Editorial:
Possible Hazards of Oral Contraceptive Use

WILLIAM B. KANNEl, M.D.

ORAL CONTRACEPTIVES have been reported to affect all serum lipids, but their effect on the triglycerides and VLDL is most consistent and striking.1, 2 Though changed, the lipids generally remain within usual limits, but occasionally, a pronounced hypertriglyceridemia occurs.2, 3 These extreme responses (even, on occasion, with hyperlipemic crises and pancreatitis) appear to be most likely in women predisposed by diabetes or preexisting type 4 VLDL abnormality. This oral contraceptive-induced hypertriglyceridemia appears to result from enhanced VLDL production stimulated by estrogen.4 5 However, the plasma triglycerides rise higher than expected from the size of the VLDL cholesterol increase, and there is also an increased triglyceride turnover rate.4, 7, 8 There may also be a quantitative alteration of the VLDL with a decreased APO-C2 lipoprotein content. In contrast to estrogen, progestagens tend to increase the rate of clearance of triglyceride.4, 9

In considering the public health implications of the lipid aberrations which accompany the use of oral contraceptives, it is important to recognize that pregnancy is also accompanied by an increased triglyceride level;10, 11 a rise in serum total cholesterol is also common. This appears not to have affected the vulnerability of women to atherosclerotic cardiovascular disease, since the incidence of such disease is unrelated to parity. Furthermore, there is no clearly demonstrated independent contribution of triglycerides per se to atherogenesis in either sex.12 Nevertheless, marked rises in triglycerides or VLDL on oral contraceptive administration cannot be viewed with equanimity.

More important, oral contraceptives may also raise the serum total cholesterol and LDL, particularly in young women. This has not been as consistently demonstrated, and does not occur to the same degree as for triglyceride, but these lipids do appear to make a significant independent contribution to coronary heart disease risk.12 Oral contraceptives that contain estrogen may secondarily raise the serum total cholesterol by elevating the VLDL and the HDL cholesterol containing lipoprotein fractions.13 There is no reason to believe that this type of hypercholesterolemia is atherogenic. However, the changes in HDL reported are still rather inconsistent, and even though HDL cholesterol appears to be protective, the effect of oral contraceptive-induced changes in HDL on atherogenesis is still only speculative.

Type 5 hyperlipoproteinemia may be induced by oral contraceptive use in women with type 4 abnormality. This may also occur with ethanol intake in oral contraceptive users.18 On the other hand, type 3 dyslipoproteinemia may be improved by estrogen-containing oral contraceptives.5

These effects must be put into perspective, since oral contraceptives are now the most preferred and the most effective method of contraception. No contraceptives in use, including oral contraceptives, have an associated death rate as high as that for pregnancy itself or for abortions for unwanted pregnancies.

However, oral contraceptives worsen the major atherogenic cardiovascular risk factors to some degree in all women which, while they may remain within normal limits, are uniformly shifted upward, raising the mean level of the whole distribution of cardiovascular risk factors in a substantial proportion of the female population.14, 15 Some susceptible women suffer marked aberrations and develop severe hypertension, hypertriglyceridemia and overt diabetes. All these atherogenic effects could eventually have serious consequences beyond the childbearing years. Left uncontrolled, these effects, plus the effects on blood clotting and on the vessel itself, threaten to eradicate the normal female advantage over men as regards cardiovascular mortality.

During the childbearing years there is a demonstrated small but real escalation of risk of thromboembolic events. While the relative risk is large, the absolute risk is small. These acute effects of oral contraceptive use do not appear to be an atherosclerotic phenomenon, but rather a consequence of effects on various elements of blood clotting, fibrinolysis, and platelet adhesiveness. Also, histochemical and pathological anatomical changes in blood vessels have been noted of an inflammatory, and degenerative nature.16-18 These vascular and clotting aberrations may also contribute to an accelerated pace of atherogenesis to become clinically manifest beyond the reproductive years. Pooled serum from oral contraceptive users has also been found to promote proliferation of arterial smooth muscle cells in culture, a phenomenon which is a prominent feature of atherogenesis.

Prospective studies now corroborate retrospective reports that show a substantially increased risk of thromboembolic disease during the reproductive years.19, 20-22 Postsurgical complications are also increased. In heavy smokers over age 40 years, thromboembolic risk exceeds that associated with childbirth threefold.23-25 This is also true when one or more cardiovascular risk factors compounds the risk of a car-

From the School of Medicine, Evans Research Foundation—Department of Medicine, Boston University, Boston, Massachusetts.

Address for reprints: William B. Kannel, M.D., NIH Heart Disease Epidemiology Study, 123 Lincoln Street, Framingham, Massachusetts 01701.

Received December 14, 1978; revision accepted February 26, 1979.

diovascular catastrophe.23–25, 26, 27 More information is
needed on the pathogenesis of the oral contraceptive-
induced thromboembolic sequelae in the childbearing
age that appear to be related to the estrogen content of
the oral contraceptives.

