Sinoatrial Conduction in Children: An Index of Sinoatrial Node Function

JOHN D. KUGLER, M.D., PAUL C. GILLETTE, M.D.,
CHARLES E. MULLINS, M.D., AND DAN G. MCNAMARA, M.D.

SUMMARY The premature atrial stimulus technique was used to evaluate sinoatrial conduction (SAC) in 50 children (age range 6 months to 21 years; median 6.5 years) to obtain normal values of sinoatrial conduction time (SACT) and to determine the usefulness of the technique in evaluation of sinoatrial node (SAN) dysfunction in children. The results in the normal group (n = 20) were compared with those of patients with documented SAN dysfunction (group 1, n = 20) or at risk to develop SAN dysfunction because of a previous intracardiac operation (group 2, n = 10). Among the 30 patients in groups 1 and 2, 23 had undergone an intracardiac operation — 13 Mustard operations and five closures of an atrial septal defect.

In group 1, the mean value of total SACT was 172 msec ± 42 (SD) compared with 124 msec ± 38 in the normal group (p < 0.001). Each of the 20 patients in group 1 had abnormal SAN automaticity (prolonged corrected sinus node recovery time, CSNRT) and 13 of the 20 had abnormal SAC. While each of the 10 patients in group 2 had normal CSNRT, two of them had abnormal SAC.

We conclude that the evaluation of SAC should be included in the assessment of children with suspected SAN dysfunction.

CORRECTED SINUS NODE RECOVERY TIME (CSNRT) is an indicator of the automaticity of the sinoatrial node (SAN) and has been useful in confirming known or suspected SAN dysfunction.1-7 Some patients, however, have clinical manifestations of SAN dysfunction but have normal CSNRT.5-10 The presence of prolonged sinoatrial conduction time (SACT) invalidates the reliability of CSNRT, since the rapidly paced atrial impulses may not reach the SAN in sufficient number to suppress the SAN. Normal recovery of the unstressed SAN could then occur at the termination of the pacing despite SAN dysfunction. The recent introduction by Strauss et al.11 of an indirect method to calculate SACT in man has been valuable in identifying previously unrecognized SAN dysfunction in adult patients.8-10 Based on preliminary reports,14, 17 the technique also may be valuable in assessing SAN function in children.

This study was undertaken to 1) obtain normal values of SAC in children without SAN dysfunction; 2) determine SACT in children with abnormal SAN automaticity; 3) determine SACT in patients with normal CSNRT but who have had an intracardiac operation, with emphasis on children who have had operations involving the right atrium.

From the Lillie Frank Abercrombie Section of Cardiology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas.

Supported in part by grant HI 5756, NIH, USPSH, USPSH grant RR-00188 from the General Clinical Branch, NIH, and a grant from the J.S. Abercrombie Foundation.

Presented in part at the 50th Scientific Sessions of the American Heart Association, November 1977, Miami Beach, Florida.

Dr. Kugler's present address: Section of Pediatric Cardiology, University of Nebraska Medical Center, 42nd and Dewey Streets, Omaha, Nebraska 68105.

Address for reprints: John D. Kugler, M.D., Section of Pediatric Cardiology, Texas Children's Hospital, 6621 Fannin, Houston, Texas 77030.

Received April 1, 1978; revision accepted December 29, 1978.

Circulation 59, No. 6, 1979.

Methods

Subjects

The response to premature atrial stimuli was recorded in 20 subjects without clinical or electrophysiologic evidence of SAN or atrial muscle disease and compared with the data in 30 patients assigned to two groups based on a prolonged CSNRT (group 1, n = 20) or a normal CSNRT (group 2, n = 10). The "normal" group, as indicated in table 1, included 13 subjects with unoperated congenital heart defects (eight had hemodynamic abnormalities and five had anomalous conduction pathways) and seven with normal hearts (five with completely normal hearts and two with atrioventricular nodal reentry tachycardia). Subjects with dysrhythmias due to intrartrial reentry were excluded from our normal group, even though they satisfied all other criteria. Clinical criteria for normal SAN function included no history of dizziness, syncope, or chest pain associated with SAN dysfunction. Using the 12-24-hour ambulatory monitor or the standard 12-lead ECG, criteria for normal SAN function were absence of any of the following: 1) sinus bradycardia for age,18 2) sinus arrest, 3) low-amplitude P waves (<1.0 mm in both standard lead I and II),19 4) Wenckebach and other types of SAN exit block20 or 5) manifestations of bradycardia-tachycardia syndrome. Further criteria were the following: none of the normal subjects had undergone a cardiac operation and all had normal CSNRT. Forty-three ambulatory recordings were performed in 50 subjects.

