Valve Replacement in Patients with Active Infective Endocarditis

WALTER R. WILSON, M.D., GORDON K. DANIELSON, M.D., EMILIO R. GIULIANI, M.D., JOHN A. WASHINGTON, II, M.D., PIERRE M. JAUMIN, M.D., AND JOSEPH E. GERACI, M.D.

SUMMARY Eleven of 138 patients with infective endocarditis (IE) who underwent cardiac valve replacement for IE during a 12½-year period had active IE. Eight of the 11 (all with aortic IE) had positive blood cultures within 48 hours preoperatively; six of the eight had positive Gram stains and cultures of the excised cardiac tissue. All 11 patients had Class IV cardiac functional disability (New York Heart Association classification) at the time of surgery. Staphylococci (three patients with Staphylococcus aureus and one with S. epidermidis) were the most frequent isolates. Three patients died; two of these three deaths occurred in patients who had a sudden onset preoperatively of severe aortic regurgitation and heart failure. In one patient (S. epidermidis infection) prosthetic valve endocarditis developed. Cardiac valve replacement may be performed successfully in patients with active IE even when blood cultures are positive in the immediate perioperative period. The hemodynamic status of patients with IE should be the determining factor in the timing of cardiac valve replacement, rather than the activity of the infection or the length of preoperative antimicrobial therapy. A radical surgical procedure may be necessary in patients with myocardial or aortic abscesses in whom conventional aortic valve replacement is not possible.

WALLACE ET AL. first demonstrated that cardiac valve replacement could be performed successfully in patients with active infective endocarditis (IE). Since this initial report, subsequent experience in patients with active IE who require urgent cardiac valve replacement has shown that prosthetic valve endocarditis is surprisingly infrequent. However, reports of cardiac valve replacement in patients with perioperative positive blood cultures are rare. This report summarizes our experience during a 12½-year period with cardiac valve replacement in 11 patients with Class IV cardiac disability (New York Heart Association classification) caused by active IE, eight of whom had positive blood cultures within 48 hours preoperatively; it also compares these patients with a group of patients who underwent cardiac valve replacement because of inactive IE.

Materials and Methods

Our criteria for IE have been described. Our criteria for active IE were patients who were still receiving antimicrobial therapy for IE together with at least one of the following: 1) blood cultures positive within 48 hours preoperatively, or 2) fever and new embolic phenomena within 48 hours preoperatively.

Criteria for the functional classification of congestive heart failure were according to the New York Heart Association. Mortality was defined as death occurring within two months of cardiac valve replacement. Follow-up ranged from 16 months to 14 years. Of the 138 patients with IE who underwent cardiac valve replacement during this period, 11 (8%) had active IE. Ten of these 11 patients had received at least one course of antimicrobial therapy elsewhere for IE before admission to Mayo Clinic hospitals. Urgent cardiac valve replacement was necessary in these 11 patients before antimicrobial therapy could be completed, because of severe, progressive Class IV cardiac disability that was unresponsive to medical therapy. The microbiologic cause of IE in these 11 patients and in the remaining 127 patients and the respective class of heart failure present at surgery are shown in table 1. Staphylococci (three patients with S. aureus and one with S. epidermidis) were the most frequent isolates from patients with active IE. Eight of the 11 patients (all with aortic IE) had positive blood cultures within 48 hours preoperatively. Six of these eight had positive Gram stains and cultures of the excised cardiac tissue. Of the three patients (all with mitral IE) with perioperative negative blood cultures, all had received long-term antimicrobial therapy elsewhere. Use of the antimicrobials was discontinued on admission to the Mayo Clinic, and the patients had relapses clinically. Cultures of the excised valve tissue in these three patients were negative, but in all three patients gram-positive cocci were noted on staining of the vegetations.

The average duration of preoperative antimicrobial therapy at the Mayo Clinic is shown in table 2. All patients with Class II and III cardiac disability had
completed antimicrobial therapy preoperatively. Six patients with Class IV disability and inactive IE were still receiving antimicrobial therapy at the time of surgery. The average duration of preoperative antimicrobial therapy was longer in Class IV patients with inactive IE than in those with active IE; however, the number of patients is too small to permit accurate statistical evaluation. In patients with active IE, the average duration of therapy was the same in survivors and in those who died. Postoperatively, all patients with active IE and those with inactive IE who had not completed antimicrobial therapy preoperatively received at least four weeks of parenteral antimicrobial therapy. None of the patients received oral antimicrobial agents after the completion of parenteral therapy.

