Electrophysiologic Effects of Disopyramide Phosphate on Sinus Node Function in Patients with Sinus Node Dysfunction

AN LABARRE, B.A., HAROLD C. STRAUSS, M.D., C.M., MELVIN M. SCHEINMAN, M.D., G. THOMAS EVANS, M.D., THOMAS BASHORE, M.D., JAMES S. TIEDEMAN, M.D., PH.D.,
AND ANDREW G. WALLACE, M.D.

SUMMARY The electrophysiologic effects of intravenously administered disopyramide (2 mg/kg) on three parameters of sinus node function were examined in 16 symptomatic patients with sinus node dysfunction. Based on their ECG data before study, patients were subdivided into group A (n = 8), those with sinus pauses and/or sinoatrial (SA) exit block; and group B (n = 8), those with sinus bradycardia. Disopyramide shortened spontaneous cycle length in 10 of 16 patients and lengthened it in six — markedly so (91%) in one patient. Estimated SA conduction time decreased in seven of 14 patients and increased in seven. Two patients developed second degree SA exit block after disopyramide. Maximum sinus node recovery time was prolonged by disopyramide in 11 of 16 patients and markedly so in four. For the group as a whole there was no significant difference in spontaneous cycle length, maximum sinus node recovery time or estimated SA conduction time. P-wave and QRS durations and H-V intervals were significantly lengthened by disopyramide. Marked depression of the three parameters of sinus node function occurred in three group A patients and in one group B patient who had persistent severe sinus bradycardia. These four patients also had secondary pauses after termination of rapid atrial pacing under control conditions. Disopyramide should be administered cautiously to patients with sinus node dysfunction, particularly those with sinus pauses, SA exit block or secondary pauses.

DISOPYRAMIDE, a recently introduced antiarrhythmic agent, is effective in treating several ventricular and supraventricular arrhythmias. The electrophysiologic effects of this drug are similar to quinidine, and might result in depression of sinus node function caused by direct membrane depressant effects. In contrast, the atropine-like effects of disopyramide are reportedly responsible for shortening the spontaneous cycle length and the sinus node recovery time. Since the drug decreased spontaneous cycle length and sinus node recovery time, Befeler et al. suggested that it might be particularly useful in the treatment of arrhythmias in patients who had slow sinus rates. However, Seipel et al. reported that in four patients with sick sinus syndrome, disopyramide significantly depressed sinus node recovery time, and therefore recommended it not be used for such patients. Systematic evaluation of the electrophysiologic effects of this agent in a large cohort of patients with sinus node disease is not available. This study was therefore undertaken to determine the electrophysiologic effects of disopyramide in a large group of patients with sinus node dysfunction.

Methods

Sixteen consecutive patients suspected of having sinus node dysfunction on the basis of sinus bradycardia (heart rate less than 60 beats/min), sinoatrial block, sinus pauses or episodes of supraventricular tachyarrhythmias alternating with sinus bradycardia were studied in the clinical electrophysiology laboratory. Medical history, physical examination and written informed consent were obtained on each patient before study. Patients with acute pulmonary edema, uncontrolled congestive heart failure, cardiogenic shock, glaucoma, hyperthyroidism or urinary retention were excluded from the study. Patients were in a resting, non-sedated, postabsorptive state and were in sinus rhythm at the time of study.

On the first day leads I, II, III and V₅ of the surface ECG and 100 msec time marks were simultaneously recorded on FM magnetic tape (3-3/4 IPS) and on an Elema Mingograph 800 recorder and displayed on a Hewlett Packard multichannel oscilloscope. Ten minutes were allowed for equilibration, and near the end of this period 20 spontaneous cycles were recorded as a control. Four 0.005 mg/kg aliquots of atropine sulfate were administered at 5-minute intervals, and 20 cycles were recorded 4 minutes after each aliquot.

On the second day patients returned to the electrophysiology laboratory. In addition to surface ECGs, high right atrial and His bundle electrograms were obtained with two intracavitary electrodes. Procaine 2% was used as local anesthetic. A #6 French quadripolar
electrode catheter (interelectrode distance 1 cm) was passed percutaneously into the femoral vein. The tip of the catheter was advanced to the junction of the superior vena cava and the right atrium under fluoroscopic control. The proximal pair of electrodes were used to record the atrial electrogram and the distal pair were used to stimulate the right atrium. A #6 French tripolar electrode catheter was similarly placed and advanced to lie across the tricuspid valve to record the His bundle electrogram. Filter settings for the atrial electrogram recordings were 4–1000 Hz and for the His bundle recordings, 50–1000 Hz. After a 15–20-minute stabilization period we obtained control recordings and measured spontaneous cycle length (A–A), P-wave duration, P–R interval, QRS duration, QT interval, A–H and H–V intervals.

