tire short axis of the left ventricle, it is often inadequate in displaying the entire long axis of the same ventricle. Current modifications and developments are oriented toward overcoming these limitations in an effort to produce even more diagnostically useful images which will permit accurate quantification of various cardiac geometries and functions.

References
1. Somer JC: Electronic sector scanning with ultrasonic beams. Proceedings of the First World Congress on Ultrasound Diagnostics in Medicine, June 2-7, 1969, Vienna, Austria
2. King DL: Cardiac ultrasonography. Proceedings of the 15th Annual Meeting of the American Institute of Ultrasound in Medicine, October 12-15, 1970, Case Western Reserve University, Cleveland, Ohio

Cardiac Imaging Using a Phased Array Ultrasound System

II. Clinical Technique and Application

JOSEPH KISSLO, M.D., OLAF T. VON RAMM, PH.D.,
AND FREDERICK L. THURSTONE, PH.D.

SUMMARY A new two-dimensional ultrasound imaging system capable of producing high resolution tomographic images of the heart in real time has been developed. This system relies on phased array principles to rapidly steer the ultrasound beam through the structures under investigation. A hand-held linear array of 16 ultrasound transducers with overall dimensions of 14 mm by 24 mm at the site of contact may be readily manipulated to image various cardiac structures. The resulting images are displayed in a circular sector format, 60° in azimuth and typically 15 cm in range. At this maximum range, image frames consisting of 256 lines are generated at the rate of 20 frames/second. High azimuthal resolution throughout the field of view is assured by a focused transmit beam and by sweeping the focus of the receiver in synchrony with the range of returning echoes. Azimuthal resolution varies from 2 to 4 mm throughout the field of view while range resolution is 1.5 mm. This imaging system has proven particularly useful for the delineation of left ventricular spatial geometry by the identification of endocardium, myocardium, papillary muscles and interventricular septum. High quality images of anterior and posterior mitral leaflets, aortic root and aortic leaflets as well as left atrium and other cardiac structures have been obtained.

ONE DIMENSIONAL time-motion echocardiography has been extraordinarily useful in the assessment of certain cardiac disorders.1 This widely available ultrasound technique, however, is unable to supply detailed information concerning spatial geometry. As a result, several two-dimensional ultrasound imaging systems have been developed for cardiac use over recent years. This report presents the initial clinical results from a new, high-resolution, real-time, two-dimensional ultrasound sector scanner designed specifically for cardiac use.

Methods

Equipment

Echocardiographic studies were performed using a two-dimensional imaging system developed in the Duke University Biomedical Engineering Department. This system relies on phased array principles to rapidly steer the ultrasound beam through the target volume and is capable of producing high-resolution, tomographic images of the heart in real-time. A hand held linear array of 16 transducers, measuring 14 mm by 24 mm at the site of skin contact, may be readily manipulated into appropriate planes for imaging a variety of cardiac structures. The resulting images are displayed in a circular sector format. The maximum selectable field of view is 60 degrees in azimuth and 17 cm in range. At this maximum range, image frames consisting of 256 lines are generated at the rate of 20/second. High azimuthal resolution throughout the field of view is assured by sweeping the focus of the receiver in synchrony with the range of returning echoes. Azimuthal resolution varies from 2 to 4 mm throughout the field of view while range resolution is 1.5 mm. A digital computer controlled scan format provides high data acquisition rates suitable for imaging rapidly moving cardiac structures. The 60 degree sector arc provides a wide field of view. When operating in a mode synchronous with television rates, images are usually made up of 128 lines per frame. When operating asynchronously, the system is

From the Duke University Medical Center, Department of Medicine, Cardiovascular Laboratory and Duke University Department of Biomedical Engineering, Durham, North Carolina.
Supported in part by USPHS Grants HL 12715, HL 14228, HL 17670-01, and HS 01613.

Address for reprints: Joseph Kisslo, M.D., Box 3818, Cardiovascular Laboratory, Duke University Medical Center, Durham, North Carolina 27710.

Received May 14, 1975; revision accepted for publication September 4, 1975.
capable of images composed of 256 lines per frame. One centimeter range marks may be introduced at any time during the scan process.

A silicon diode television camera records the images from a display monitor and a permanent video tape recording is then made of each examination for later review and analysis. Single frame images presented in this manuscript were made by means of a standard 35 mm camera from single frame video tape recordings.

Patients

Images presented in this manuscript are from the first seventy patients examined with this system at the Duke Hospital. The patients underwent echocardiographic evaluation for a variety of clinical problems including rheumatic valvular, congenital and atherosclerotic heart disease. During these initial phases of clinical trial, a variety of scan formats (e.g., varying line density), transducers, and display and recording devices were utilized and thus account for variations in the image quality seen in figures 3 through 9.

Examination Technique

In the present system design two operators are necessary to perform an ultrasound examination. The first operator manipulates the hand-held transducer while the second operator adjusts the image quality (time gain control, overall gain and range) while managing the video tape recording system.

Ultrasound examinations were performed with patients in the supine (fig. 1) or left lateral positions. The transducer is placed over an aquasonic gel interface to the left of the sternal border between the 2nd and 5th ribs and costal cartilages. An identical acoustic window to that used for time-motion examination of the heart is then utilized. Most favorable images, of course, are recorded when the transducer is held over an intercostal space rather than over the ribs, costal cartilages or sternum.