Results

The mortality was higher among patients with Class IV disability and active IE (three of 11 patients, 27%) than among patients with Class IV status and inactive IE (three of 24 patients, 13%), but the number of patients is too small to reach statistical significance in mortality between the two groups of patients. The higher mortality among patients with active IE may be related to the higher frequency of occurrence of sudden onset of severe aortic insufficiency and myocardial abscesses in this group compared with patients with inactive IE. Two of the three deaths among patients with active IE occurred in patients who had the sudden onset preoperatively of severe aortic regurgitation and congestive heart failure (table 3). One of these two patients (with *S. aureus* infection) had aortic wall and myocardial abscesses and died seven days postoperatively from complications of heart failure caused by valve dehiscence. Postmortem cultures were negative. The other patient (with *Pseudomonas cepacia* infection) with sudden-onset severe aortic regurgitation and congestive heart failure died on the day of operation from severe heart failure and cardiac arrest. The third patient (with *S. epidermidis* IE) who died had multiple myocardial abscesses and experienced early prosthetic valve endocarditis. The infected prosthetic valve was excised, and a second Starr-Edwards valve was implanted in the ascending aorta. The patient died approximately four months later of cardiomyopathy and heart failure. The cardiomyopathy was thought to be caused by the previous aortic incompetence and resultant heart failure. At postmortem examination no evidence of active infection was noted, and postmortem cultures were negative. Among patients with Class IV disability and inactive IE, three patients had sudden onset of severe aortic insufficiency. One of these three died postoperatively of cardiac dysrhythmia and circulatory collapse. The two survivors underwent surgery one and two days after the onset of acute heart failure. The patient who died underwent surgery five days after sudden onset of severe heart failure, and this delay before surgery may have contributed to death postoperatively. None of the patients with functional Class IV status and inactive IE had myocardial abscess.

The single case of prosthetic valve endocarditis occurred in the patient with *S. epidermidis* IE. Two additional patients required replacement of aortic prostheses because of subsequent prosthetic valve dehiscence. In a patient with viridans streptococcal IE, an aortic regurgitant murmur was noted on the 17th postoperative day; the murmur did not progress in severity. Class II cardiac disability was present and was treated medically. The aortic prosthesis was replaced three months after the initial operation. At surgery, partial dehiscence of the valve was present. Gram staining and culture of the prosthetic valve were negative. Four years after reoperation, the patient had Class I functional status. In the other patient (*S. aureus* infection) who required reoperation, an aortic regurgitant murmur developed six weeks postoperatively. The aortic prosthesis was replaced at this time. Partial valve dehiscence was noted at surgery; Gram staining and culture of the valve were negative. Class I status was present at follow-up two years after reoperation. The patient died at home three and one-half years later, presumably from a dysrhythmia. Among patients with inactive IE, three of 24 patients (12.5%) with Class IV, one of 15 (7%) with Class III, and three of 88 (3%) patients with Class II disability required subsequent replacement of cardiac valve prostheses because of valve dehiscence.

Table 1. Microorganisms Involved and NY Heart Association Functional Classification in 138 Patients With IE

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Class II</th>
<th>Class III</th>
<th>Inactive</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viridans streptococci</td>
<td>34</td>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Group D streptococci</td>
<td>16</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>S. aureus</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Other organisms</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Negative blood cultures</td>
<td>22</td>
<td>3</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>88</td>
<td>15</td>
<td>24</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 2. Mean Duration of Preoperative Antimicrobial Therapy and Mortality by New York Heart Association Functional Classification

<table>
<thead>
<tr>
<th>NYHA Classification</th>
<th>Mean duration of treatment, days (no. of patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lived</td>
<td>Died</td>
</tr>
<tr>
<td>II</td>
<td>24 (81)</td>
</tr>
<tr>
<td>III</td>
<td>26 (14)</td>
</tr>
<tr>
<td>IV</td>
<td>33 (21)</td>
</tr>
<tr>
<td>Inactive IE</td>
<td>5 (8)</td>
</tr>
<tr>
<td>Active IE</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

From our data and those of others, it is clear that cardiac valve replacement can be accomplished successfully in patients who have active endocarditis and severe heart failure. Few data are available, however, on cardiac valve replacement in patients with positive blood cultures in the perioperative period. Our experience and that of others suggest that the risk of valve dehiscence and prosthetic valve endocarditis in these patients may be higher, especially if myocardial or aortic abscesses are present, than in patients who have inactive IE. However, in patients with severe heart failure complicating IE, procrastination in cardiac valve replacement in an attempt to stabilize heart failure by medical therapy and to complete a course of antimicrobial therapy preoperatively usually results in death from cardiac failure.