The premature atrial stimulation technique was carried out as previously described.18, 19 Premature stimuli of 2–4 msec duration and 2–4 mA intensity were delivered through the atrial intracavitary electrode after every eighth spontaneous sinus cycle. The premature stimulus was moved in 5–10 msec decrements throughout the atrial diastolic interval. Spontaneous cycle length (A1A1), premature cycle length (A1A2), atrial return cycle length (A2A3) and atrial post-return cycle length (A3A4) were measured. The atrial return cycle (A2A3) normalized by the spontaneous cycle (A1A1) was plotted against the premature cycle (A1A2) also normalized by A1A1. All premature cycles (A1A2) which were followed by compensatory atrial return cycles (A2A3) such that A1A2 + A2A3 = 2A1A1 were designated zone I. Less-than-compensatory sets (A1A2 + A2A3 < 2A1A1) were designated zone II. Points which fell in the latest third of zone II were used to calculate the sinoatrial conduction time (SACT) using the formula A2A3 – A1A1 = SACTA+R. SACT was considered to be abnormally prolonged if it exceeded 206 msec.20

The response to rapid atrial pacing was analyzed as previously described.20, 21 Twenty spontaneous cycles were recorded as a control. The atrium was then paced for 1-minute periods at cycle lengths of 860, 660, 540, 460, 400 or 353 msec (corresponding to heart rates of 70, 90, 110, 130, 150 or 170 beats/min, respectively). Pacing was carried out three times at each cycle length. The ECG was closely monitored during this time to ensure complete atrial capture. A–H and H–V intervals were also measured. After 60 seconds of pacing, the stimuli were abruptly stopped and the first 10 spontaneous cycles were recorded. The first post-pacing cycle duration was measured and maximum first post-pacing cycle length was noted. The first post-pacing cycle was considered to be prolonged if it exceeded the values shown by Benditt et al.20 (table 1).

Analysis for secondary pauses was carried out as previously described.20, 21

Table 1.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Ambulatory and routine ECG data</th>
<th>Electrophysiologic data</th>
<th>Disopyramide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>A–A</td>
<td>SACT</td>
</tr>
<tr>
<td>Group A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PW</td>
<td>Mod – I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>S – I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Min – I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KL</td>
<td>S – I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JK</td>
<td>Min – I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td>S – I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS</td>
<td>Min – I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>Mod – I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Min – I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Mod – I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJ</td>
<td>S – I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>S – P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC</td>
<td>Mod – I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Group A—Patients with sinus pauses and/or sinoatrial block. Group B—patients with sinus bradycardia.

Control – Sinus Bradycardia (SB): considered severe (S) if heart rate < 40, moderate (Mod) 40–49, minimal (min) 50–59. I = intermittent, P = persistent, NP = not performed. Patients with abnormally prolonged sinus pauses (SP), sinoatrial exit block (SAB) or secondary pauses (2P) are indicated by +. Abnormal responses are underlined.

*SACTA+R not evaluated since patient developed atrial fibrillation during premature atrial stimulation.

†SACTA+R not evaluated since marked change in P wave configuration occurred 15 min following disopyramide administration.
The functional refractory period of the atrium and atrioventricular node were evaluated by the atrial extrastimulus method. A basic pacing cycle length (S1S2) of 600 or 660 msec was used. Premature stimuli (S1S2) were introduced after every eighth beat. The premature stimulus was moved in 5–10 msec decrements throughout the atrial diastolic interval until S2 failed to elicit an A2. The shortest A1A2 interval was measured to determine the atrial functional refractory period. The shortest H1H2 interval was measured to determine the atrioventricular nodal functional refractory period.

The patient was then given 2 mg/kg of disopyramide phosphate intravenously over a 3–5-minute period, and all electrophysiologic testing was repeated beginning 5 minutes after completion of the infusion. Blood samples were drawn for determination of plasma concentration of disopyramide phosphate at 5, 10 and 40 minutes after administration.

