Role of the Liver in Excretion and Destruction of Digitoxin

By SHIRLEY ST. GEORGE, PH.D., RENÉ BINE, JR., M.D., AND MEYER FRIEDMAN, M.D.

The role of the liver in the excretion and destruction of digitoxin was studied in the rat, rabbit, dog and man (in part). It was found that no more than 10 per cent of a given dose of digitoxin is excreted in the bile of the animals tested and none could be detected in the bile of two human subjects. Evidence was obtained which suggested that in the rat and rabbit, the liver was able to destroy a large amount of injected digitoxin.

It has generally been assumed that because the liver excretes the major portion of administered ouabain or strophanthin it probably excretes digitoxin in the same manner. However, Hatcher and Eggleston have been the only investigators who have attempted to study the hepatic handling of digitoxin and their results were inconclusive because of the relative inadequacy of their assay method. Thus, exact quantitative knowledge of the role of the liver in the excretion or destruction of digitoxin in the animal body is completely lacking.

The embryonic duck heart preparation, however, has allowed the microassay of digitoxin in various biologic tissue and fluids including the liver. We have been able in the present study to assay digitoxin, when present, in the bile of various animals. It has been possible therefore by (1) analyses of bile as well as by (2) analyses of blood and tissues, before and after (a) bile ligation, and (b) partial hepatectomy, to determine the probable role of the liver in the elimination or destruction of digitoxin in various animals including man. The present report contains these results.

Methods

A. Physiologic Procedures

Bile was collected from the unanesthetized rat and rabbit by a method previously described. Care was taken to collect bile from the common duct of the rabbit proximal to the cystic duct. Bile was collected from the unanesthetized dog by means of a T-tube type of cannula previously inserted into the common duct.

Partial hepatectomy was performed in all species by surgical removal of 55 to 76 per cent of the liver. The excision was performed by application of a ligature to the base of each lobe to be removed, followed by excision of the lobe. Care was taken to insure the continued biliary excretion of the hepatic remnant left behind. Digitoxin was injected intravenously immediately after hepatectomy had been performed.

B. Assay of Digitoxin in Various Biologic Media

The bile content of digitoxin was assayed in the following manner. One cc. quantities of bile to which 1, 2, 4, 6, 8, 10, and 12 microgram quantities of digitoxin respectively had been added were extracted with 20 cc. of absolute alcohol by shaking for one hour. They were filtered and the filtrate evaporated to dryness at 70 C. in vacuo. The residue was taken up in 5 cc. chloroform, concentrated to one-third volume, stored at 20 C. for one-half hour, and then the supernatant fluid was decanted. It was evaporated to dryness and taken up in 20 cc. of Tyrode's solution by shaking for one hour. The average time taken for the occurrence of the "digitalis effect" was observed for each sample. In this manner, standards were established by which a bile sample containing as little as 1.0 microgram of digitoxin per cubic centimeter of bile could be assayed.

The digitoxin content of tissues and serum were assayed according to methods previously described.

Results

A. The Hepatic Excretion of Digitoxin

1) In the Rat. A small but significant fraction of digitoxin is excreted in the bile of the rat. After an average intravenous injection of 312 micrograms of digitoxin into a rat, the bile collected during the first 24 hours (see table 1)
contains 32 micrograms or about 10 per cent of the administered dose. None could be detected in the bile excreted the second day.

The above discovery of the relatively small amount of digitoxin excreted by the liver of the rat was confirmed in several different experimental studies. First, the digitoxin content of the serum of 24 rats that had been subjected to biliary obstruction was compared with that of a similar number of normal rats, 6 and 24 hours after the intravenous injection of 1.0 microgram of digitoxin per gram of body weight. After six hours the average content of digitoxin was 0.6 and 0.4 microgram per cubic centimeter of serum in the ligated and normal rats respectively. At the end of 24 hours, no digitoxin was found in the serum of either group. These observations, therefore, indicated that biliary obstruction, per se, resulted at best in only a slight retardation in the rate of disappearance of digitoxin from the blood, and probably the body also, of the rat.

The relatively small role of the biliary tract in the excretion of digitoxin was suggested also by the relatively small increase in the urinary excretion of digitoxin observed in rats, after biliary ligation. The average urine of eight ligated rats contained 11 micrograms (range: 8 to 14 micrograms) and that of normal rats, 6 micrograms (range: 4 to 10 micrograms) during the first 24 hours after injection of digitoxin. These results also show that the relatively unchanged rate of disappearance of digitoxin from the blood after biliary ligation, noted above, was not due to the substitution of renal for hepatic excretion of digitoxin.