The risk of prosthetic valve endocarditis can be minimized by meticulous surgical debridement of friable, necrotic material. However, in patients with myocardial or aortic wall abscesses, infection may be so extensive that conventional aortic valve replacement may not be feasible technically. In both of our patients who had abscesses, valve dehiscence developed in the early postoperative period; one had prosthetic valve endocarditis. In these patients, a radical surgical approach may offer the only possibility of stabilizing, at least temporarily, cardiac hemodynamics, and it may allow additional time for antimicrobial therapy and for healing of cardiac and aortic tissue.

One surgical approach to these patients was reported in detail earlier. Briefly, the infected natural or prosthetic valve is excised and the area is debrided. A new aortic prosthesis is then implanted in the ascending aorta. The coronary ostia are closed. Coronary artery perfusion is reestablished by a segment of autogenous saphenous vein anastomosed end-to-side to the right coronary artery and end-to-side to the aorta distal to the prosthesis. Another segment of vein is used to construct a "Y" extension from the right cor-

<table>
<thead>
<tr>
<th>Table 3. Patients With Active Infective Endocarditis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient no., sex, age (yr)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1, F, 57</td>
</tr>
<tr>
<td>2, M, 15</td>
</tr>
<tr>
<td>3, M, 59</td>
</tr>
<tr>
<td>4, M, 17</td>
</tr>
<tr>
<td>5, M, 72</td>
</tr>
<tr>
<td>6, F, 25</td>
</tr>
<tr>
<td>7, M, 34</td>
</tr>
<tr>
<td>8, M, 33</td>
</tr>
<tr>
<td>9, F, 44</td>
</tr>
<tr>
<td>10, F, 16</td>
</tr>
<tr>
<td>11, F, 34</td>
</tr>
</tbody>
</table>

*PVE = prosthetic valve endocarditis.
† Died 4 months after second operation.
normal artery graft to the left anterior descending coro-
nary artery.

Since this initial report, we have had experience
with two additional patients who had similar
operations. In these two patients, minimal cardiac
symptoms are present at five and 12 months post-
operatively. Experience with this surgical procedure
is limited, and radical surgery of this type should be
reserved for those patients with myocardial or aortic
wall abscesses in whom conventional aortic valve
replacement is not possible. The long-term hemo-
dynamic consequences of this surgical procedure are
not known. Of critical importance in these patients is
whether the vein grafts will continue to provide ade-
quate coronary artery perfusion. So far, neither of
the surviving patients has had angina (nor did the patient
who died four months postoperatively). In these
patients, if necessary, the aortic prostheses could later be
reimplanted in the usual location after sufficient
time has elapsed to permit healing of the infected aor-
tic annulus. More experience is needed for fuller
evaluation of this surgical approach.

From our data we conclude that 1) cardiac valve
replacement may be performed successfully in
patients with active IE even when blood cultures are
positive in the immediate perioperative period; 2) the
hemodynamic status of patients with IE should be the
determining factor in the timing of cardiac valve
replacement, rather than the activity of the infection
or the length of preoperative antimicrobial therapy,
and 3) a radical surgical procedure may be necessary
in patients with myocardial or aortic root abscesses in
whom conventional aortic valve replacement is not
possible.

