An Unusual Variety of Atrioventricular Nodal Re-entry due to Retrograde Dual Atrioventricular Nodal Pathways

DELON WU, M.D., PABLO DENER, M.D., FERNANDO AMAT-Y-LEON, M.D., CHRISTOPHER R. C. WYNHAM, M.D., RAMESH DHINGRA, M.D., AND KENNETH M. ROSEN, M.D.

SUMMARY Three patients with paroxysmal supraventricular tachycardia (PSVT) had discontinuous ventriculo-atrial conduction curves (V1-V2, A-A), suggesting dual A-V nodal pathways. Ventricular echoes occurred simultaneously with sudden increase of V-A interval. These echoes were characterized by retrograde P waves occurring in front of QRS, suggesting utilization of a slow pathway for retrograde conduction and a fast pathway for antegrade conduction. In case one, atropine improved retrograde slow pathway and antegrade fast pathway conduction and made A-V nodal re-entry sustained, resulting in PSVT (with retrograde P in front of the QRS). In cases 2 and 3, atropine markedly shortened retrograde fast pathway refractory period and slightly improved antegrade slow pathway conduction. The discontinuous V1-V2, A-A curves and echoes were no longer demonstrable. However, with improvement of retrograde fast pathway and antegrade slow pathway conduction, A-V nodal re-entrant echoes and PSVT were observed, utilizing the slow pathway for antegrade conduction and the fast pathway for retrograde conduction (P simultaneous with QRS).

In this study of three patients with PSVT, we demonstrate an unusual form of A-V nodal re-entry utilizing an A-V nodal fast pathway for antegrade conduction and an A-V nodal slow pathway for retrograde conduction. All three patients demonstrated retrograde discontinuous conduction curves (V1-V2, A-A). The electrophysiological mechanisms of this unusual variety of A-V nodal re-entry are discussed.

M ost PATI E NTS W ITH P A ROXYSMAL S UPRA- VENTRICULAR TACHYCARDIA (PSVT) have discontinuous atrioventricular (A-V) nodal conduction curves (A1-A2, H-H2) with extrastimulus testing, suggesting dual A-V nodal pathways.1,2 In these patients, PSVT usually reflects re-entry utilizing an A-V nodal slow pathway for antegrade conduction, and an A-V nodal fast pathway for retrograde conduction. In a minority of patients with PSVT, A-V conduction curves are continuous. Some of these patients with continuous conduction curves have concealed extranodal anomalous pathways with a re-entrant loop incorporating the normal pathway for antegrade conduction and the anomalous pathway for retrograde conduction.3-12

Most Patients with Paroxysmal Supraventricular Tachycardia (PSVT) have discontinuous atrioventricular (A-V) nodal conduction curves (A1-A2, H-H2) with extrastimulus testing, suggesting dual A-V nodal pathways.1,2 In these patients, PSVT usually reflects re-entry utilizing an A-V nodal slow pathway for antegrade conduction, and an A-V nodal fast pathway for retrograde conduction. In a minority of patients with PSVT, A-V conduction curves are continuous. Some of these patients with continuous conduction curves have concealed extranodal anomalous pathways with a re-entrant loop incorporating the normal pathway for antegrade conduction and the anomalous pathway for retrograde conduction.3-12

From the Section of Cardiology, Department of Medicine, Abraham Lincoln School of Medicine, University of Illinois College of Medicine, Chicago, Illinois.

Supported in part by USPHS Training Grant #05879-06 and NIH grant #08794.

Address for reprints: Delon Wu, M.D., Section of Cardiology, University of Illinois Hospital, P.O. Box 6998, Chicago, Illinois 60680.

Received December 9, 1976; revision accepted February 3, 1977.

In this study of three patients with PSVT, we demonstrate an unusual form of A-V nodal re-entry utilizing an A-V nodal fast pathway for antegrade conduction and an A-V nodal slow pathway for retrograde conduction. All three patients demonstrated retrograde discontinuous conduction curves (V1-V2, A-A). The electrophysiological mechanisms of this unusual variety of A-V nodal re-entry are discussed.