2) In the Rabbit and Dog. Digitoxin was found in the bile of both the rabbit and dog. The bile from four rabbits during the first hour after intravenous injection of digitoxin (0.5 microgram per gram of body weight) was found to contain approximately 3 micrograms per cubic centimeter or an average total of 25 micrograms (see table 1).

The biliary excretion of digitoxin in the rabbit was studied in a second manner. A previous study had demonstrated that injected digitoxin rapidly disappeared from the heart, lung, and liver of the rabbit after administration of the drug. Therefore, these organs in both normal rabbits and those subjected to biliary ligation were analyzed for their digitoxin content one hour after its intravenous injection (0.5 microgram per gram of body weight). If biliary excretion were responsible for the observed disappearance of digitoxin from tissue, then the tissue content of digitoxin in the ligated rabbits would have been higher than that of the controls. Such was not found to be the case. The average digitoxin content of the heart, lung, and liver was 0.3, 0.5, and 0.6 microgram per gram of wet tissue respectively in the control group of six rabbits, and 0.40, 0.5, and 0.5 microgram per gram of tissue in the group of five ligated rabbits. It appeared then that the rabbit was similar to the rat in its biliary handling of digitoxin.

Biliary excretion in the dog appeared to be similar to that observed in the other two species. The average biliary excretion of digitoxin by two dogs for the first 24 hours after the intravenous injection of approximately 1375 micrograms (0.1 microgram per gram) was 163 micrograms or about 12 per cent of the administered dose.

3) In Man. Bile was obtained from two different individuals who had had biliary fistulas following gall bladder surgery. Liver function of both patients was normal. Preliminary assay indicated that if 0.5 microgram of digitoxin was added to 1.0 cc. of this bile, it could be detected. Each of the patients was given 1.2 mg. of digitoxin by vein, and then the bile was collected daily for three days and assayed. The first patient, a man of 68 years, drained 160 and 375 cc. of bile respectively the first and second days. The second patient, a man of 50 years, drained 89 and 114 cc. respectively the first and second days. No digitoxin could be detected in any of the four samples of the two individuals.

These negative findings, of course, do not indicate that the human liver excretes no digitoxin. They do suggest, however, that bile contains less than 0.5 microgram of digitoxin per cubic centimeter after injection of 1200 micrograms of the drug. Since the average person excretes approximately 500 cc. of bile per day, this suggests that an amount of digitoxin less than 250 micrograms of the 1200 micrograms
given is the maximal quantity capable of being excreted in bile.

Table 1.—Digitoxin Content of Bile after Injection of Digitoxin

<table>
<thead>
<tr>
<th>Rat</th>
<th>Amount Digitoxin Injected (pg.)</th>
<th>Bile (0-24 Hours)</th>
<th>Bile (24-48 Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Volume (cc.)</td>
<td>Digitoxin Concentration (pg./cc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>290</td>
<td>7.5</td>
<td>4</td>
</tr>
<tr>
<td>41</td>
<td>312</td>
<td>11.0</td>
<td>2</td>
</tr>
<tr>
<td>78</td>
<td>224</td>
<td>9.5</td>
<td>4</td>
</tr>
<tr>
<td>79</td>
<td>360</td>
<td>15.5</td>
<td>2</td>
</tr>
<tr>
<td>90a</td>
<td>365</td>
<td>17.0</td>
<td>2</td>
</tr>
<tr>
<td>91</td>
<td>333</td>
<td>17.5</td>
<td>2</td>
</tr>
<tr>
<td>99</td>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>312</td>
<td>13.0</td>
</tr>
</tbody>
</table>

Rabbit Bile

<table>
<thead>
<tr>
<th>Rabbit</th>
<th>Amount Digitoxin Injected (pg.)</th>
<th>Bile (0-60 Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Volume (cc.)</td>
</tr>
<tr>
<td>1</td>
<td>1596</td>
<td>11.0</td>
</tr>
<tr>
<td>2</td>
<td>1822</td>
<td>6.5</td>
</tr>
<tr>
<td>3</td>
<td>1471</td>
<td>11.0</td>
</tr>
<tr>
<td>4</td>
<td>1053</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>1371</td>
</tr>
</tbody>
</table>