The criterion for inclusion in group 1 was a prolonged CSNRT (table 1). Thirteen of the 20 patients had undergone a cardiac operation and seven of 20 showed electrocardiographic evidence of SAN dysfunction. Two patients had symptoms related to SAN dysfunction. Group 1 was further classified into two subgroups. Group 1A included patients who had undergone the Mustard operation (n = 9). Group 1B
included patients with increased CSNRT who did not have the Mustard operation (n = 11). In four of them intracardiac surgery had been performed (tables 1 and 2).

Group 2 consisted of 10 patients with normal CSNRT, but all patients had undergone an intracardiac operation. Since there is a higher incidence of SAN dysfunction in children who have had cardiac operations, these patients were excluded from our normal group even though they had normal CSNRT. Those patients who had had the Mustard operation were subgrouped into group 2A (n = 4). One patient in group 2B had an episode of dizziness, but it was difficult to attribute the symptoms to SAN dysfunction since the patient also had supraventricular and ventricular tachycardia.

Techniques

All subjects were studied in the cardiac catheterization laboratory in the sedated state. Meperidine (2 mg/kg) and promethazine (0.5 mg/kg) were given intramuscularly 30 minutes before the catheterization. Twenty-eight of the 50 subjects also were given chlorpromazine (0.5 mg/kg) at the same time and by the same route. If additional sedation was needed during the course of the procedure either diazepam (0.2 mg/kg) or ketamine (1 mg/kg) was administered by the intravenous route. The only cardiovascular drugs taken by the subjects were digoxin, propranolol, quinidine sulfate, or furosemide and all of these drugs were withheld at least 36 hours before study.

Using the percutaneous technique, electrode catheters were positioned with fluoroscopic guidance. In each subject, a quadrupolar catheter (with inter-electrode distance of 3 mm) was advanced from a femoral vein and placed in the high lateral right atrium at the junction of the superior vena cava. In each patient who had had the Mustard operation this position was achieved by manipulating the catheter along the intra-atrial baffle. The distal electrodes were used for stimulation and the proximal electrodes were used for recording the right atrial electrogram. In 32 of the subjects, a tripolar electrode catheter was advanced from a femoral vein and positioned across the tricuspid valve to record the His bundle potential. Simultaneous surface ECG leads I, II, III or I, aVF, V1, were recorded with the electrograms on an Electronics for Medicine model DR8 or VR12 photographic recorder at a paper speed of 100 or 200 mm/sec.

Determination of Sinoatrial Conduction Time

Atrial premature depolarizations (APD) were produced with a Medtronics model 5837 stimulator and coupled to the preceding spontaneous beat. The stimuli were 2 msec long and the amplitude was twice diastolic threshold. At least eight spontaneous sinus cycles were allowed between each stimulus. The single premature atrial stimulus was given throughout diastole at successively more premature intervals of 10−40 msec until the atrial refractory period was reached. A prerequisite for performing the test was the presence of sinus rhythm, defined as normal P-wave axis on the surface ECG leads plus normal atrial activation on the atrial electrograms.

The following intervals were measured from the right atrial electromgram as illustrated on the diagram in figure 1: 1) A2-A1, the spontaneous cycle length immediately before the APD; 2) A1-A2, the interval from the last spontaneous depolarization (initiated from SAN) to the induced APD (A2); 3) A2-A3, the interval from the APD to the next spontaneous depolarization (A3); 4) A3-A4, the first spontaneous cycle after the return cycle (A4). The A3-A4 interval was compared with the A2-A1 interval for the same sequence to assess the sinus cycle variability. The A2-A4 interval was not measured in the early studies, since its importance has been emphasized recently. The sinus origin of the A2 and A4 responses was demonstrated indirectly by the unchanged P-wave axis and morphology and by unchanged atrial activation sequence.

