular activation reflected the inhomogeneity in the rate and magnitude of the changes in \(a_{K^+} \). The figure demonstrates 2:1 conduction block in the central area.

The changes in activation associated with the acute occlusion were substantially greater than those produced by an equivalent steady-state elevation in \(a_{K^+} \) (fig. 10). In this experiment \(a_{K^+} \) was increased to 6.6 mM by the infusion of KC1 into the inferior vena cava and maintained at this level by the constant infusion of KC1 (center panel). The activation spike recorded after the steady state was reached was similar to control \((a_{K^+} = 3.4 \text{ mM}) \). However, the rapid increase in \(a_{K^+} \) to 6.6 mM induced by ischemia resulted in a marked delay in the local activation spike.

Ventricular fibrillation occurred in 11 experiments. In four it occurred during the phase of rapid \(K^+ \) rise, in six during the plateau phase, and in one during reperfusion. None of the swine developed ventricular fibrillation during the phase of slowly rising \(a_{K^+} \) observed during longer occlusion periods (three experiments). Although the changes in local ventricular activation paralleled the midmyocardial \(a_{K^+} \) rise, there was no correlation between the rate or magnitude of the \(a_{K^+} \) rise and the incidence of ventricular fibrillation.

Discussion

In the experiments of Harris et al.2, 3 and in similar experiments by other investigators,7-9 \([K^+]\) determinations were performed on venous blood draining the ischemic zone or on blood drawn from the coronary sinus. Many of the \([K^+]\) values were determined during coronary occlusion and indicated that the vein was draining a portion of normally or partially perfused myocardium. Concentration values of up to 6.4 mM (an activity approximately equivalent to 4.8 mM) were reported after 5–10 minutes of occlusion.5, 9 These rather modest elevations were thought to reflect significant accumulations of \(K^+ \) in the extracellular space within the ischemic zone. Downar et al.10 studied...
Figure 7. The effect of heart rate on the changes in midmyocardial extracellular K^+ activity (a_{K^+}) after acute occlusion of the left anterior descending coronary artery. A) Consecutive occlusions at the same (1,2) or increased (3) heart rate produced nearly identical rates of rise in extracellular a_{K^+}. Note the rapid fall in a_{K^+} after release of the occlusion (arrow R). B) Increasing heart rate during an occlusion. Three minutes after occlusion the heart rate was increased from 90 to 180 beats/min. The rate of rise in a_{K^+} did not increase but began to slow as in other experiments of constant heart rate. Ventricular fibrillation (VF) occurred at 5 minutes. CZ = ischemic zone; NZ = nonischemic zone.

Figure 8. A) Tracings of midmyocardial bipolar electrograms recorded from triple-barrel K^+ electrodes positioned in the center of the ischemic zone (CZ) and the nonischemic zone (NZ) during a 22-minute occlusion. The activation delay recorded from the ischemic zone progressively worsened after 2 minutes of occlusion, but was less severe after 6 minutes, even as the a_{K^+} continued to rise. B) The corresponding time course of midmyocardial rise in extracellular K^+ activity. Ventricular fibrillation (VF) occurred after 22 minutes of occlusion.
this relationship in pig hearts, in which there was no flow during the occlusion in the vein draining the ischemic zone. They measured the K⁺ concentration of the first 2–4 ml of venous effluent collected upon release of a 10–15 minute coronary occlusion and found values of 4.6–16.2 mM (aK⁺ = 3.4 – 12.1 mM), with a mean of 8.0 mM (aK⁺ = 6.0 mM).

The K⁺ electrodes used in our experiments provide the means of determining directly the magnitude and time course of the changes in aK⁺ during acute ischemia at various locations within and without the ischemic zone. These experiments indicate that there are three distinct phases of change in aK⁺ after the acute ligation of a coronary artery. The first phase begins within 15 seconds of occlusion and lasts for 4–15 minutes. It is a period of rapid K⁺ increase in which aK⁺ rises as rapidly as 2.9 mM aK⁺ (3.9 mM [K⁺]) per minute to values as high as 12.4 mM ([K⁺] = 16.6 mM). The midmyocardial mean aK⁺ value of 7.6 ([K⁺] = 10.6 mM) is higher than reported by Dow-

nar et al.15 but similar to the epicardial values reported in abstract by Franz et al.14 and Wiegand et al.16 using large surface K⁺ electrodes. The second phase lasts for 15–20 minutes. It is a plateau phase during which aK⁺ changes little. It is followed by a phase of slowly rising aK⁺ that extended throughout the 60-minute duration of our experiments. Although these experiments do not define the maximum extracellular aK⁺ associated with coronary occlusion, our results suggest that values greater than 20 mM ([K⁺] > 26.8 mM) are likely. Our results suggest that the changes in extracellular aK⁺ during the first two phases are rapidly reversed by release of the occlusion, but that the changes in the slowly rising phase are not reversible. Thus, the slowly rising phase probably corresponds to the phase of irreversible cell damage that others have shown to occur 20–60 minutes after acute coronary ligation.16, 17

![Figure 9](image_url)
by ischemia. As such, our results provide additional evidence consistent with the concept of a border zone or zones. However, our results do not indicate whether the border is due to juxtaposed normal and ischemic cells or cells with varying degrees of ischemia because each would produce similar findings.