Data are expressed as the mean ± sp. Statistical analysis was performed using the t test for paired data. The correlation between two variables was examined using a linear regression model.

Results

The patient population included nine male and seven female patients (mean age 58 ± 14 years). Patients had a variety of symptoms: eight experienced syncope, five dizziness and three seizures. Six patients experienced chest pain and three dyspnea. Seven patients had radiographic evidence of cardiac enlargement. Etiology of heart disease was considered to be atherosclerosis in six patients, hypertension in three and rheumatic heart disease in one. Two patients had previous open heart surgery, one had ventricular septal defect repair and one mitral valve replacement. Etiology could not be determined in nine patients.

Routine ECGs demonstrated sinus bradycardia in 11 patients, sinus pauses in two and sinoatrial block in one. Seven patients had first-degree atioventricular block, and three had intraventricular conduction disturbances (two right bundle branch block and one left bundle branch block). Ambulatory electrocardiographic monitoring revealed that seven patients had sinus pauses; in five patients these were abnormally prolonged, exceeding 1.7 sec (waking hours) or 2 sec (sleeping hours).

Three patients had sinoatrial block, and five had atrial arrhythmias (table 1). Permanent intracardiac artificial pacemaker systems were implanted in 11 of 16 patients.

The patients were subdivided into two groups: group A, those with sinus pauses and/or sinoatrial block with or without sinus bradycardia (n = 8); and group B, those with only sinus bradycardia (n = 8).

Plasma concentrations of disopyramide during the study were 3.8 ± 0.8 µg/ml at 5 minutes, 3.2 ± 1.2 µg/ml at 10 minutes and 2.6 ± 0.7 µg/ml 40 minutes after administration. Electrophysiologic studies began approximately 5 minutes after administration and were complete within 45–50 minutes. In 12 of 16 patients, the 40-minute plasma concentration of disopyramide was in the therapeutic range (2–4 µg/ml).

![Figure 1](http://circ.ahajournals.org/)

Figure 1. Effects of disopyramide on spontaneous cycle length: 10 of 16 patients had decreased mean A-A, consistent with atropine-like effects. One patient in group A (MB) had a dramatic increase of 91% after a period of sinus arrest with an escape atrioventricular functional rhythm. One patient in group A (JK) had a dramatic decrease of 51% due to the disappearance of the 2:1 sinoatrial exit block.
Effects on Sinus Node Function

Spontaneous Cycle Length

Five of the 16 patients had spontaneous cycle lengths longer than 1000 msec under control conditions. Disopyramide shortened spontaneous cycle length (A-A) in 10 of 16 patients (fig. 1) and lengthened A-A in six patients (table 1). The mean cycle length changed from 1012 ± 372 msec to 979 ± 273 msec (n = 16, NS). In group A mean A-A changed from 1011 ± 461 msec to 994 ± 347 msec (NS), and in group B mean A-A changed from 1012 ± 289 msec to 963 ± 195 msec (NS). One patient in group A (MB) showed a marked increase in mean A-A of 91% (fig. 2). This patient had a spontaneous cycle length of 904 msec during the control period, but had a few prolonged cycles, averaging 1720 msec. After receiving disopyramide, she had an 18-second sinus pause and an atrioventricular junctional escape rhythm. Thereafter, a sinus rhythm with a mean A-A of 1771 msec appeared and persisted through the rest of the study. One patient in group A (JK) showed a marked decrease in mean cycle length of 51%, presumably the result of an abatement of the 2:1 sinoatrial exit block. Since these patients often had sinus pauses and sinoatrial block before and especially after disopyramide, sinus node cycle length would probably not equal atrial cycle length. To determine the effect of disopyramide on sinus node cycle length, those cycles demonstrating sinus pauses and sinoatrial block were eliminated, and the measurements for the group A patient (MB) discussed above were eliminated entirely. Sinus node cycle length changed from 945 ± 240 to 907 ± 181 msec (NS) in all patients. In group A patients, the value decreased from 868 ± 154 to 843 ± 153 msec (p < 0.05), and in group B it changed from 1012 ± 289 to 963 ± 195 msec (NS). These changes were consistent with the atropine-like effect of disopyramide.14-18 The effects of disopyramide on spontaneous sinus node cycle length were compared with the effects of atropine. Atropine decreased mean spontaneous sinus node cycle length from 903 ± 185 to 676 ± 169 msec (p < 0.001). In group A it changed from 846 ± 151 to 628 ± 94 msec.

