Paradoxic Action of Amyl Nitrite in Coronary Patients

By Stephen Contro, M.D., Olga M. Haring, M.D., and Walter Goldstein

Amyl nitrite inhalation in patients with sclerotic coronary vessels is followed by electrocardiographic changes typical of temporary coronary insufficiency. It is suggested that, in such cases, a slight increase of cardiac work (tachycardia) together with a decrease of blood supply (fall in blood pressure), leads to myocardial ischemia. Comparison between an exercise test and amyl nitrite inhalation in the same patients indicates similar results. Amyl nitrite inhalation may be used as a simple functional test in borderline or questionable cases of coronary heart disease.

Amyl nitrite was discovered by Balard\(^1\) and further investigated by Guthrie\(^2\) and Gamgee.\(^3\) Brunton\(^4\) observed that patients suffering from angina pectoris were promptly relieved by inhalation of the drug. In the following decades, the beneficial effects of several nitrous products were reported; some of them still represent the most used medication for angina pectoris. Nitrites, nitrous esters, and organic nitrates (which are reduced in the body to nitrites) cause a prompt drop of blood pressure. Their action is exerted directly on the smooth muscle of the arteries and is antagonistic to that of epinephrine.\(^5\)

Angina pectoris is due to absolute or relative insufficiency of the coronary circulation, followed by myocardial anoxia. The nitrites act both on the coronary vessels, increasing the blood flow,\(^6\) \(^7\) \(^8\) and on other arteries.\(^9\) The peripheral effect consists of vasodilation followed by decreased work of the myocardium and decreased blood demand.

The beneficial effect of these drugs in most patients is an established fact. However, clinical experience has proved that, in certain patients, the use of nitrites is not followed by clinical improvement\(^10\) \(^11\) and may even cause untoward effects.

Electrocardiographic changes after inhalation of amyl nitrite have been reported in the literature by various authors (Nagl,\(^12\) Goepfert and co-workers,\(^13\) Nordenfelt,\(^14\) Langeron and associates,\(^15\) Goldberger,\(^16\) Ashman and Bayer,\(^17\)

From the Laboratory of Cardiology, Chicago Medical School, and the Mount Sinai Hospital of Chicago.

\(^{250}\) Circulation, Volume VI, August 1958
order to save time, as they can be calculated from
the unipolar limb leads. In several instances, changes
of the tracing persisted after the blood pressure had
returned to the previous level. The study was con-
tinued for about 10 minutes.

The following data were correlated: age and sex;
clinical and electrocardiographic diagnosis; use of
digitalis; systolic and diastolic blood pressures; heart
rate; duration of the electrical systole (Q-T;) ratio
of the electrical systole to electrical diastole (Q-T/
T-Q) ratio; S-T segment and T-wave changes;
possible occurrence of premature ectopic beats. In
evaluating the electrocardiographic changes, Mas-
ter’s criteria were employed.9, 20

The following data were accepted as evidence of
abnormal response (ischemic reaction): displacement
of the S-T segment of more than 1 mm. above
or below the isoelectric line*; flattening or inversion
of the T wave in any lead; premature ectopic beats,
not present in the control tracing.

Twenty patients who had received amyl nitrite
inhalation were also submitted to Master’s “two-
step test.” Twelve of these had normal or borderline
resting electrocardiogram (group 1), six had slightly
abnormal electrocardiogram (group 2) and two oth-
ers had a normal tracing and a history of atypical
anginal pain (group 3). Patients with definite ab-
normalities of the resting electrocardiogram were
not submitted to the Master test because of the
danger represented by this procedure. The Master
test was performed at least 24 hours after the in-
halation of amyl nitrite and according to the origi-
nal description of the author.19