The full impact of oral contraceptives on cardio-
vascular risk factors may not be fully appreciated
from the short duration studies done so far. Studies indi-
cate that 5% of women who use oral contraceptives
will develop clinical hypertension within 5 years, an in-
cidence 2.6 times greater than that of women who do
not use oral contraceptives. They also indicate that the
incidence may increase to 15% after 5 years of use.28, 29
The preceding article of Hennekens et al. in this issue of
Circulation suggests that this may not be the case for
triglyceride, but data is sparse on that point for
LDL-cholesterol and HDL-cholesterol. Also, while the
lipid and blood pressure aberrations produced
appear reversible on discontinuing the therapy, it is
not clear that atherogenic effects over 3 decades of
oral contraceptive use are as reversible.

More specific guidelines are needed for monitoring
women on oral contraceptives for worsening of their
atherogenic traits and changes in blood coagulation.
Indications and contraindications for oral contracep-
tive use must be better defined in relation to their
thromboembolic hazards. Oral contraceptive use
would appear imprudent for women with a history of
hypertension, impaired glucose tolerance or lipid
aberrations, in themselves or close relatives. Care is
also needed for those undergoing immobilization
and surgery.

Thus far, trends in cardiovascular mortality in
women show nothing alarming. In fact, mortality has
been declining since 1968 despite widespread use of
oral contraceptives. Nevertheless, potentially dan-
gerous biochemical and physiologic changes accom-
pany their use and it may be too soon to know the full
cost. We must learn to use these drugs more wisely
and keep their users under closer surveillance. Efforts
should continue to produce safer effective oral con-
traceptives.

References

1. Gershberg H, Hulse M, Janvier M: Hypertriglyceridemia dur-
ing treatment with estrogen and oral contraceptives. J Obstet
Gynecol 31: 186, 1968
2. Molitch ME, Oll P, Odel WDL: Massive hyperlipidemia dur-
ing estrogen therapy. JAMA 227: 522, 1974
3. Zorilla E, Hulse M, Hernandez A, Gershberg H: Severe en-
dogenous hypertriglyceridemia during treatment with estrogen
4. Rossner S, Larsson-Cohen N, Carlson LA, Boberg J: Effects of
an oral contraceptive agent on plasma lipids, plasma lipoproteins,
the intravenous fat tolerance and post heparin
5. Hazzard WR, Burnez JD, Nester DT, Spiger M, Bierman E:
Estrogens and triglyceride transport: increased endogenous
production as the mechanism for the hypertriglyceridemia of
oral contraceptive therapy. In Endocrinology, Proceedings of the
International Congress on Endocrinology. Amsterdam, Ex-
cerpta Medica, 1973, pp 1006–1012
6. Afolabi SK: Studies on the effects of steroid hormones on
7. Kakki M, Nikkla EA: Plasma triglyceride turnover during use
of oral contraceptives. Metabolism 20: 878, 1971
8. Hazzard WR, Spiger MJ, Bagdade JD: Studies on the
mechanism of increased plasma triglyceride induced by oral
10. Russ EM, Eder HA, DP: Protein-lipid relationships in
human plasmas. III. In pregnancy and the newborn. J Clin
Invest 33: 1662, 1954
11. Knopp RH, Earth M, Carrol C: Lipid metabolism in preg-
nancy. I. Changes in lipoprotein triglyceride in normal pregnancy
12. Gordon T, Castelli WP, Hjortland MC, Kannel WB: The
prediction of coronary heart disease by high density and other
lipoproteins: an historical perspective. In Hyperlipidemia:
Diagnosis and Therapy, edited by Rifkind BM, Levy R1. New
York, Grune and Stratton Inc, 1977, pp 71–78
13. Fallat RW, Glaueck CJ: Familial and acquired types of
during long-term administration of oral contraceptives. Lancet
2: 296, 1966
15. Wynn V, Doar JWH, Mills GL: Some effects of oral contracep-
16. Howie PW, Mallinson AC, Prentice CRM: Effect of combined
estrogen-progesterin oral contraceptives on antiplasmin and anti-
thrombic activity. Lancet 2: 1329, 1970
17. Manalo-Estrella P, Danforth DN, Buckingham JC: Regression
rate of vascular effects induced by pregnancy and by N or ethyl
nodrilinestranol. Fertil Steril 16: 81, 1965
18. Cuts JH: Vascular lesions resembling periarteritis nodosa in
rats undergoing prolonged stimulation with estrogen. Br J Exp
Pathol 47: 401, 1966
19. Jaffee FS: The pill: a perspective for assessing risks and
20. Beral V: Cardiovascular disease mortality and oral con-
21. Mann JI, Vessey MP, Thorogood M, Doll R: Myocardial in-
farction in young women with special reference to oral con-
22. Mann JI, Inman WHF: Oral contraceptives and death from
23. Tietze C, Bongaarts J, Scheerer B: Mortality associated with
the control of fertility. Fam Plann Perspect 8: 6, 1976
24. Tietze C, Jaffee FS: Implications for consumers and clinicians.
Fam Plann Perspect 8: 14, 1976
25. Tietze C: New estimate of mortality associated with fertility
control. Fam Plann Perspect 9: 74, 1977
26. Hennekens CH, McMahon B: Oral contraceptives and myocar-
27. Shapiro S: Oral contraceptives and myocardial infarction.
28. Kay CK: Oral contraceptives and health. The Royal College of
29. Kaplan NM: Clinical implications of oral contraceptives. Adv
Intern Med 20: 197, 1975
Possible hazards of oral contraceptive use.
W B Kannel

Circulation. 1979;60:490-491
doi: 10.1161/01.CIR.60.3.490

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/60/3/490.citation