The possibility that changes in electrode response characteristics may have contributed to the inhomogeneities of K^+ is unlikely because the characteristics of the electrodes were not altered by the experiments. The possibility that heterogeneous changes in muscle temperature might have influenced our results was also unlikely because no evidence of such heterogeneity was recorded in the midmyocardium where the temperature fell 1 degree or less throughout the occlusion period and the changes in epicardial temperatures were considered in the calculations of epicardial a_K^+. The possibility that a K^+-independent change in DC electrical potential might have occurred between adjacent electrode tips was also considered and found not to exist.19

Our study does not permit insight into the cause of the ischemia-induced rise in extracellular a_K^+. The possibilities include alterations in membrane-bound Na$^+$-K$^+$-ATPase,28 a change in membrane permeability to K^+,30, 31 or a H^+-K$^+$ exchange.52-53 Nor do our results establish a causal relationship between the changes in a_K^+ and ventricular activation. It is reasonable to assume that some of the conduction slowing, especially that seen during the plateau and slowly rising phases, is related to the changes in resting potential, action potential upstroke and conduction velocity induced by the change in the a_K^+.23, 27, 34-40

However, three pieces of evidence support the conclusion of Downar et al.,37 that changes in ventricular activation during the initial phase of the a_K^+ rise may not be the result of the magnitude of change in a_K^+ per se. These include: 1) Marked changes in local activation occurred when a_K^+ was 4-6 mM ($[K^+] = 5.8-8.0$ mM), levels of K^+ associated with either no change or even a slight speeding of conduction.41-42 2) The delay in activation recorded during the occlusion-induced rapid rise of a_K^+ was more marked than that associated with similar steady-state levels of a_K^+ induced by the systemic infusion of KCl (fig. 10). 3) The local activation delay associated with the rapid rise in a_K^+ became less marked even though a_K^+ continued to increase slightly or did not change. The more marked changes in a_K^+ in the subendocardium might have caused the changes in electrical activity recorded in the midmyocardium. It is also possible that intramyocardial Purkinje fibers were more sensitive to changes in a_K^+ than the myocardial fibers43-44 or that the rate of the ischemia-induced a_K^+ rise contributed to the observed changes in activation.45-46 Also, other factors, such as changes in intra- and extracellular pH, PCO_2, PO_2,48 and the extracellular accumulation of metabolic end-products, should be considered. It is unlikely that the difference in activation observed during the infusion-induced and ischemia-induced changes in a_K^+ could be attributed to changes in intracellular a_K^+ because, on the one hand, it has been shown that increasing extracellular a_K^+ does not in-

![Figure 10](http://circ.ahajournals.org/)

Figure 10. Comparison of the change in local ventricular activation when the steady-state extracellular K^+ activity (a_K^+) is increased by intravenous infusion of KCl (middle panel) and when the same level of a_K^+ occurs during ischemic (lower panel). The traced electrogram during the K^+ infusion was essentially unchanged from control (upper panel). The traced electrogram recorded when a_K^+ increased to the same level, 2.25 minutes after left anterior descending coronary artery occlusion, showed significant conduction delay.

The time course of the initial phase of a_K^+ change correlates well with the changes in extracellular PCO_2 recently described by Case et al.18 They reported that the rise in PCO_2 began within 7 seconds of acute coronary ligation. It is likely that the K^+ changes we observed occur equally rapidly (figs. 5 and 6). However, for reasons that are not obvious, the rise in PCO_2 did not have a plateau phase. In this respect, the changes in extracellular a_K^+ may be a more useful index of ischemia because the end of the plateau may identify the end of the period of reversibility. Our results indicate that significant inhomogeneities in the rate and magnitude of a_K^+ change exist between the center and lateral margins, between the endocardium and epicardium, and even in the central midmyocardial region of the ischemic zone. The fastest rise in a_K^+ was recorded in the subendocardium (fig. 6). These inhomogeneities are consistent with results obtained from microsphere studies of local perfusion17, 19-21 and from studies of the anatomic,18, 22, 33 biochemical20-22 and electrical changes23, 27, 30 induced
crease intracellular a_{K}^+ and on the other, that the ischemia-induced rise in extracellular a_{K}^- can be accounted for by a 1-3% decrease in intracellular a_{K}^+.