Methods

Electrophysiological Studies

Three patients with documented recurrent PSVT were studied. Electrophysiological studies were performed in the nonsedated, supine state. Cardiac medications were discontinued at least 72 hours prior to the study. Informed written consent was obtained. A percutaneously passed tripolar electrode catheter was placed at the tricuspid valve for His bundle recording.14 A hexapolar electrode catheter was placed at the right ventricular apex via an antecubital vein. The distal two electrodes were utilized for ventricular
stimulation (tip), the middle two electrodes for atrial pacing (10 cm from tip), and the proximal two electrodes for recording of high right atrial electrograms (13 cm from tip). Multiple electrocardiographic leads and intracardiac electrograms were recorded on a multichannel oscilloscopic recorder (Electronics for Medicine DR-16) at paper speeds of 100 and 200 mm/sec. Electrical stimuli were provided by a programmable digital stimulator (manufactured by M. Bloom, Philadelphia, Pa.) and were approximately twice diastolic threshold and 2 msec in duration.

Antegrade and retrograde conduction were evaluated with atrial and ventricular incremental pacing and extrastimulus techniques. In all patients, 0.5 to 1.0 mg atropine was administered intravenously after control study, and measurements were repeated.

Electrophysiological Definitions

HRA1, A1, H1, and V1 were high right atrial, low septal right atrial, His bundle and ventricular responses, respectively, to the driven stimuli (S1); HRA2, A2, H2 and V2 were the high right atrial, low septal right atrial, His bundle, and ventricular responses to the extrastimulus (S2). HRAe, Ae, He, and Ve were high right atrial, low septal right atrial, His bundle and ventricular electrogram of single echo beats and also repetitive beats during PSVT.

Conduction intervals, refractory periods, echo zones, and critical A-H interval (for echo and PSVT induction) were measured and defined as previously described. Retrograde echo zones were defined as the zone of V1-V2 coupling intervals at which V2 induced an A-V nodal re-entrant ventricular echo (narrow QRS) with or without sustained PSVT. Critical V-A interval was defined as the shortest V-A interval at which echoes (narrow QRS) were observed during incremental ventricular pacing or coupled ventricular stimulation.

Antegrade dual A-V nodal pathways were diagnosed when discontinuous A1-A2, H2-H2 curves were demonstrated. The effective refractory periods of the fast and slow pathways were measured and defined as previously described. Retrograde dual pathways were diagnosed when discontinuous V1-V2, A2-A2 curves were demonstrated (see Results). The curve to the right of the discontinuity reflected a fast pathway, and to the left, a slow pathway. The effective refractory period of the fast pathway was defined as the longest V1-V2 at which V2 was blocked in the fast pathway. The effective refractory period of the slow pathway was defined as the longest V1-V2 at which V2 was blocked in the slow pathway.

Results

Case One

This was a 31-year-old female with documented recurrent PSVT. Spontaneous episodes of PSVT were characterized by retrograde P waves (biphasic in II and negative in III and aVF) occurring in front of the QRS complex during PSVT with a P-R interval of 0.12 sec. Cardiac examination, chest X-ray and resting electrocardiograms were normal. His bundle recordings during sinus rhythm revealed an A-H of 65 msec and an H-V of 38 msec.

Incremental right atrial pacing revealed intact A-V conduction up to a paced rate of 105 beats/min. A-H interval

![Figure 1. Recordings from case 1, showing responses to rapid atrial pacing before and after atropine. Shown are electrocardiographic lead II, high right atrial and His bundle electrograms (HRA and HBE). S, A, and H are stimulus artifacts, atrial and His bundle responses. A-, H-, and V- are atrial, His bundle and ventricular responses of the echo beat. Time lines are at one second and paper speed at 100 mm/sec in this and subsequent illustrations. A-H intervals are listed. Panel A) Before atropine at an atrial paced heart rate (HR) of 110/min, 2° A-V nodal Wenckebach block was noted. A-H interval increased minimally from 105 to 130 msec prior to block. Panel B) After atropine at an atrial paced rate of 220 beats/min, sustained PSVT was induced upon achieving a critical A-H of 125 msec. The cycle length of PSVT was 400 msec. The PSVT was characterized by an atrial activation (Ae) occurring before His bundle (He) and ventricular activations (Ve). During PSVT, Ae-He/He-Ae ratio was 0.21 (70/330) and retrograde P waves preceded QRS complexes.](http://circ.ahajournals.org/)

Downloaded from http://circ.ahajournals.org/ by guest on October 29, 2017
The maximal differences in A-H intervals during Wenckebach periods was only 25 msec (fig. 1A). Atrial extrastimulus studies at a driven cycle length of 600 msec revealed a continuous A1-A2, H1-H2 curve with an A-V nodal effective refractory period of 400 msec (fig. 2). The maximal A2-H2 achieved was 130 msec as compared to the basic driven A1-H1 of 100 msec. Atrioventricular nodal re-entrant echoes were not induced with either atrial incremental pacing or extrastimulus testing.