Definitions and diagrammatic examples of nonreset and reset responses, as well as a sample calculation of SACT for a single reset response, are shown in figure 1.

Some basic assumptions are inherent in the indirect calculation of SACT. It is assumed that the APD enters and resets the SAN without changing the SAN automaticity. Also, the sinus cycle length is assumed to be identical to A1-A2 (fig. 1). By knowing the sinus cycle length and measuring the A2-A3 interval of a reset response, the SACT is calculated indirectly by subtracting A2-A3 from A2-A4 to derive the total time of conduction into and out of the SAN (reset step 2, fig. 1). Some investigators use one-half of this time as the calculated SACT (reset step 3, fig. 1). It should be emphasized that antegrade and retrograde conduction may not necessarily be the same. Therefore we and others prefer to express calculated SACT as the total time (total SACT) rather than an average of antegrade plus retrograde conduction time.

To clarify the transition from nonreset to reset zone, a plot of normalized intervals (A2-A3/A2-A4 or A2-A3/A2-A1) was made in each patient (fig. 2). The corresponding A2-A1 and A2-A3 intervals for the first five reset responses (which encompassed no more than one-half of the reset zone) in each patient were averaged to calculate an average value of total SACT: Ave A2-A3 - Ave A2-A1 = Ave total SACT of the first five responses in reset zone.

Definitions

Abnormal Sinoatrial Conduction

Abnormal sinoatrial conduction (SAC) was defined as either prolonged SACT (greater than 2 standard deviations from the mean value of our normal group) or evidence of SAN entrance block (SAN EB). Complete SAN EB was defined when only a nonreset zone was obtained regardless of how short the A2-A3 that was induced (fig. 3). In this study, we defined intermittent SAN EB (fig. 4) when nonreset responses
TABLE 1. Clinical Data

<table>
<thead>
<tr>
<th>Pt no.</th>
<th>Age (years)</th>
<th>Diagnosis</th>
<th>ECG evidence of SAN dysfunction</th>
<th>Symptoms related to SAN dysfunction</th>
<th>SCL (msec)</th>
<th>AERP (msec)</th>
<th>CSNRT (msec)</th>
<th>SACT (msec)</th>
<th>SAN entrance block</th>
<th>Abnormal SAC</th>
</tr>
</thead>
</table>

Normal group

1 4 N None None 528 195 228 92 No No
2 14 PS None None 590 192 235 164 No No
3 3 PSVT (AVN-R) None None 500 140 130 97 No No
4 3 PSVT (LCK) None None 443 137 122 123 No No
5 4 VSD/PS None None 392 136 42 101 No No
6 21 WPW None None 787 254 157 127 No No
7 0.5 WPW None None 589 <220 177 136 No No
8 1 VSD None None 415 142 63 85 No No
9 4 PDA None None 556 190 186 80 No No
10 3 N None None 490 148 102 92 No No
11 14 N None None 760 207 200 193 No No
12 5 PS None None 517 <195 205 120 No No
13 0.5 PDA None None 440 <205 90 94 No No
14 5 PSVT (AVN-R) None None 544 120 200 172 No No
15 14 LGL None None 409 135 135 119 No No
16 15 WPW None None 776 190 190 188 No No
17 1 N None None 510 <230 80 96 No No
18 10 N None None 750 <270 150 192 No No
19 1 LTGA/VSD None None 471 140 90 90 No No
20 0.5 VSD None None 544 155 260 106 No No

Group 1A

21 5 PO M None None 640 117 295 181 No No
22 6 PO M None None 481 170 295 80 No No
23 1 PO M B/T None None 463 150 1050(J) 138 Yes Yes
24 12 PO M SB None 513 170 307 198 No No
25 2 PO M SB None 708 218 389 — Yes Yes
26 12 PO M SA Diz 801 263 335 201 No Yes
27 8 PO M None None 651 179 504(J) — Yes Yes
28 10 PO M None None 525 <215 775(J) — Yes Yes
29 2 PO M None None 550 150 390(J) — Yes Yes