This change would make an insignificant difference in the extracellular-intracellular K^+ gradient induced by a 100-200% change in extracellular a_{K}^+.

The transient rise in extracellular a_{K}^+ that we recorded in the normal myocardium after the abrupt increase in heart rate is consistent with recent observations using K^+-sensitive microelectrodes. However, the change in a_{K}^+ in the ischemic zone during the rapidly rising phase was independent of heart rate, perhaps because the rate of change in a_{K}^+ was too great to be influenced by the increase in heart rate. Thus, the rate-dependent slowing of conduction within the acutely ischemic zone observed by others cannot be attributed to a more rapid accumulation of extracellular K^+. Rather, the rate-dependent changes probably reflect the prolonged recovery of the action potential upstroke and of conduction velocity that occurs in K^+ depolarized fibers.

We could not correlate the development of ventricular fibrillation to the changes in midmyocardial a_{K}^+. The magnitude of the inhomogeneities in a_{K}^+ and activation throughout all areas of the ischemic zone may be more important than the individual changes we recorded. The ability to record the changes in a_{K}^+ and activation simultaneously from more areas than was possible in this study should permit more accurate assessment of these inhomogeneities and perhaps the identification of the factors critical to the development of ventricular fibrillation.

Acknowledgment
The authors thank Stephen Guttu and Gayle Ferguson for their technical assistance, Nancy Love and Sharon Garner for typing the manuscript, and Dr. Arthur Finn for his critical review of the manuscript.

References
34. Weidman S: Elektrophysiologie der Hermuskelfaser. Bern, Huber, 1956
35. Gettes LS, Surawicz B, Shiu JC: Effect of high K, low K and...
Transluminal Angioplasty: Correlation of Morphologic and Angiographic Findings in an Experimental Model

PETER C. BLOCK, M.D., KENNETH L. BAUGHMAN, M.D., RICHARD C. PASTERNAK, M.D., AND JOHN T. FALLON, M.D., PH.D.

SUMMARY The morphologic consequences of transluminal angioplasty of stenotic atherosclerotic coronary arteries are unknown. This study describes the production of aortoiliac atherosclerosis in rabbits and reports the morphologic changes after transluminal angioplasty of stenotic arterial lesions. Atherosclerotic lesions were evaluated angiographically before and after transluminal angioplasty and were studied histologically and by electron microscopy after angioplasty. Moderately stenotic aortic segments showed demudation of endothelial cells and deposition of a carpet of platelets enmeshed in fibrin. Medial and intimal compression were not seen. Intimal plaque disruption and splitting of atheromatous plaques were observed in more stenotic vessels where dilatation during angioplasty is relatively greater. Transluminal angioplasty, therefore, acutely causes desquamation of endothelial cells and superficial plaque elements, splitting of atheroma and subsequent deposition of platelets and fibrin in the area of angioplasty. This experimental model may be useful to evaluate the morphologic changes after angioplasty and might be used in further studies to determine the long-term pathophysiologic changes after transluminal angioplasty.

42. Ettinger PO, Regan TJ, Oldewurtel HA, Khan MI: Ventricular conduction delay and asystole during systemic hyperkalemia. Am J Cardiol 35: 676, 1974

47. Lee CO, Fozard JH: Activities of potassium and sodium ions in rabbit heart muscle. J Gen Physiol 65: 695, 1975

RECENT STUDIES by Grünzig et al. indicate that percutaneous coronary transluminal angioplasty with a balloon-tipped catheter is effective in the treatment of stenotic coronary artery disease in humans. In follow-up, coronary angiograms of patients treated by this technique show improved lumen diameter at the angioplasty site, thallium-201 perfusion images reveal fewer myocardial defects and patients are improved symptomatically. Scanning electron microscopy after coronary transluminal angioplasty in normal dog coronary arteries has been studied. However, the morphologic basis of angiographically successful transluminal angioplasty of a stenotic atherosclerotic artery is virtually unknown. Studies performed on human hearts at autopsy show that angioplasty may lead to plaque rupture and medial dissection. However, at autopsy, the tissue is not viable and therefore is more susceptible to damage than vessels in vivo, and passage of shorter dilation catheters may have caused dissection if forced through fixed stenotic segments.

From the Catheterization Unit, Department of Medicine, and the Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts. Address for correspondence: Peter C. Block, M.D., Cardiac Catheterization Laboratories, Department of Medicine, Massachusetts General Hospital, Boston Massachusetts 02114. Received April 6, 1979; revision accepted September 24, 1979. Circulation 61, No. 4, April 1980.
Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine.

J L Hill and L S Gettes

Circulation. 1980;61:768-778
doi: 10.1161/01.CIR.61.4.768

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/61/4/768

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/