Figure 2. Effect of disopyramide on spontaneous cycle length in patient MB. Control spontaneous cycle length was 904 ± 11 msec (panel A). Two minutes after disopyramide administration (panel B), an 18-second pause in sinus rhythm appeared. During this pause an atrioventricular junctional rhythm (mean cycle length 922 msec) was present. Thereafter, the pauses became shorter and less frequent. Five minutes after disopyramide administration (panel C), the spontaneous sinus cycle length was 1727 ± 52 msec and an atrioventricular junctional rhythm with interference appeared. In addition, QRS duration increased from 141 msec (panel A) to 188 msec (panel C) after disopyramide administration. Plasma concentration of disopyramide was 3.2 µg/ml 5 minutes after administration. HRA = high right atrial electrogram; HBE = His bundle electrogram.
FIGURE 3. Effects of disopyramide and atropine on spontaneous cycle length: Disopyramide (2 mg/kg) shortened spontaneous cycle length (A-A) in 11 of 15 patients and atropine (0.02 mg/kg) shortened A-A in 14 of 15 patients (p < 0.001). One patient, MB, developed 2:1 block and was not included. Disopyramide was less effective than atropine in changing spontaneous cycle length. SAN = sinus node.

Estimated Sinoatrial Conduction Time

Estimated SACT (SACT\textsubscript{A+R}) was abnormally prolonged (greater than 206 msec) in seven of 15 patients under control conditions. SACT\textsubscript{A+R} could not be measured both before and after disopyramide in two patients (table 1). After administration of disopyramide, SACT\textsubscript{A+R} decreased in seven of 14 patients and increased in seven patients (table 1). Mean value for the group as a whole changed from 188 ± 60 to 191 ± 74 msec (n = 12), but this was not significant. In group A patients the mean SACT\textsubscript{A+R} changed from 234 ± 40 to 235 ± 66 msec (NS) and in group B patients from 165 ± 56 to 168 ± 70 msec (NS). One patient, MB, developed 2:1 block and was not included. Disopyramide shortened A-A in 14 of 15 patients (p < 0.001). One patient, MB, developed 2:1 block and was not included. Disopyramide was less effective than atropine in changing spontaneous cycle length. SAN = sinus node.

FIGURE 4. Sinoatrial conduction time (SACT\textsubscript{A+R}) in patient MB. SACT\textsubscript{A+R} decreased from 278 to 138 msec after disopyramide and was associated with a change in spontaneous cycle length from 926 to 1720 msec, and is probably due to development of 2:1 sinoatrial exit block.
The mean wave length and plasma levels of disopyramide. Secondary pauses were present under control conditions in 10 of 16 patients. Four of these patients had fewer pauses after disopyramide.

Effects on Atrial, Atrioventricular Nodal and Infranodal Conduction and Refractoriness

The number of patients with prolonged complexes or intervals under control conditions were as follows: 11 of 16 had P waves longer than 120 msec, six of 16 had PR intervals longer than 210 msec, three of 16 had QRS durations longer than 120 msec, four of 15 (one patient did not have a His bundle electrogram recorded) had A-H intervals exceeding 130 msec and three of 15 had H-V intervals longer than 55 msec. The effect of disopyramide on the duration of the complexes or intervals during spontaneous rhythm is shown in figure 7. The duration of the P wave increased in 14 of 15 patients (in one patient P waves could not be accurately measured), from 128 ± 12 to 145 ± 22 msec (p < 0.001). The one patient whose P wave duration decreased as a result of disopyramide also had a marked change in P wave configuration. The duration of the P-R interval increased from 201 ± 47 to 214 ± 54 msec (14 of 16 increased,
Disopyramide is also a potent antiarrhythmic agent. Disopyramide was initially shown to be effective in the treatment of atrial fibrillation, and its mechanism of action is similar to that of lidocaine. However, disopyramide has a longer duration of action and is more effective in the treatment of atrial fibrillation than lidocaine. Disopyramide is also effective in the treatment of atrial flutter, and it is a selective inhibitor of the sodium channel, which is responsible for the propagation of the action potential in the atrial myocardium.

Two patients who had atrial fibrillation during atrial premature stimulation had larger mean changes and more variability in post-pacing cycle length, and this variability increased with atrial stimulation. However, two other patients developed atrial fibrillation during atrial premature stimulation. One patient who had multiple atrial premature depolarizations during atrial premature stimulation under control conditions did not demonstrate this arrhythmia after disopyramide.