Group 1B

30 4 PO TF None None 647 180 290 117 No No
31 8 WPW SB None 661 230 420 144 No No
32 4 PS/ASD None None 643 170 294 128 No No
33 17 CCM None None 658 189 367 232 No Yes
34 10 PO ASD None None 767 176 348 197 Yes Yes
35 17 PO ASD B/T Sync 727 247 450 206 Yes Yes
36 4 PO ASD/VSD None None 572 180 329 213 No Yes
37 8 N SB None 954 315 305 228 No Yes
38 12 N None None 682 220 280 152 Yes Yes
39 4 ASD/PS None None 636 <210 399 146 No No
40 10 ASD None None 676 <215 290 192 Yes Yes

Group 2A

41 13 PO M SB Sync 729 190 200 144 No No
42 3 PO M SB None 531 170 70 151 No No
43 3 PO M None None 522 205 225 151 No No
44 2 PO M None None 621 211 239 181 Yes Yes

Group 2B

45 8 PO ASD/VSD None None 618 170 180 119 No No
46 1 PO VSD/PS None None 754 254 190 169 No No
47 7 PO ECD None None 554 210 210 173 No No
48 12 PO TF None None 712 205 180 112 No No
49 10 PO AS None Diz 616 180 70 158 Yes Yes
50 5 PO VSD None None 598 235 265 172 No No

Abbreviations: N = normal heart; PS = pulmonary stenosis; PSVT = paroxysmal supraventricular tachycardia; AVN-R = atrioventricular nodal reentry; LCK = left-sided concealed bundle of Kent; VSD = ventricular septal defect; WPW = Wolff-Parkinson-White syndrome; PDA = patent ductus arteriosus; LGL = Lown-Ganong-Levine syndrome; L-TGA = l-transposition of the great arteries; PS = postoperative Mustard operation; PO M = postoperative Mustard operation; PO TF = postoperative tetralogy of Fallot; ASD = secundum atrial septal defect; CCM = congestive myxomatous; PO AS = postoperative atrioventricular septal defect; PO AS = postoperative endocardial cushion defect; PO AS = postoperative valvotomy for aortic stenosis; SAN = sinoatrial node; B/T = bradycardia/tachycardia syndrome; SB = sinus bradycardia; SA = sinus arrest; Diz = dizziness; Sync = syncope; SCL = sinus cycle length; AERP = atrial effective refractory period; CSNRT = corrected sinus node recovery time; J = junctional; SACT = sinoatrial conduction time; SAC = sinoatrial conduction.
occurred after an initial reset zone was demonstrated while ensuring that the automaticity was essentially unchanged (A2-A4 intervals being approximately the same).

Abnormal SAN Automaticity

Sinus node automaticity was evaluated by measuring sinus node recovery time after rapid atrial pacing for 30 seconds. Beginning with a pacing rate slightly faster than the spontaneous sinus cycle length and increasing by 10-20 beats/min after each recording, the CSNRT was measured after each paced cycle length. The maximum pacing rate was approximately 200 beats/minute. However, usually the longest CSNRT was obtained at pacing rates only slightly faster than the patient’s resting cycle length. The interval from the last paced, captured atrial beat to the first sinus atrial beat was defined as the sinus node recovery time. Since the sinus node recovery time should be expressed in terms of some relationship to the resting sinus cycle length, for each paced cycle length the baseline sinus cycle length was subtracted from the sinus node recovery time to obtain the CSNRT.

The longest calculated time was used to express the CSNRT for each subject and the value of 275 msec (2 standard deviations from the mean of the normal group) was used as the upper limit of normal. When a junctional pacemaker was the first to recover, the interval from the last paced, captured atrial beat to the junctional beat was measured. The pre-pacing sinus cycle length was subtracted from this interval to calculate the corrected pacemaker recovery time. Although this is obviously not a true CSNRT, it is an abnormal response. We excluded these corrected pacemaker recovery times in the calculation of group data.

Atrial Refractoriness

The atrial effective refractory period (AERP) was defined as the longest A1-A2 interval at which the APD (A2) failed to capture the atrium. In the early studies, a few instances occurred when the shortest A1-A2 interval given still captured the atrium. Even allowing that the values of the AERP would have been shorter in these patients (if shorter A1-A2 had been given), none of them had prolonged atrial refractory periods according to the values in normal children reported by Dubrow et al. However, for statistical analysis, the mean value of the normal group was computed from the individual values in only those patients in whom the AERP was reached (table 1). Values were considered prolonged when greater than 2 standard deviations from the mean of our normal group.

