Editorial:
Disopyramide Phosphate (Norpace)
A New Antiarrhythmic Drug

PAUL N. YU, M.D.

Disopyramide Phosphate (NORPACE) was recently approved and released in the United States for clinical use as an antiarrhythmic drug. The electrophysiologic, pharmacologic and hemodynamic properties, clinical application and toxicology of this drug have been extensively studied in this country and abroad. Some of the studies have been published in two symposia.1,2

Disopyramide has both membrane depressant and anticholinergic effects. Electrophysiologic studies of disopyramide in human subjects have demonstrated that it usually shortens spontaneous cycle length, slightly prolongs the relative refractory periods of atrium, ventricle and the His-Purkinje system, and increases the duration of the P wave and QRS complex. It does not affect atrioventricular nodal conduction time, but may prolong the His-Purkinje conduction time. Most of these effects are concentration-dependent. The overall depressant effects may be nullified by the associated anticholinergic properties.

The two papers published in this issue of Circulation have reviewed admirably the electrophysiologic effects of disopyramide in man and have clarified the clinical application of disopyramide in patients with sinus node dysfunction and in those with bundle branch block.3,4 Disopyramide may have deleterious effects in patients with sinus node dysfunction, so it should be administered with caution to these patients. In contrast, disopyramide can be given safely to hemodynamically stable patients with bundle branch block without resulting in second or third degree atrioventricular block.

Intravenous administration of disopyramide in a dose of 1.5–2 mg/kg produces no measurable hemodynamic effect in patients with normal left ventricular function, but may cause a transient negative inotropic effect on the myocardium in those with abnormal left ventricular function.

The drug is rapidly and almost completely absorbed from the gastrointestinal tract when taken orally. Maximum plasma levels are usually reached 1–3 hours after ingestion of a dose, and the plasma half-life of the drug is about 6 hours. The range of therapeutic plasma concentrations is 2–4 μg/ml, which may be achieved with a 100 or 150 mg dose four times a day. About 70% of the drug is excreted in the urine and the remainder via the biliary system into the feces.

Long-term administration of disopyramide to human volunteers and patients causes no appreciable change in body weight, blood pressure, heart rate, serum electrolytes, or in hepatic, renal or hemopoietic function. Oshrain and associates in our medical center have followed 59 patients who have been on disopyramide therapy for 5 years. None of these 59 patients has developed serious complications resulting from the drug.

Disopyramide is effective in the suppression of ventricular premature beats and ventricular tachycardia in about 80% of the patients who are placed on the therapy. It also has been successful in controlling and preventing refractory ventricular tachycardia.5 Disopyramide given orally appears to be effective in the prevention of potentially serious arrhythmias in patients with acute myocardial infarction.6

The efficacy of disopyramide in the management of atrial tachyarrhythmias is less impressive. It has been used in the conversion of paroxysmal atrial tachycardia as well as of atrial fibrillation with a success rate ranging from 20–50%. The rate of success for conversion of atrial fibrillation to sinus rhythm depends on the duration of arrhythmia.7 The conversion rate is much higher when the duration of atrial fibrillation is less than 7 days. The drug also has been effective in controlling paroxysmal atrial tachycardia in patients with Wolff-Parkinson-White syndrome.

The therapeutic effect of disopyramide is similar to that of quinidine in the management of both ventricular and atrial arrhythmias, but disopyramide is tolerated better than quinidine by a large proportion of patients.

The recommended dose in an average person is 100 mg or 150 mg four times a day. In most patients a loading dose is not required. The maximum daily dose should not exceed 1600 mg. In patients with renal functional impairment the daily dose requirement may be considerably curtailed. We will learn from clinical practice how to regulate the dose to fit the patients.

The most significant side effects of disopyramide are caused by its anticholinergic properties. These side effects include dryness of mouth and tongue, urinary retention, constipation, abdominal discomfort, blurred vision, dizziness, headache and nausia. Male patients with prostatic hypertrophy and female patients with diabetic bladder are prone to develop urinary retention. Ten of over 200 patients followed personally by Oshrain developed obstructive symptoms and required either prostatectomy or discontinuance of the drug while they were on disopyramide.