Incremental ventricular pacing revealed 1:1 V-A conduction up to a paced rate of 110 beats/min. V-A interval increased from 120 to 150 msec as the paced rate was increased from 100 to 110 beats/min. Retrograde Wenckebach periodicity with unexpected sudden increase of V-A interval (from 135 to 350 msec) was noted at a paced rate of 120 beats/min. A-V nodal re-entrant ventricular echoes occurred simultaneously with the sudden increase of V-A interval. Ventricular extrastimulus studies at a driven cycle length of 600 msec revealed a discontinuous V1-V2, A1-A2 curve due to a sudden increase of V2-A2 interval at V1-V2 of 480 msec, suggesting retrograde dual A-V nodal pathways (figs. 3A, 3B and 4). The fast and slow pathway retrograde effective refractory periods were respectively 480 and 230 msec. A-V nodal re-entrant ventricular echoes occurred when V2 was conducted via the slow pathway (fig. 3B). The echo zone coincided with the entire slow pathway.

Figure 2. A1-A2, H1-H2, and A1-A2, A2-H2 curves before and after atropine in Case 1. Left) Before atropine, the curves were continuous at a driven cycle length (CL) of 600 msec. A2-H2 increased from 100 to 130 msec as A1-A2 was shortened from 590 to 405 msec. A-V nodal effective refractory period was 400 msec. Right) After atropine, the curves were still continuous at a driven cycle length of 500 msec. A-V nodal effective refractory period shortened to 250 msec.

Figure 3. Recordings from Case 1, showing induction of A-V nodal re-entrant ventricular echo with ventricular extrastimulus before (panels A and B) and after (panels C and D) atropine. S1, A1, and V1 are stimulus artifact, atrial and ventricular responses to the basic driven stimuli. S2, A2, and V2 are stimulus artifact, atrial, and ventricular responses to the test stimuli. V1-V2, A1-A2 intervals are listed on top and V1-A1, V2-A2 at the bottom of each panel. The driven cycle length (CL) was 600 msec before atropine and 500 msec after atropine. Panel A) At V1-V2 coupling interval of 485 msec, V2-A2 was 180 msec and A1-A2, 530 msec. An echo did not occur. Panel B) At V1-V2 of 480 msec, V2-A2 suddenly increased to 370 msec and A1-A2 to 715 msec. A-V nodal re-entrant ventricular echo occurred. This echo was characterized by a short A2-H2 interval of 85 msec. Panel C) At V1-V2 of 470 msec, V2-A2 was 165 msec and A1-A2, 675 msec. An echo did not occur. Panel D) At V1-V2 of 460 msec, V2-A2 suddenly increased to 370 msec and A1-A2 to 670 msec. A-V nodal re-entrant PSVT was induced.
curve (zone of V_1-V_2 intervals with long V_2-A_2) with a critical V-A interval of 360 msec (fig. 4).

Atropine 0.5 mg was administered intravenously and studies were repeated. After atropine, incremental atrial pacing revealed 1:1 A-V conduction up to a paced rate of 210 beats/min. The A-H interval increased from 90 to 120 msec as the paced rate was increased from 120 to 210 beats/min. PSVT was repetitively induced with sudden cessation of atrial pacing at a rate of 220 beats/min. The A-H interval associated with PSVT induction was 125 msec (fig. 1B). Atrial extrastimulus studies at a driven cycle length of 500 msec revealed a continuous A$_1$-A$_2$, H$_1$-H$_2$ curve with an A-V nodal effective refractory period of 250 msec (fig. 2) without definition of an echo zone.

Retrograde studies with incremental ventricular pacing revealed 1:1 V-A conduction up to a paced rate of 130 beats/min (increase in V-A interval from 155 to 160 msec). Wenckebach periodicity with unexpected sudden increase of V-A interval occurred at a paced rate of 140 beats/min. Paroxysmal supraventricular tachycardia induction coincided with the sudden increase of V-A interval. Ventricular extrastimulus studies at a driven cycle length of 500 msec revealed a discontinuous V_1-V_2, A$_1$-A$_2$ curve (figs. 3C, 3D and 4). The effective refractory period of the fast pathway was 440 msec and the slow pathway less than 220 msec. Paroxysmal supraventricular tachycardia induction occurred throughout the slow pathway curve (figs. 3D and 4). The critical V-A interval was 350 msec.