Sinus Cycle Length

The sinus cycle length (SCL) was obtained by averaging the A1-A2 intervals from the first five reset determinations in each patient. In those patients in whom a reset zone was not obtained, the SCL was obtained from the average of five nonreset responses.
Since the A_1-A_2 intervals used to calculate SACT were taken at approximately the same A_1-A_2/A_1-A_1 in each patient, this allowed for more appropriate comparison of data. The individual and group SCL intervals listed in the tables therefore were significantly less ($p < 0.001$) than those from the resting nonsedated ECGs.

Statistics

The t test for independent means was used to compare the mean data for the study groups with that from the normal group. In addition, multiple linear regression was used to test correlations between SCL and SACT and between CSNRT and SACT in the normal group.

Results

SACT in the Normal Group

In the normal group of children, calculated total SACT was 124 ± 38 msec (mean ± sd) (table 2). Thus, 200 msec was selected as the upper limit of normal (2 standard deviations) and none of these subjects had values of total SACT greater than 200 msec (table 1). The total SACT was unrelated to SCL ($r = 0.17$). The mean SCL was 551 msec ± 125 (SD). The transition from nonreset to reset zone was expressed as the initial A_1-A_2/A_1-A_1 of the reset zone. The mean value of the normal group was $67.8\% \pm 5$ (SD). As illustrated by the example of a normal response in figure 2, all the normal subjects had a clear transition from nonreset to reset zone.

SAC in Group 1 — Patients with Abnormal SAN Automaticity

The mean value of total SACT in group 1 (172 msec ± 10 SEM) was prolonged significantly ($p < 0.001$) compared with the normal group and could be calculated in 16 of the 20 patients (tables 1 and 2). Because only nonreset responses were elicited in the other four patients in group 1, SACT could not be calculated. An example of such a response is shown in figure 3.

Including patients with prolonged SACT and complete or intermittent SAN EB, 13 of the 20 patients in group 1 had evidence of abnormal SAC (tables 1 and 2). Of the 13 patients, five patients had prolonged SACT, four other patients had complete SAN EB, and four other patients had normal calculated SACT, but at shorter A_1-A_2 intervals showed SAN EB (fig. 4). After normal nonreset and reset responses, there were more nonreset responses followed by more reset responses. With shorter A_1-A_2 intervals, nonreset responses followed again, similar to those found at short A_1-A_2 in the patient with complete SAN EB (fig. 3). Reset responses followed by nonreset responses indicated intermittent SAN EB. Normal P-wave morphology and atrial activation sequence occurred in each response. Moreover, the A_3-A_4 intervals after both the reset and nonreset responses were similar, probably indicating that neither variability in the sinus cycle length nor changes in SAN automaticity accounted for the findings.
Findings from a patient who had undergone a Mustard operation demonstrated that the A₂-A₄ interval may be misleading (fig. 5). With decreasing A₁-A₂, SAN EB occurred and was associated with a normal A₃ and A₄ P-wave axis and A₃-A₄ intervals (figs. 5A and B). Decreasing the A₁-A₂ interval further resulted in apparent further SAN EB as the A₂-A₃ intervals follow the nonreset line and the A₃-A₄ intervals remained approximately the same (fig. 5A). The A₃ P-wave morphology of this (fig. 5C) and the next five nonreset responses showed an abnormal P-wave axis accompanied by an altered right atrial activation sequence (HRA₃-LRA₃ = 10 msec vs HRA₁-LRA₁ = 40 msec). Thus we could not confirm the existence of SAN EB from these five responses. However, in this particular patient SAN EB was apparent earlier (longer A₁-A₂).

SAC in Group 2 — Postoperative Patients with Apparently Normal SAN Automaticity

The mean calculated total SACT was not significantly different from that in the normal group (table 2). Although no patients had prolonged calculated SACT, one patient from each subgroup showed evidence of SAN EB after having sufficient reset responses to calculate SACT (table 1). The reset zone first was demonstrated at an average A₁₋₂-A₁₋₄/A₁₋₁-A₁ of 65.8 ± 2.1 sem% (p > 0.1).