Results

In 27 cases out of 59, the first electrocardio-
gram recorded after amyl nitrite administration
showed definite changes from the control
tracing. Within 10 minutes, the electrocardiograms
of 17 cases reverted to the initial
pattern while the changes further persisted in
10. The pattern of these changes corresponded
to that usually seen in myocardial ischemia,
consisting of displacement of the S-T segment,
inversion of the T wave not associated with
changes of the electrical position, or both
(figs. 1 through 5). Fifteen of the 27 cases had
clinical and electrocardiographic evidence of
coronary heart disease (group 2). Nine of these
cases presented alterations which persisted
till the end of the experiment. Nine cases had a
history of angina pectoris with a normal or
borderline resting electrocardiogram (group 1).
Two had rheumatic heart disease; one of them
was receiving digitalis and had auricular fibrila-
tion, while the other had a normal tracing at

*The P-Q level was considered as the isoelectric line because it does not change with an increased heart rate. In severe tachycardia, the T-P segment may not represent the isoelectric line because atrial depolarization may start before cessation of the ventricular repolarization.21
duction and abnormal prolongation of electrical systole.

Blood pressures dropped in all cases during inhalation of the drug and usually returned to the control level within one minute. In several cases, however, blood pressure rose above control level before stabilizing. The drops of mean systolic and diastolic pressures were calculated in each case. An increase of the heart rate following the drop of blood pressure was noted in all cases but two. In the great majority of cases (40 out of 59), the rate was still slightly elevated after 10 minutes.

Among the 20 patients in whom both Master's and the amyl nitrite test were performed, six showed a positive and eight a negative response to both procedures; one presented a positive response to the Master test only, and another a positive response to amyl nitrite inhalation only. The results in the various groups are presented in table 2.
DISCUSSION

Our study revealed that in 27 out of 59 subjects (45 per cent), amyl nitrite inhalation was followed by electrocardiographic changes similar to those usually seen in myocardial ischemia. A possible relationship of these changes with either the modification of the heart rate or that of the blood pressure was considered.

Heart Rate. In several instances, the tracing showed electrocardiographic modifications when the heart rate increased and these changes disappeared with the return of the heart rate to previous values (four cases in group 2; one among the controls; one in group 3) (fig. 1). This would suggest a connection between electrocardiographic modifications and tachycardia. However, the electrocardiographic changes were observed even when the cardiac rate increased but slightly (one case in group 1). In other cases, no abnormal response was observed when the rate became very rapid (seven cases in the control group; one in group 1), or the electrocardiographic changes were still present when the rate had returned to normal or had fallen below the control values (two cases of group 2).*

· Blood Pressures. A slightly greater mean fall in blood pressure was presented by subjects showing the "ischemic" type of reaction in comparison with the others (table 1). The highest percentage of "ischemic" changes (60 per cent) occurred in patients having a history of angina pectoris but no definite electrocardiographic evidence of coronary heart disease. The changes were more permanent among cases having an abnormal electrocardiogram before the test (55.5 per cent).

In the patients subjected to both the Master test and amyl nitrite inhalation, the results of the two procedures were similar with the exception of two cases. In the first, amyl nitrite caused an "ischemic" reaction while Master's test did not modify the tracing. In the second, the opposite was true. However, while performing the Master test the patient experienced an attack of angina pectoris; amyl nitrite was immediately administered and was followed by increased severity of the electrocardiographic changes (fig. 5).

Coronary insufficiency is caused by a disproportion between blood supply and blood demand. The use of amyl nitrite, as well as that of other powerful vasodilators, is open to question. The increase of coronary flow may not be equivalent to the increased work (or

* Nordenfelt observed electrocardiographic changes after amyl nitrite in a case of complete A-V block. This further indicates the lack of connection between electrocardiographic changes and modifications of the ventricular rate.
Fig. 5. Fifty-nine year old patient with hypertension and angina pectoris. (A) Control. (B) After Master's test (anginal pain). (C) After inhalation of amyl nitrite immediately following Master's test.