Induced episodes of PSVT (both antegrade and retrogradely induced) had a cycle length of 400 msec and were characterized by a retrograde P wave occurring before the QRS complex with an A$_2$-H$_2$ of 70 msec and H$_2$-A$_3$ of 330 msec (a ratio of 0.21) (fig. 1B). This PSVT was identical to spontaneously observed episodes of PSVT.

Comment

The following interpretation of electrophysiological results in this patient seems reasonable. The patient had dual A-V nodal pathways with a major discordance of antegrade and retrograde properties. In the antegrade direction, the A-V nodal fast pathway had a shorter refractory period than the A-V nodal slow pathway, resulting in a continuous (fast pathway) conduction curve.2, 3 In the retrograde direction, the fast pathway refractory period was longer than that of the slow pathway, resulting in the discontinuous retrograde curve. The discontinuity reflected retrograde failure of the fast pathway with resultant slow pathway conduction. The echo phenomenon occurred with block of the fast pathway. This pathway then became available for antegrade conduction. The inability to induce sustained PSVT prior to atropine reflected the inability of both A-V nodal pathways to conduct sequential impulses.

Atropine produced the following demonstrable electrophysiological changes: 1) improvement in antegrade A-V nodal fast pathway conduction (decrease in refractory period with maintenance of intact A-V conduction up to a paced rate of 220 beats/min), 2) slight improvement in retrograde slow pathway conduction (decrease in refractory period and increase in the paced rate allowing intact V-A conduction). Paroxysmal supraventricular tachycardia could be sustained after atropine because of improved antegrade fast pathway conduction and improvement of retrograde slow pathway conduction. Induction of PSVT after atropine could be demonstrated from the ventricle, with coupled impulses that blocked in the fast pathway (see above) and also from the atrium with rapid stimulation. The latter induction appeared to reflect antegrade block of the impulse in the slow pathway (a concealed event) at a critical rate. This resulted in the slow pathway being available for retrograde conduction upon sudden cessation of pacing (concealed re-entry).18

The possibility that the discontinuity in retrograde conduction curves reflected achievement of a retrograde refractory period in the His-Purkinje system seems unlikely for the following reasons: 1) the increment in V-A interval with a small change in coupling interval was over 150 msec, a relatively large increment if one were to postulate sudden block in a segment of the His-Purkinje system. 2) The demonstration of identical increments in V-A interval during ventricular pacing at critical heart rates. This demonstration is identical to the demonstration of sudden increments in A-H interval during atrial pacing in patients with dual antegrade A-V nodal pathways.1-3, 15, 3 3) the decrease in retrograde slow pathway refractory periods with atropine, suggesting that dual A-V nodal pathways were infranodal, and 4) The simultaneous occurrence of marked increase in V-A with induction of echoes (control) and PSVT (after atropine). The normal H-V and narrow QRS of echo beats is inconsistent with re-entry occurring in the His-Purkinje system.17

This case also does not fulfill criteria for other varieties of PSVT, e.g., low atrial re-entrance, re-entrance utilizing a
concealed Kent bundle, His bundle re-entrance, and low atrial ectopic firing.18

Case Two
This was a 60-year-old female with recurrent PSVT. During PSVT, P waves were not seen; they probably occurred simultaneously with QRS complexes (see below). Cardiac examination, chest X-ray and resting electrocardiogram were normal. Electrophysiological studies during sinus rhythm revealed an A-H of 112 msec and an H-V of 45 msec.
Antegrade studies with incremental atrial pacing revealed intact A-V conduction up to a paced rate of 170 beats/min. At paced rates of 180 and above, Wenckebach periodicity with unexpected sudden A-H increments in the midst of paced Wenckebach periods were noted without echoes (fig. 5A). Atrial extrastimulus testing at a cycle length of 740 msec revealed a continuous A1-A2, H1-H2 conduction curve with atrial-limited A-V conduction (fig. 6), without echoes.
Retrograde studies with incremental ventricular pacing revealed intact V-A conduction up to a paced rate of 90 beats/min. Retrograde Wenckebach periodicity with sudden unexpected increase in V-A interval (from 290 to 460 msec) was noted at a ventricular paced rate of 100 beats/min (fig. 5B), with simultaneous occurrence of ventricular echoes (fig. 5B).
Ventricular extrastimulus testing (driven cycle length of 740 msec) revealed a discontinuous V1-V2 curve due to sudden increase in V2-A2 at critical V1-V2 coupling intervals of 650 msec, suggesting dual retrograde A-V nodal pathways (figs. 7A, 7B and 8). The effective refractory periods of the fast and slow pathways were 620 and 560 msec, respectively. Single A-V nodal re-entrant ventricular echoes occurred when V2 was conducted via the slow