Relation Between Previous Cardiac Operation and SAC

Among the 13 patients in group 1 with abnormal SAC, nine had undergone an intracardiac operation (tables 1 and 2), including six who had had a Mustard operation (group 1A) and three in group 1B who had undergone closure of an atrial septal defect. The other three patients in group 1A and the one other postoperative patient in 1B had normal SAC after intracardiac operation.

By selection, all of the patients in group 2 had undergone an intracardiac operation. Although no patient had a prolonged calculated SACT, two patients, one in each subgroup, had evidence of abnormal SAC by intermittent SAN EB.

Figure 2. A plot of A₂₋₃_A₁₋₄ and A₂₋₄/A₁₋₁, vs corresponding A₁₋₂_A₁, showing an example of a normal response. The nonreset zone is distinctly separated from the plateau reset zone. The circle around the first five reset points indicates the responses from which the average sinoatrial conduction time was calculated. The closeness to which the A₂₋₄ intervals fall along the 1.00 A₂₋₄/A₁₋₁ line suggests that there has been little change in automaticity.

Figure 3. A graph of the sinoatrial node response to the extrastimulus method from a patient who underwent a Mustard operation. A plot is shown of the normalized A₂₋₃_A₁ and A₂₋₄/A₁₋₁ intervals vs the A₁₋₂_A₂ interval. Decreasing the A₁₋₂ results in a continuing nonreset zone with no reset zone. In this patient, some A₂₋₄ intervals were not recorded, but for those which were recorded, they are similar to the normal response from the patient in figure 2.
Sinus Cycle Length

With the predominant influence of group 1B, group 1 had a longer ($p < 0.01$) mean sinus cycle length than the normal group (table 2). Groups 1A, 2A and 2B each had a mean sinus cycle length which was not different ($p > 0.05$) from that in the normal group (table 2).

Atrial Effective Refractory Period

The mean AERP of the normal group was 169 ± 38 (SD) msec, making 245 msec ± 2 SD the upper limit of normal. One patient from group 1A had a prolonged value, as did two in group 1B and one in group 2B (table 1).

Discussion

The calculated total SACT in our normal group was lower than that reported in some adult series. Three investigators have reported total SACT values in normal adult subjects ranging from 240–320 msec as the upper limit of normal. This is in contrast to our finding of 200 msec (mean ± 2 SD) as the upper limit of normal. The study of Jordan et al. in adults with coronary artery disease helps explain the discrepancy. They discovered that patients with significant atherosclerotic lesions of the SAN artery or in vessels proximal to the origin of the SAN artery had longer mean total SACT (238 ± 30 msec) than patients without the lesions (144 ± 10 msec). Dhinghra et al. included some patients with intraventricular conduction delay who may have had clinically inapparent coronary artery disease proximal to the origin of the sinus node artery. As emphasized by Jordan et al., this could account for the higher value of the upper limit of normal (304 msec) in the study of Dhinghra et al.

Lower normal values of SACT in adults (similar to our normal values in children) have been reported by two investigators using similar methods of calculation. Steinbeck and Lüderitz used only the first reset response and Masini et al. used the first 20% of the reset responses. We used the first five responses in the reset zone in order to avoid the possibility of using reset responses near or within the functional atrial refractory period. However, this aspect of calculation may be less important than previously thought, since all of the reset responses were used in the adult study of Scheinman et al., who found values of total SACT (142 ± 32 msec (SD)) similar to ours. Except for our preliminary report, only Dubrow et al. have reported values of SACT in children, and their technique is not stated. Thus, most evidence suggests that children and adults have similar SACT.