Dog Bile

<table>
<thead>
<tr>
<th>Dog</th>
<th>Amount Digitoxin Injected (pg.)</th>
<th>Bile (0-24 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Volume (cc.)</td>
</tr>
<tr>
<td>1</td>
<td>1250</td>
<td>128</td>
</tr>
<tr>
<td>2</td>
<td>1500</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>1375</td>
</tr>
</tbody>
</table>

Human Bile

<table>
<thead>
<tr>
<th>Case</th>
<th>Amount Digitoxin Injected (pg.)</th>
<th>Bile (0-24 Hours)</th>
<th>Bile (24-48 Hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Volume (cc.)</td>
<td>Digitoxin Concentration (pg./cc.)</td>
</tr>
<tr>
<td>1 A. S.</td>
<td>1200</td>
<td>160</td>
<td>N.D.</td>
</tr>
<tr>
<td>2 A. A.</td>
<td>1200</td>
<td>89</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>375</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>114</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

* None detectable.

B. The Hepatic Destruction of Digitoxin

1) In the Rat. Removal of 66 per cent of the liver of a rat leads to a marked reduction in the rate of disappearance of digitoxin from both its tissues and blood. Thus (see table 2),
(0.4 microgram per cubic centimeter) 24 hours after injection of the drug. Moreover, although there was no detectable digoxin in the heart, lung, or liver of the normal rat at this time, the heart, lung, and liver of the partially hepatectomized rat contained 0.30, 0.10, and 1.30 micrograms of digoxin per gram of tissue respectively. These results indicated that the liver either absorbed or destroyed a considerable fraction of the digoxin given to the rat.

2) In the Rabbit and Dog. Drastic subtotal hepatectomy interfered moderately but not profoundly (see table 2) with the rate of disappearance of digoxin from the tissue of the rabbit. The heart, lung, and liver tissues of six normal rabbits contained an average of 0.3, 0.5, and 0.6 microgram of digoxin per gram respectively, one hour after intravenous injection of the drug (0.5 microgram per gram of body weight). Similar tissues of five rabbits subjected to partial hepatectomy contained an average of 0.6, 1.10, and 0.9 microgram of digoxin per gram respectively. In other words, hepatectomy of this degree led to a retention of about twice as much digoxin in the tissues, one hour after injection of the drug. Here again, the results are in contrast with those following biliary obstruction alone.

Partial hepatectomy of three dogs (see table 2) did not appear to influence the rate of disappearance of digoxin from the representative tissues studied.

DISCUSSION

The present studies indicate that the liver of various laboratory animals is able to excrete about 10 per cent of a given dose of digoxin during the first 24 hours after its administration. No biliary excretion of digoxin, however, was observed in any animal 24 hours after injection. These observations indicate that the major pathway for the disappearance of digoxin in the animal is not by hepatic excretion of the intact, unchanged glycoside, or aglycone. Our inability to detect digoxin in the bile of either of two patients only allows us to postulate that the human subject cannot excrete more than 20 per cent of a given dose. He possibly excretes much less or none.

These results, of course, suggest that biliary

Table 2.—The Effect of Partial Hepatectomy on Rate of Disappearance of Digitoxin from Animal Tissues

<table>
<thead>
<tr>
<th>No. of Animals</th>
<th>Intact Animals (Control)</th>
<th>Partially Hepatectomized Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Digoxin in Tissues (μg./Gm.)</td>
<td>No. of Animals</td>
</tr>
<tr>
<td></td>
<td>Heart</td>
<td>Lung</td>
</tr>
<tr>
<td>(A. Rat)†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>N.D.*</td>
<td>N.D.</td>
</tr>
<tr>
<td>Range</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>S. E. Mean</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(B. Rabbit)‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Range</td>
<td>(0.2-0.5)</td>
<td>(0.1-1.0)</td>
</tr>
<tr>
<td>(C. Dog)§</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Range</td>
<td>(0.2-0.4)</td>
<td>(0.1-0.2)</td>
</tr>
</tbody>
</table>