FIGURE 5. Recordings from case 2, showing responses to rapid atrial and ventricular pacing before and after atropine. Panel A) Before atropine, at an atrial paced rate of 190 beats/min, second degree A-V nodal Wenckebach block occurred, but echoes were not induced, despite achieving an A-H of 420 msec. Panel B) Before atropine at a ventricular paced rate of 100 beats/min, retrograde atypical Wenckebach periodicity with a sudden increase of V-A interval from 290 to 460 msec occurred. An A-V re-entrant ventricular echo occurred with this sudden increase of V-A interval. This echo was characterized by a short A-H interval of 140 msec. Panel C) After atropine at an atrial paced rate of 170 beats/min, sustained PSVT was induced upon achieving a critical A-H interval of 260 msec. This PSVT was characterized by an A2-H2/H2-A2 ratio of 4.67 (280/60) and the retrograde P waves occurred simultaneously with the QRS complexes. Panel D) After atropine at a ventricular paced rate of 170 beats/min, second degree retrograde block occurred but atypical Wenckebach periodicity and echoes were no longer observed.
pathway with a critical V-A of 490 msec (figs. 5B and 7B). One mg of atropine was administered intravenously. Atrial incremental pacing revealed 1:1 A-V conduction up to a paced rate of 170 beats/min. A-H intervals ranged from 75 to 110 msec at paced rates of 80 to 150 beats/min, and suddenly increased to 250 msec at a paced rate of 150 beats/min, suggesting failure of an antegrade fast A-V nodal pathway, with conduction via an antegrade slow A-V nodal pathway. Sustained PSVT with simultaneous P and QRS was induced with sudden cessation of atrial pacing at a rate of 170 beats/min with a slow pathway A-H of 260 msec (fig. 5C). This appeared to reflect antegrade slow pathway and retrograde fast pathway conduction (the common type of A-V nodal re-entrant PSVT). Atrial extrastimulus testing at a cycle length of 740 msec revealed a continuous A-V nodal conduction curve which was limited to atrial conduction. Only fast pathway A-H intervals were obtained (fig. 6).

Retrograde studies with incremental ventricular pacing revealed 1:1 V-A conduction up to a paced rate of 160 beats/min; V-A interval increased from 140 to 150 msec as the paced rate increased from 110 to 160 beats/min. Second degree V-A block occurred at a paced rate of 170 beats/min (fig. 5D), without sudden increase of V-A interval. Ventricular extrastimulus studies at a cycle length of 600 msec revealed a continuous V1-V2, A1-A2 curve with a ventricular limited V-A conduction (fig. 8). Atrioventricular re-entrant ventricular echoes were not induced.

Comment

This patient had dual A-V nodal pathways with a major discordance of antegrade and retrograde properties. In the antegrade direction (at the tested driven cycle length), the fast pathway refractory period was shorter than the slow pathway refractory period, producing the continuous antegrade conduction curve. Block in the antegrade fast pathway could be achieved with rapid atrial pacing, presumably reflecting fast pathway refractoriness from multiple impulse propagation. The lack of A-V nodal re-entrant atrial echoes during cessation of pacing during antegrade slow pathway conduction reflected relatively long retrograde fast pathway refractoriness.

Retrogradely, the fast pathway refractory period was longer than that of the slow pathway, producing the discontinuous conduction curve. The echo phenomenon reflected retrograde block in the fast pathway with retrograde slow pathway conduction, and return to the ventricles via the failed fast pathway. The inability to induce PSVT upon retrograde failure of the fast pathway reflected slow pathway refractoriness (the inability of the slow pathway to conduct two sequential impulses).

Atropine produced the following demonstrable electrophysiological effects: 1) improvement of antegrade fast pathway conduction with marked decrease in fast pathway A-H at equivalent coupling intervals; 2) improved antegrade slow pathway conduction, with maintenance of intact slow pathway conduction up to a paced rate of 170 beats/min and shortening of retrograde fast pathway refractory period so that the discontinuous retrograde conduction curve was changed to continuous (fast pathway retrograde refractory period shorter than slow pathway retrograde refractory period).