Abnormal Sinoatrial Conduction

SAC was considered abnormal not only if SACT was prolonged but also if there was evidence of SAN EB. Patterns of complete SAN EB and "chaotic" responses have been described with the premature atrial stimulus technique and have been considered abnormal findings. Several of our patients without prolonged calculated SACT showed evidence of intermittent SAN EB. We considered this abnormal if the responses were constant, reproducible, and not accompanied by extreme sinus cycle variability (stable A_2-A_4). The CSNR in these patients with intermittent SAN EB probably was falsely normal because of the SAN EB. Thus, when CSNR was determined after rapid atrial pacing, the abnormal SAC protected the SAN from overdrive suppression. This phenomenon has been discussed previously. If one of the advantages of using the premature atrial stimulus technique is to identify this type of patient who has abnormal SAC and normal CSNR, our

Figure 4. A) A plot of normalized A_2-A_3 and A_3-A_4 vs A_1-A_2 is shown from a patient who had had a valvotomy for valvular aortic stenosis. At an A_1-A_2/A_1-A_0 of 0.84–0.86, increased nonreset A_2-A_4 responses accompanied by increased A_1-A_4 intervals occur which probably resulted from sinus arrhythmia as suspected by the associated increased A_2-A_4. The transition from nonreset to reset is not as distinct as found in plots from normal subjects (fig. 2). Two reset responses are initially apparent at A_1-A_2/A_1-A_0, 0.63 (fig. 4B) and 0.65. However, with earlier A_1-A_2/A_1-A_0 (0.62–0.55) nonreset is demonstrated as the points follow the nonreset line (the nonreset response at 0.60 is shown in fig. 4C). When A_1-A_2/A_1-A_0 is decreased further, five more reset responses occur; intermittent nonreset responses are also demonstrated. Therefore, this is an example of intermittent sinoatrial entrance block. During the intermittent reset and nonreset responses the A_2-A_4 intervals show no significant variation, suggesting no apparent change in sinoatrial node automaticity.

B) This tracing from the same patient depicted in figure 4A shows the recording of the first reset response. Labeled from top to bottom are: standard surface ECG leads (I, II and III), high right atrial (HRA) electrogram, proximal coronary sinus (PCS) electrogram, His bundle electrogram (HBE) and the femoral artery pressure. The distance between time lines is 1000 msec. At a A_1-A_2/A_1-A_0 of 0.63 the SAN is reset (fig. 1 and text), since A_1-A_2 (1170 msec) is less than $2 \times A_1$-A_3 (1240 msec). Because the P waves (A_4 and A_1), atrial activation, and A_2-A_4 intervals are all unchanged, it is unlikely that sinoatrial node (SAN) automaticity has been affected. C) In a tracing from the same patient, a nonreset response is demonstrated with a shorter A_1-A_2/A_1-A_0 (0.60). The A_1-A_2 interval is approximately twice the A_1-A_3 (1190 msec vs 1200 msec), indicating the SAN is not reset (fig. 1 and text). Again, there is no evidence of a change in SAN automaticity. The paper speed and electrograms are the same as in figure 4B.
findings are not surprising. The importance of plotting all of the responses in each patient also is illustrated by these patients: SAN EB may be identified (with shorter A1-A2) after SACT is calculated from the reset responses already elicited with longer A1-A2.

Limitations

The patient with abnormal SAN automaticity presents a particular problem because the effect of the induced APD on the automaticity of the diseased SAN is unknown in man. Although attention to the A3-A4 interval should detect suppression of automaticity,27 in these patients automaticity may be affected by the APD and remain undetected with present techniques. The solution to this problem ultimately is not in the present methods but in the direct calculation of SACT. An animal study88 using specialized catheter techniques to record the endocardial SAN potential, suggests that direct calculation of anterograde SACT may be feasible in man. With this method, the dependence on the assumed sinus cycle length would be eliminated (and therefore any question of delay due to depressed SAN automaticity would be eliminated) and the direct calculation of time from the SAN potential to the atrial depolarization would be measured.

Implications

As has been stated for adults with absence of a history of syncope10, 44 more data are needed before we can conclude which invasive or noninvasive test is the most accurate index of SAN function. Clearly, however, invasive testing should include both CSNRT and SACT. Frequently, SACT was abnormal in our patients with abnormal SAN automaticity. Since SAC was abnormal in two patients without apparent depressed automaticity, some patients with SAN dysfunction may be undetected if only CSNRT is measured.

References

Sinoatrial conduction in children: an index of sinoatrial node function.
J D Kugler, P C Gillette, C E Mullins and D G McNamara

Circulation. 1979;59:1266-1276
doi: 10.1161/01.CIR.59.6.1266

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/59/6/1266.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/