References:
1. From the Cardiology Unit, Department of Medicine, University of Rochester Medical Center, Rochester, New York.
2. Address for reprints: Paul N. Yu, M.D., Cardiology Unit, Department of Medicine, University of Rochester Medical Center, Rochester, New York 14642.
therapy. Mental depression, impotence and hypoten-
sion are occasionally observed, especially in those pa-
tients with a high plasma level of the drug.

The depressant effect of disopyramide on cardiac
muscle may be accentuated when extracellular
potassium concentration is increased. Therefore, in
hyperkalemic states, toxic manifestations of dis-
opyramide may be observed, even though the plasma
level of the drug appears within therapeutic range.
Conversely, the therapeutic effect of disopyramide
may be significantly reduced if the serum potassium
level is excessively low.

Hayler and co-workers reported the death of five
patients who deliberately took overdoses of diso-
pyramide.8 The uniform clinical finding was an early
loss of consciousness after apnea. Cardiopulmonary
resuscitation was unsuccessful. Postmortem examina-
tion revealed gross pulmonary edema probably sec-
ondary to left ventricular failure.

Disopyramide administration is contraindicated in
patients with acute pulmonary edema, uncontrolled
congestive heart failure, cardiogenic shock, glaucoma,
and urinary retention. It should be used with caution
or temporarily withheld in patients with advanced
atrioventricular block or sinus node dysfunction. The
drug may be harmful to patients with sinus node dys-
function with sinus pause, sinoatrial exit block or
secondary pauses.9 Since the safety of disopyramide
in pregnancy has not been established, the drug should
not be given to pregnant women.

Several workers have stated that disopyramide
should be given with caution if the patient has received
a β-blocking agent because of the development of
hypotension. In general, no adverse interaction has
been observed between disopyramide and lidocaine.

In summary, disopyramide is an effective oral an-
tiarhythmic agent, especially for the management of
ventricular arrhythmias. The most frequent side
effects are dryness of mouth and urinary retention at-
tributable to its anticholinergic properties. It has been
used for long-term therapy without serious adverse
effects or toxic manifestations. Since a large number
of patients cannot tolerate quinidine or cannot con-
tinue to take procainamide because of a lupus-like
syndrome, disopyramide may be a useful alternative
to these two drugs to control ventricular and atrial
arrhythmias. However, in patients with certain condi-
tions, the drug is contraindicated and in other con-
ditions, including sinus node dysfunction, it should be
used with caution.

References
1. A seminar on Norpace (disopyramide phosphate) — a new an-
tiarhythmic agent. Angiology 26: 65, 1975
3. LaBarre A, Strauss HC, Scheinman MM: Electrophysiologic
effects of disopyramide phosphate on sinus node function in pa-
ients with sinus node dysfunction. Circulation 59: 226, 1979
4. Desai JM, Scheinman MM, Peters RW, O'Young J: Elec-
trophysiologic effects of disopyramide in patients with bundle
5. Vismara LA, Vera Z, Miller RR, Mason DT: Efficacy of dis-
opyramide phosphate in the treatment of refractory ventricular
tachycardia. Am J Cardiol 39: 1027, 1977
6. Jennings G, Model DG, Jones MBS, Turner PP, Besterman
EMM, Kidner PH: Oral disopyramide in prophylaxis of arrhyth-
rias following myocardial infarction. Lancet 1: 51, 1976
7. Luoma PV, Kujala PA, Juutila HJ: Efficacy of intravenous dis-
opyramide in the termination of supraventricular arrhythmias. J
Clin Pharmacol 18: 293, 1978
8. Hayler HM, Holt DW, Volcano GN: Fatal overdosage with dis-
opyramide. Lancet 1: 968, 1978
Disopyramide phosphate (Norpace): a new antiarrhythmic drug.
P N Yu

Circulation. 1979;59:236-237
doi: 10.1161/01.CIR.59.2.236

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/59/2/236.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/