Paroxysmal supraventricular tachycardia induction after

Figure 6. A_rA_s, H_rH_s, and A_rA_s, A_rH_s curves before and after atropine in case 2. **Left:** Before atropine, the curves were continuous at a driven cycle length of 740 msec. The atrial functional refractory period of 315 msec limited $A-V$ conduction. An echo zone was not defined. **Right:** After atropine, the curves were still continuous at a driven cycle length of 740 msec. The atrial functional refractory period of 320 msec limited $A-V$ conduction. An echo zone was not defined.

Figure 7. Recordings from case 2, showing induction of $A-V$ nodal re-entrant echo with ventricular extrastimulus before atropine. The driven cycle length was 740 msec. Panel **A**): At V_1-V_2 coupling interval of 640 msec, V_2-A_2 was 300 msec and A_1-A_2, 670 msec. An echo did not occur. Panel **B**): At V_1-V_2 coupling interval of 620 msec, V_2-A_2 suddenly increased to 500 msec and A_1-A_2, to 850 msec. An $A-V$ nodal re-entrant echo was induced. This echo had a short A_2-H_s of 150 msec.
atropine depended upon cessation of atrial pacing at rapid rates, while conduction was taking place via the slow pathway. The resultant PSVT thus reflected antegrade slow pathway, and retrograde fast pathway conduction. The ability to induce and maintain PSVT after atropine reflected facilitation of antegrade slow pathway and retrograde fast pathway conduction.

Case Three

This was a 61-year-old female with recurrent PSVT. During PSVT, retrograde P waves were noted immediately following QRS complexes. Cardiac examination, chest X-ray, and resting electrocardiograms were normal. His bundle recordings during sinus rhythm revealed an A-H of 105 msec and an H-V of 45 msec.

Antegrade studies with incremental atrial pacing revealed intact A-V conduction up to a paced rate of 190 beats/min. A-H interval increased from 100 to 160 msec as the paced rate was increased from 105 to 150 beats/min and suddenly increased to 260 msec at a paced rate of 160 beats/min, suggesting failure of an antegrade fast A-V nodal pathway with conduction via an antegrade slow A-V nodal pathway. Second degree A-V nodal Wenckebach block occurred at a paced rate of 200 beats/min. Atrioventricular nodal re-entrant echoes occurred upon achieving a critical A-H interval of 325 msec (fig. 9A). The echo was characterized by a long A-H of 210 msec and a short H-A of 145 msec and the P wave occurred slightly after the QRS complex. Atrial extrastimulus studies at a driven cycle length of 460 msec revealed a discontinuous A-H, H-V curve, suggesting dual A-V nodal pathways (fig. 10). The effective refractory periods of fast and slow pathway were 320 and 280 msec, respectively. The maximal A-H interval achieved with atrial extrastimulus was 275 msec and echoes did not occur.

Retrograde studies with incremental ventricular pacing revealed 1:1 V-A conduction up to 140 beats/min; V-A interval increased from 140 to 160 msec as the paced rate was increased from 100 to 140 beats/min. Second degree Wenckebach periodicity with a sudden unexpected increase of V-A interval (from 165 to 360 msec) simultaneous with the occurrence of A-V nodal re-entrant ventricular echoes occurred at a ventricular paced rate of 150 beats/min (fig. 9B). Ventricular extrastimulus studies at a driven cycle length of 460 msec revealed a discontinuous V1-V2, A1-A2 curve, suggesting dual A-V nodal pathways (figs. 11 and 12). The effective refractory periods of the fast and slow pathways were 340 and 330 msec, respectively. A-V nodal re-entrant ventricular echoes occurred when V2 was conducted immediately.
by guest on October 29, 2017 http://circ.ahajournals.org/ Downloaded from

was 245 msec and echoes or PSVT did not occur.

Incremental ventricular pacing revealed 1:1 V-A conduction up to a paced rate of 180 msec; V-A interval increased from 120 to 130 msec as the paced rate increased from 120 to 180 beats/min. 3:2 V-A block occurred at a ventricular paced rate of 190 beats/min without a sudden increase of V-A interval (V-A increased from 120 to 140 msec) or induction of echoes or PSVT. Ventricular extrastimulus testing at a driven cycle length of 460 msec revealed a continuous V-V, A-A curve with a retrograde A-V nodal effective refractory period of 260 msec (fig. 12). A-V nodal re-entrant echoes were not induced.