Discussion

Disopyramide is an antiarrhythmic agent with electrophysiologic effects similar to quinidine. In in vitro experiments performed on superfused Purkinje fibers, disopyramide decreased the maximum diastolic potential and phase O amplitude, depressed membrane responsiveness, and slowed conduction. Disopyramide increased the duration of the action potential and prolonged the functional refractory period. Disopyramide also has some atropine-like effects which have been used to explain the effects of disopyramide on spontaneous cycle length. The potency of disopyramide compared with atropine was 0.5% in rabbit ileal muscle. To evaluate the potency of disopyramide compared with atropine on spontaneous cycle length, we compared the chronotropic effects of atropine (0.02 mg/kg I.V.) with those of disopyramide (2

$p < 0.025$). A-H intervals did not change significantly; they increased in nine patients, decreased in five and were unchanged in one. The duration of the H-V interval increased from 47 ± 11 to 55 ± 14 msec (12 of 15 increased, $p < 0.005$). The QRS interval was prolonged in all patients, from 112 ± 22 to 126 ± 30 msec ($p < 0.001$). There was no correlation between plasma levels of disopyramide and magnitude of changes in spontaneous cycle length, P wave or QRS durations or P-R, A-H, or H-V intervals.

Functional refractory period of the atrioventricular node, functional refractory period of the atrium, and A-H interval were determined at a basic cycle length of 600 or 660 msec. (fig. 8). The A-H interval decreased in nine and increased in three. In three patients the A-H interval at this basic cycle length could not be measured due to block in the atrioventricular node, and in one patient His bundle recordings were not obtained. The mean value changed from 134 ± 44 to 134 ± 54 msec (NS). The functional refractory period of the atrioventricular node increased in seven patients and decreased in five. In three patients the functional refractory period of the atrioventricular node could not be measured at this basic cycle length due to second degree atrioventricular block, and in one patient His bundle recordings were not obtained. The mean value changed from 444 ± 72 to 450 ± 56 msec (NS). Atrial functional refractory period increased in 10 patients and decreased in four, and was not measured in two patients. The mean value changed from 281 ± 61 to 304 ± 57 msec ($p < 0.01$).
mg/kg I.V.). Atropine was more effective than disopyramide at shortening sinus node cycle length. Not only was this dose of disopyramide less effective than atropine in decreasing spontaneous cycle length, but it also actually increased spontaneous cycle length in six of our patients with sinus node dysfunction. Vismara et al.10 found disopyramide decreased spontaneous cycle length in normal patients by 63 ± 67 msec.
(mean ± SD). Three patients in group A had prolongations of spontaneous cycle lengths that exceeded 71 msec, a value that represents the mean values less 2 standard deviations in the data reported by Vismara et al. In one patient (MB), this was probably due to the development of 2:1 sinoatrial exit block. In another group A patient (JK), however, spontaneous cycle length markedly decreased as a result of disopyramide, probably due to the abatement of 2:1 sinoatrial exit block. In this patient, 30 minutes later there was a marked change in P-wave configuration, suggesting a marked shift in pacemaker site.

Disopyramide decreased estimated antegrade and retrograde SACT in seven patients and resulted in a temporary but marked improvement in the frequency of spontaneous 2:1 sinoatrial exit block. In contrast, disopyramide had markedly depressant effects on sinoatrial conduction in three patients, resulting in the development of second-degree sinoatrial exit block during premature atrial stimulation in two group A patients. In another patient, although the estimated SACT was not determined under control conditions, second-degree sinoatrial exit block during premature atrial stimulation occurred after administration of disopyramide. However, we cannot evaluate the degree of depression of sinoatrial conduction by disopyramide in this patient, since control values were not determined. Probably, the membrane effects, rather than the atropine-like effects of the drug, account for the depression of sinoatrial conduction, since only one of the three patients in whom disopyramide markedly depressed sinoatrial conduction had a positive chronotropic response.