References
1. Wallace AG, Young WG Jr, Osterhout S: Treatment of acute
bacterial endocarditis by valve excision and replacement. Circu-
lation 31: 450, 1965
2. Griffin FM Jr, Jones G, Cobbs CG: Aortic insufficiency in
aortic valve replacement in bacterial endocarditis. J Thorac
Cardiovasc Surg 61: 916, 1971
regurgitation in acute infective endocarditis: early replacement.
Arch Surg 101: 756, 1970
5. Manhas DR, Mohri H, Hessel EA II, Merendino KA: Ex-
erience with surgical management of primary infective endo-
carditis: a collected review of 139 patients. Am Heart J 84: 738,
1972
management of the complications of sepsis involving the aortic
valve, aortic root, and ascending aorta. Ann Thorac Surg 12: 391,
1971
7. Crosby IK, Carrell R, Reed WA: Operative management of
valvular complications of bacterial endocarditis. J Thorac Car-
diovasc Surg 64: 235, 1972
8. Hurley EJ, Eldridge FL, Hultgren HN: Emergency replace-
ment of valves in endocarditis. Am Heart J 73: 798, 1967
GC, DeBakey ME: Valvular replacement in bacterial endo-
10. Wise JR Jr, Clendan WP, Hallidie-Smith KA, Bentall HH,
Goodwin JF, Oakley CM: Urgent aortic-valve replacement for
acute aortic regurgitation due to infective endocarditis. Lancet
2: 115, 1971
11. Okies JE, Bradshaw MW, Williams TW Jr: Valve replacement
12. Sarot IA, Weber D, Schechter DC: Cardiac surgery in active,
primary infective endocarditis. Chest 57: 58, 1970
13. Williams TW Jr, Viroslov J, Knight V: Management of
14. Scott SM, Fish RG, Crutcher JC: Early surgical intervention
for aortic insufficiency due to bacterial endocarditis. Ann
15. Kretschmer KP, Lawrence GH: Valve replacement in patients
16. Hatcher CR Jr, Symbas PN, Logan WD Jr, Mansour KA, Ab-
bott OA: Surgical management of complications of bacterial
17. Brainbridge MV: Cardiac surgery and bacterial endocarditis.
Lancet 1: 1307, 1969
FYK: Clinical experience with the Smeloff-Cutter aortic valve
prosthesis: an 8-year follow-up study. Am J Cardiol 40: 338,
1977
host valve and 24 prosthetic valve endocarditis cases. Am Heart
J 92: 5, 1976
20. Sarrovalatz LD, Burch KH, Quinn EL, Cox F, Madhavan T,
Fisher E: Polymicrobial infective endocarditis: an increasing
21. Palokos BA, Gazzaniga AB, Thrupp LD, Iseri LT, Connolly
JE: Surgical treatment of infective valvular endocarditis. Arch
Surg 111: 707, 1976
22. Wilcox BR, Murray GF, Starek PJK: The long-term outlook
for valve replacement in active endocarditis. J Thorac Car-
diovasc Surg 74: 860, 1977
23. Boyd AD, Spencer FC, Isom OW, Cunningham JN, Reed GE,
Acinapura AJ, Tice DA: Infective endocarditis: an analysis of
54 surgically treated patients. J Thorac Cardiovasc Surg 73: 23,
1977
24. Stinson EB, Griess RB, Vosti K, Copeland JG, Shumway NE:
Operative treatment of active endocarditis. J Thorac Cardio-
vasc Surg 71: 659, 1976
25. Wilson WR, Danielson GK, Giuliani ER, Washington JA II,
Jaumin PM, Geraci JE: Cardiac valve replacement in patients
with congestive heart failure caused by infective endocarditis.
Submitted for publication
Saunders Company, 1966, vol 1, p 242
27. Danielson GK, Titus JL, DuShane JW: Successful treatment
of aortic valve endocarditis and aortic root abscesses by inser-
tion of prosthetic valve in ascending aorta and placement of bypass
grafts to coronary arteries. J Thorac Cardiovasc Surg 67: 443,
1974
28. Okies JE, Viroslov J, Williams TW Jr: Endocarditis after car-
29. Utley JR, Mills J: Annular erosion and pericarditis: compli-
tations of endocarditis of the aortic root. J Thorac Car-
diovasc Surg 64: 76, 1972
30. Gonzalez-Lavin L, Scappatura E, Lise M, Ross DN: Myotic
aneurysms of the aortic root: a complication of aortic valvular
31. Shumacker HB Jr: Aneurysms of the aortic sinuses of Valsalva
due to bacterial endocarditis, with special reference to their
Valve replacement in patients with active infective endocarditis.
W R Wilson, G K Danielson, E R Giuliani, J A Washington, 2nd, P M Jaumin and J E Geraci

Circulation. 1978;58:585-588
doi: 10.1161/01.CIR.58.4.585

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1978 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/58/4/585