Comment

This patient differed from patients 1 and 2 in that both antegrade and retrograde A-V nodal dual pathways were demonstrable with extrastimulus testing. This reflected the fact that fast pathway refractory periods (antegrade and retrograde) were longer than slow pathway refractory periods, allowing critically timed extrastimuli (atrial or ventricular) to block in the fast pathways, traversing the slow A-V nodal pathway with resulting sudden increase in A-H or V-A. Atrioventricular nodal re-entrant atrial echoes were not seen during antegrade extrastimulus testing because slow pathway conduction times were not long enough for recovery of the fast pathway for retrograde fast pathway conduction. Longer antegrade slow pathway conduction times were achieved with rapid atrial pacing (slow pathway fatigue), allowing the demonstration of A-V nodal re-entrant atrial echoes (antegrade slow pathway and retrograde fast pathway). Atrioventricular nodal re-entrant ventricular echoes during ventricular extrastimulus testing were similar to those demonstrated in case 2 (retrograde slow pathway and antegrade fast pathway conduction). Sus-

Figure 10. A1-A2, H1-H2 and A1-A2, H2-H2 curves before and after atropine in case 3. Left) Before atropine, the curves were discontinuous at a driven cycle length of 460 msec. The effective refractory period of the fast pathway was 320 msec and the slow pathway 280 msec. An echo zone was not defined. Right) After atropine, the curves were still discontinuous at a similar driven cycle length of 460 msec. The effective refractory period of the fast pathway shortened to 300 msec and the slow pathway to 250 msec. An echo zone was not defined.

via the slow pathway with a critical V-A interval of 330 msec. The echoes induced either with rapid ventricular pacing or with ventricular extrastimulus (figs. 9B and 11B) were different from the antegrade-ly induced echoes (fig. 9A) in that the retrograde P wave occurred in front of the QRS complex with a short A2-H2 of 145 msec.

Atropine 0.5 mg was administered intravenously and the study was repeated immediately. After atropine, incremental atrial pacing revealed 1:1 A-V conduction up to a paced rate of 200 beats/min. The A-H interval increased from 100 to 120 msec as the paced rate increased from 100 to 170 beats/min and suddenly increased to 260 msec at a paced rate of 180 beats/min, suggesting failure of an antegrade fast A-V nodal pathway with conduction via an antegrade slow A-V nodal pathway.16 Atrioventricular nodal re-entrant echoes and PSVT were induced at a paced rate of 200 beats/min which achieved a critical A-H interval of 250 msec (fig. 9C). The PSVT had a cycle length of 300 msec with an A-H2 of 190 msec and an H2-A1 of 110 msec (a ratio of 1.72); a retrograde P wave occurred slightly after the QRS complex. This PSVT was identical to spontaneous PSVT. Atrial extrastimulus studies revealed a discontinuous A1-A2, H1-H2 curve with effective refractory periods of fast and slow pathway, 300 and 250 msec respectively (fig. 10). The maximal A-H interval achieved with atrial extrastimulus was 245 msec and echoes or PSVT did not occur.

Figure 11. Recordings from case 3, showing induction of A-V nodal re-entrant echo with ventricular extrastimulus before atropine. The driven cycle length was 460 msec. Panel A) At V2-V2 coupling intervals of 375 msec, V2-A2 was 160 msec and A1-A2 380 msec. An echo did not occur. Panel B) At V2-V2 coupling interval of 370 msec, V2-A2 suddenly increased to 355 msec and A1-A2 to 550 msec. An A-V nodal re-entrant echo was induced. Note that this echo had a short A-H interval of 145 msec.
tained PSVT was not induced because of the inability of both pathways to sustain sequential impulse propagation.

Atropine produced the following demonstrable electrophysiological effects: 1) facilitation of antegrade fast pathway conduction, with shorter A-H intervals at equivalent coupling intervals; 2) facilitation of antegrade slow pathway conduction with shorter A-H intervals at equivalent coupling intervals and decrease of antegrade slow pathway refractory period; 3) marked decrease of retrograde fast pathway refractoriness so that discontinuous retrograde conduction curves could no longer be demonstrated.

Induction of PSVT after atropine was similar to case 2 and was dependent upon cessation of atrial pacing while conduction was taking place via the slow pathway. As in case 2, the ability to induce and maintain PSVT reflected facilitation of antegrade slow pathway and retrograde fast pathway conduction.