Although Befeler et al. demonstrated that disopyramide decreased sinus node recovery time and suggested that this drug would be safe to use in patients with slow sinus rates, our study suggests that prolongation of sinus node recovery time may occur in many patients with sinus node dysfunction — 11 of 16 in our study. Furthermore, sinus node recovery time was markedly prolonged by disopyramide (longer than 500 msec in four patients), confirming the preliminary findings of Seipel et al., who observed longer sinus node recovery time as a result of disopyramide in four patients with sinus node dysfunction. Seipel et al. suggested that an improvement in retrograde conduction to the sinus node during pacing would permit more impulses to engage the sinus node, causing more overdrive suppression of sinus automaticity on termination of rapid drive. In support of this view, five of seven patients in their study that had decreased estimated SACTs also had an increase in sinus node recovery time. However, in all of the four patients who had very marked increases of sinus node recovery time after disopyramide also had prolonged sinoatrial conduction. Thus, marked prolongation of sinus node recovery time may also be caused by depressed sinoatrial conduction during the post-pacing period.

Regardless of the mechanism, three of four patients with marked prolongation in sinus node recovery time resulting from disopyramide were group A patients. Further, the marked increases in sinus node recovery times occurred in patients who demonstrated secondary pauses under control conditions. Sinus bradycardia, on the other hand, was severe in two patients and was either minimal or absent in the other two. Thus, our study suggests that the ambulatory or resting heart rate may not be suitable for identification of patients at risk for development of prolonged sinus node recovery times after disopyramide, and that the presence of sinus pauses, sinoatrial exit block or secondary pauses after termination of rapid atrial pacing may permit identification of patients who are likely to show these adverse responses to this drug. The drug was well tolerated in group B patients, with minimal or moderate sinus bradycardia.

The extrapolation of our findings from the clinical electrophysiology laboratory to the clinical setting is not entirely justified by this study. However, the four patients demonstrating marked prolongation in sinus node recovery time as a result of disopyramide also had bradyarrhythmias exacerbated during chronic therapy with α-methyldopa (MB, KL and LC) or digoxin and quinidine (RS). Thus, while not enough patients were studied to draw firm conclusions, we recommend that disopyramide be used cautiously in patients with sinus node dysfunction, in particular patients with sinus pauses, sinoatrial exit block, or secondary pauses after termination of rapid atrial pacing.

The effects of disopyramide on the duration of the P wave, QRS complex and on the A-H and H-V intervals were determined to evaluate the effects of this drug on conduction elsewhere in the heart. Disopyramide significantly increased the duration of the P wave and QRS complexes and the H-V interval, confirming previous observations. The variable effect of disopyramide on atrioventricular nodal conduction time, measured by the A-H interval, confirms previous observations. Since the atropine-like effects of disopyramide improved both sinoatrial and atrioventricular nodal conduction, to determine if the magnitude of change in the two nodes were comparable we examined the relationship between the change in A-H interval and estimated SACT caused by disopyramide; no correlation was found. However, three of the five patients whose A-H shortened with disopyramide also had a shortening of SACTA-H.

In summary, the electrophysiologic effects of disopyramide on sinus node function are explained by both direct membrane and atropine-like effects. Intravenous administration was generally well tolerated; however, in a few patients, particularly those with secondary sinus pauses or those with sinus pauses and/or sinoatrial or exit block, marked changes in spontaneous cycle length, sinus node recovery time or SACT occurred. The effects of intravenous disopyramide on these three parameters of sinus node function are similar to those described for propranolol. These observations suggest that disopyramide, as other antiarrhythmic drugs, should be
administered cautiously to patients with sinus node dysfunction, particularly those with sinus pauses and/or sinoatrial exit block or secondary sinus pauses.

Acknowledgment

This paper was presented as a thesis in partial fulfillment of the requirements for the degree of Master of Sciences, Department of Veterinary Physiology and Pharmacology, Ohio State University. Faculty advisor for this thesis was Dr. R. L. Hamlin.

We are grateful to Dr. D. J. McDermott for his valuable assistance; Laura Cook, R.N., and Don Kopp, L.P.N. for their assistance during the studies; Don Powell for the illustrations, Dave Hugett for the photography, and Olive Sherman and Marilyn McIntosh for the secretarial assistance, and to Searle Laboratories for performing the disopyramide blood level determinations.

References

Electrophysiologic effects of disopyramide phosphate on sinus node function in patients with sinus node dysfunction.
A LaBarre, H C Strauss, M M Scheinman, G T Evans, T Bashore, J S Tiedeman and A G Wallace

Circulation. 1979;59:226-235
doi: 10.1161/01.CIR.59.2.226

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/59/2/226

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/