Table 1.—Results Following Amyl Nitrite Test

<table>
<thead>
<tr>
<th>Clinical Diagnosis</th>
<th>Controls</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No evidence of cardiac disease</td>
<td>Normal</td>
<td>Angina pectoris</td>
<td>Coronary heart disease</td>
<td>Atypical angina pectoris</td>
</tr>
<tr>
<td>Resting ECG</td>
<td>Normal or borderline</td>
<td>Normal or borderline</td>
<td>Abnormal</td>
<td>Either normal or abnormal</td>
</tr>
<tr>
<td>Total cases</td>
<td>10</td>
<td>15</td>
<td>27</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction to amyl nitrite</th>
<th>Paradoxical</th>
<th>No reaction</th>
<th>Paradoxical</th>
<th>No reaction</th>
<th>Paradoxical</th>
<th>No reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean BP drop in mm. Hg.</td>
<td>22/44</td>
<td>25/24</td>
<td>48/17</td>
<td>29/11</td>
<td>25/20</td>
<td>19/5</td>
</tr>
<tr>
<td>Mean heart rate increase (per minute)</td>
<td>36</td>
<td>36</td>
<td>32</td>
<td>17</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>Average cycle</td>
<td>28.00</td>
<td>28.00</td>
<td>61.46</td>
<td>65.50</td>
<td>61.66</td>
<td>46.00</td>
</tr>
</tbody>
</table>

Table 2.—Comparison of Results Following the Master Test and Amyl Nitrite Inhalation

<table>
<thead>
<tr>
<th>Clinical Diagnosis</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No evidence of cardiac disease</td>
<td>Normal</td>
<td>Coronary heart disease</td>
<td>Atypical angina pectoris</td>
</tr>
<tr>
<td>Resting ECG</td>
<td>Normal or borderline</td>
<td>Abnormal</td>
<td>Either normal or abnormal</td>
</tr>
<tr>
<td>Total cases</td>
<td>12</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction To:</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master's test</td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>Amyl nitrite</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positive To Only:</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master's test</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Amyl nitrite</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
the increased oxygen consumption) of the heart. Moreover, coronary dilatation may be counteracted by a sudden and dramatic drop of the aortic pressure to the point at which coronary flow may actually decrease. It is true that the low blood pressure is followed by decreased cardiac work if the rate of the heart fails to increase beyond certain limits. However, the reduction of the coronary flow caused by low aortic pressure may be greater than the reduction of work.

Our observations suggest that, if the coronary arteries are sclerotic and narrowed, a slight increase of cardiac work (increase of rate) together with a decrease of blood supply (fall in blood pressure) may lead to coronary insufficiency. Therefore, vasodilators should not be given in too large a dose or too rapidly, whenever coronary pathology is suspected.

It is suggested that amyl nitrite inhalation represents a new and simple test for borderline or questionable cases of coronary heart disease.

Summary

Electrocardiographic studies were made in 49 cardiac patients and 10 control subjects after inhalation of amyl nitrite.

In 27 cases out of 59, the first tracing recorded after amyl nitrite inhalation showed a pattern of ischemia; for example, displacement of S-T and flattening or inversion of T in one or more leads. Fifteen of these cases had clinical and electrocardiographic evidence of coronary heart disease, while nine had only a history of angina pectoris. Only one case of the control group showed similar changes.

While the increase of cardiac rate did not seem related to the observed changes, the drop in blood pressure was always definitely connected with them.

In 20 cases, comparison was made between the results of the Master test and those of amyl nitrite inhalation. These results were similar in 18 of them.

It is suggested that, whenever the coronary arteries are sclerotic, the sudden blood pressure drop caused by amyl nitrite may be followed by coronary insufficiency.

Amyl nitrite inhalation may be used as a functional test in borderline or questionable cases of coronary heart disease.

REFERENCES

1. Quoted by Brunton (reference 4).
2. Quoted by Brunton (reference 4).
PARADOXIC ACTION OF AMYL NITRITE IN CORONARY PATIENTS

Paradoxic Action of Amyl Nitrite in Coronary Patients

STEPHEN CONTRO, OLGA M. HARING and WALTER GOLDSTEIN

Circulation. 1952;6:250-256
doi: 10.1161/01.CIR.6.2.250

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1952 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on
the World Wide Web at:
http://circ.ahajournals.org/content/6/2/250

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally
published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not
the Editorial Office. Once the online version of the published article for which permission is being
requested is located, click Request Permissions in the middle column of the Web page under Services.
Further information about this process is available in the Permissions and Rights Question and Answer
document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/