Discussion

In the usual case of A-V nodal re-entrant paroxysmal tachycardia, antegrade conduction curves with atrial extrastimulus techniques are discontinuous, suggesting dual A-V nodal pathway. In these cases, the discontinuity in conduction curves reflects antegrade failure of a fast A-V nodal pathway with resultant antegrade slow pathway conduction. The failed fast pathway is used for retrograde conduction. The resultant PSVT is thus characterized by antegrade slow pathway and retrograde fast pathway conduction. Typically, in this type of PSVT, the P wave appears simultaneous with or slightly following the QRS, with an A-H to H-A ratio of greater than one. Retrograde conduction curves in the usual case of A-V nodal re-entrant PSVT are usually continuous, reflecting the fact that retrograde fast pathway refractory periods are shorter than those of retrograde slow pathways. Induction of PSVT in such cases can sometimes be achieved with ventricular extrastimuli which conduct in the fast pathway (a concealed event, since it is not demonstrable by a sudden increase in V-A) and return to the ventricles via the blocked slow pathway. The resultant PSVT is still characterized by antegrade slow pathway conduction and retrograde fast pathway conduction.

The present study extends observations concerning A-V nodal re-entry. All three of the present cases had retrogradely discontinuous conduction curves. These reflected the presence of a retrograde fast pathway refractory period which was longer than that of the retrograde slow pathway. Thus, critically-timed ventricular extrastimuli were blocked in the fast pathway and conducted via the slow pathway. The ventricular echo resulted from utilization of the blocked fast pathway for antegrade conduction. Induction of PSVT was achieved in case 1 after treatment with atropine, which facilitated antegrade and retrograde conduction in both pathways. The induced PSVT was of an uncommon type, and characterized by antegrade fast pathway and retrograde slow pathway conduction. This PSVT was therefore characterized by an unusual P-to-QRS relationship, with retrograde P wave in front of the QRS, with an A-H to H-A ratio of much less than one. This type of A-V nodal re-entrant PSVT could not be induced in cases 2 and 3. However, in the latter cases, injection of atropine allowed induction of the common type of A-V nodal re-entrant PSVT (antegrade slow pathway and retrograde fast pathway conduction). In the latter cases the drug facilitated retrograde fast pathway and antegrade slow pathway conduction so that the more common A-V nodal re-entrant PSVT could be induced.

The present cases also extend our knowledge regarding the type of PSVT which may be associated with continuous antegrade conduction curves. Previously, continuous curves were associated with induction of PSVT utilizing concealed retrogradely conducting Kent bundles, and with induction of sinus node or atrial re-entrant paroxysmal tachycardia. Cases 1 and 2 of the present study revealed A-V nodal re-entrant PSVT, despite smooth conduction curves. Both cases had discontinuous retrograde conduction curves and retrograde Wenckebach periodicity with sudden unexpected increases in V-A interval, a diagnostic clue to the presence of A-V nodal re-entry.

In the present cases, the relationship of P to QRS during PSVT can also be examined. The unusual variety of PSVT characterized by retrograde P in front of the QRS was seen in case 1. This type of PSVT is thus consistent with A-V nodal re-entry (antegrade fast and retrograde slow pathway conduction). Electrocardiographically identical PSVT has been noted in some cases of low atrial re-entrance and in cases with apparent low atrial ectopic firing. Another observation of interest in the present study was the demonstration of a retrograde P in case 1, with antegrade P wave morphology (− +). Similar retrograde P waves have been described previously.

In summary, the present three cases provide additional insight into A-V nodal re-entry in man. Discontinuous conduction curves, although most commonly seen with
antegrade stimulation, may sometimes be demonstrated with retrograde stimulation. In rare cases, both antegrade and retrograde conduction curves may be discontinuous. The type of PSVT observed in a patient with A-V nodal re-entrance will depend upon antegrade and retrograde properties of A-V nodal fast and slow pathways, as well as the site of origin of the initiating beat (atrial or ventricular).

Acknowledgment

The authors wish to express their thanks for the secretarial help of Ms. Therese Molyneux and Mrs. Jo Price.

References

An unusual variety of atrioventricular nodal re-entry due to retrograde dual atrioventricular nodal pathways.
D Wu, P Denes, F Amat-Y-Leon, C R Wyndham, R Dhingra and K M Rosen

Circulation. 1977;56:50-59
doi: 10.1161/01.CIR.56.1.50
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1977 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/56/1/50

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/