* No Digitoxin detectable (less than 0.05 micrograms per gram).
† Each rat was given 1 microgram of digitoxin per gram of body weight and the tissues were obtained and analyzed 24 hours later.
‡ Each rabbit was given 0.5 microgram of digitoxin per gram of body weight and the tissues were obtained and analyzed one hour later.
§ Each dog was given 0.2 microgram of digitoxin per gram of body weight and the tissues were obtained and analyzed one hour later.
excretion is not the major pathway for the
elimination of digitoxin from the blood and
tissues of either animal or man. On the other
hand, the liver of the rat, and probably of the
rabbit too, appears to have some method of
ridding the body of this drug. This was shown
by the marked change in the rate of disapp
pearance of digitoxin effected by partial hepa
tectomy. It would appear that this hepatic
process is one of destruction or alteration of
the drug. Thus, it was found in a previous study
that although rat liver rapidly took up, and
stored digitoxin after its intravenous admin
istration, the drug nevertheless could not be
found in this organ 24 hours after its injection.
Since this disappearance could not be accounted
for by escape to some other tissue, by renal
excretion, by intestinal excretion, or as shown in
the present study, by biliary excretion, the
conclusion appeared inescapable that a destruc
tion or drastic alteration of the digitoxin had
ocurred in the liver itself.

These conclusions are contrary to those
drawn by Farah and Smusko
wicz concerning the role of the rat’s liver in respect to stro
phathin. These authors found that the rat’s liver
adsorbed but apparently did not destroy stro
phathin. The differences between their find
ings and ours, of course, may be due not only to
the fact that different glycosides have been
studied, but also to the fact that theirs was an
in vivo, and ours an in vivo study of hepatic
glycoside relationships. Certainly to date, we
also have not been able to detect any destruc
tion of digitoxin by the isolated liver slice. This
is not surprising when it is remembered that it
is extremely doubtful if the metabolism of any
cyclopentanophenanthrene compound proceeds
efficiently in isolated liver slices after several
hours.

If there appears to be a potent extrabiliary
process in the rat liver (and to a lesser extent
in the rabbit liver) for the destruction of digi
toxin there seems little evidence suggesting a
similar capacity possessed by the liver of the
dog or of man. The latter, for example, con
tinues to excrete via his kidneys’ remnants of
a single small dose of digitoxin for well over 14
days until about 40 per cent of the original
amount is thus eliminated. It seems highly
improbable that this very slow renal process
would be utilized if a potent mode of hepatic
excretion or destruction were at hand.

Summary

1) Quantitative studies were made of the
hepatic excretion of digitoxin by the rat, rab
bbit, dog, and man. A small but significant
fraction of the administered drug was detected
in the bile of each species except man.

2) Intrahepatic destruction of digitoxin was
found to occur in the rat and rabbit but not in
the dog.

Acknowledgments

The authors wish to express their thanks to
Leonard Rosenman, M.D., Catharine Bland, Ta
dashi Ishida, and Amy Lin for their valuable
technical assistance.

References

1 Hatcher, A., and Eggleston, C.: Studies in the
elimination of certain of the digitalis bodies
from the animal organism, J. Pharmacol. &

2 Farah, A.: On the elimination of G-strophanthin
by the rat. J. Pharmacol. & Exper. Therap.
96: 248, 1946.

3 —, and Smusko
wicz, E.: The effect of liver
damage on the activity of G-strophanthin in the
rat. J. Pharmacol. & Exper. Therap. 96: 139,
1949.

4 Friedman, M., Bine, R., Jr., Byers, S. O., and
Bland, C.: The renal excretion of digitoxin in
the normal subject after single and continuous
administration of the drug. Circulation 2: 749,
1950.

5 Bine, R., Jr., Friedman, M., Byers, S. O., and
Bland, C.: The deposition of digitoxin in the
tissues of the rat after parenteral injection.
Circulation 4: 105, 1951.

6 Friedman, M., Byers, S. O., and Michael

7 —, St. George, S., Bine, R., Jr., Byers, S. O.,
and Bland, C.: Deposition and disappearance
of digitoxin from the tissues of the rat, rabbit,
and dog after parenteral injection. Circulation.
To be published.

8 Sobotka, H.: Physiological Chemistry of the Bile.
Baltimore, Williams & Wilkins, 1937.

9 Friedman, M., Bine, R., Jr., and Byers, S. O.:
Urinary excretion of digitoxin in the rat. Proc.

10 St. George, S., and Friedman, M.: Intestinal
excretion of digitoxin in the rat. Circulation.
(In press.)

11 Bloch, K.: The intermediary metabolism of cho
Role of the Liver in Excretion and Destruction of Digitoxin

SHIRLEY ST. GEORGE, RENÉ BINE, JR. and MEYER FRIEDMAN

Circulation. 1952;6:661-665
doi: 10.1161/01.CIR.6.5.661
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1952 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/6/5/661

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/