A standard echocardiographic examination is performed in a number of cross-sectional planes through the heart (fig. 2). Position I usually reveals images through the long axis of the left ventricle (aortic root, aortic valve, left atrium, mitral leaflets and the left ventricular cavity). Position II reveals portions of the right atrium, tricuspid leaflets and right ventricle in long axis. Serial cross-sectional images through the short axis of the heart are then made. Position III is through the short axis of the great vessels and atria, usually at the level of the aortic valve. Position IV provides an image through the short axis of the left ventricle at the level of the mitral orifice. Position V provides a short axis view of the left ventricle at the level of the papillary muscles while position VI is a similar view at the level of the left ventricular apex.

As chest wall configuration and intrathoracic heart position are quite variable from patient to patient, a study is initially begun by locating the aortic root, mitral valve and portions of the left ventricle in long axis (position I). From that point the remaining cardiac structures are then located by manipulating the transducer into the previously described positions II–VI and other appropriate intermediate positions.

Results

Image Recording Process

As previously mentioned, the images presented in this manuscript are 35 mm still photo recordings of single frame images from video tape. As such, there is a loss of the visual integration of motion normally seen with the real-time recording. Moreover, there is a severe degradation in image quality caused by the video tape recording process. An individual frame from the TV tape recording represents only 1/60th of a second. When operating in the 128 line format, therefore, each single frame visual field represents only one half (or 64 lines) the information provided in the actual scan or in real-time playback.

Results of Cardiac Imaging

Figure 3A shows a typical scan through the long axis of the left ventricle (position I). Cardiac structures are labelled in the schematic conception of the image in Figure 3B. The heart is in diastole with the aortic cusps in the closed position and the mitral leaflets in the open position. Details of the papillary muscles and chordae tendineae are seen along with echoes from the endocardial and epicardial surfaces. A large posterior pericardial effusion is seen.

Figure 4A shows a long axis scan (position 1) through the left ventricle of a patient with an atrial septal defect. Cardiac structures are labeled in figure 4B. The heart is in systole. Note the large right ventricle anteriorly. The entire left ventricle is visualized in long axis from the aortic root to the apex. The left atrium is appropriately small.

Figure 5 compares diastolic (5a) and systolic (5b) frames through the long axis of the aortic root and mitral valve in a patient with mild pulmonary hypertension. The aortic cusps are well seen in the closed position while the mitral leaflets are seen in the open position in figure 5a. Figure 5b shows the ventricle in systole with one aortic cusp in the open position and both mitral leaflets in the closed position. The arrow points to a structure in the posterior A-V groove that may represent either coronary sinus or a prominent A-V groove circumflex coronary artery. This image was recorded with an early scan format (256 lines) using a vidicon TV camera.

![Figure 1: Transducer held on a patient's chest in the long axis of the left ventricle. The time-gain controls are shown above the patient's right shoulder.](image-url)
FIGURE 2 Schematic diagram showing six standard planes for viewing the heart. A variety of intermediate planes may also be used. Note the location of the transducer top. This will locate the position of the top of the sector arc presented in subsequent figures. For further description, see text.

Camera and differs in quality from the others presented.

Serial short axis cross sections through the left ventricle are shown in figure 6. Panels A and B show an image through the mitral orifice in diastole (position IV). Panels C and D show a short axis cross-sectional image through the level of the papillary muscles (position V). Note the details of the papillary muscle trabeculations seen in this frame. A pericardial effusion is also seen. Panels E and F show a short axis scan at the level of the left ventricular apex. The small ventricular cavity and the base of the papillary muscles are seen at this level. Note that the scan format is of the variety seen in figure 5a.

FIGURE 3 Panel A shows a photo from a stop action video tape frame through the long axis of the left ventricle (position I). The aortic root is at the top of the scan and the left ventricular body toward the bottom. Note the pericardial effusion. AoR = aortic root; AoV = portion of aortic leaflets in diastole; RVC = right ventricular cavity; S = interventricular septum; PM = papillary muscles; LVC = left ventricular cavity; PE = pericardial effusion; LA = left atrium; AML = anterior mitral leaflet; PML = posterior mitral leaflet; EN = endocardium; EP = epicardium; and P = pericardium.

FIGURE 4 Panel A shows a scan through the long axis of the left ventricle (position I) in a patient with an atrial septal defect. Note the large right ventricular cavity. The entire left ventricular cavity is visualized from aortic root to apex. Abbreviations are the same as in figure 3. For details, see text.
A scan through position IV in a patient with mitral stenosis is seen in figure 7. The arrow points to the anterior mitral leaflet. Note the small mitral orifice size in comparison with that in figure 6A.

An example of abnormal geometry of left ventricular contraction is shown in the paired diastolic and systolic frames in figure 8 (position V). In this patient with severe pulmonary hypertension the left ventricle assumes a rather oval appearance both in systole and diastole. Compare this configuration to the normal circular configuration of the left ventricle seen in figure 6B.

Examination of the tricuspid valve in long section is possible by manipulation of the transducer into position II. Figure 9 shows sequential diastolic (9A), early systolic (9C) and late systolic (9E) frames from a patient with a flail anterior tricuspid leaflet due to acute bacterial endocarditis. This flail leaflet was documented at surgery for tricuspid valve replacement.

Discussion

Since first clinically used in 1954, time motion echocardiography has justifiably enjoyed wide clinical application in the diagnosis of a variety of cardiac disorders. It cannot be assumed, however, that a one-dimensional echo image of a moving heart is a completely fair representation of the details of cardiac anatomy or motion. Indeed, there are two basic reasons to believe otherwise. First, angiographic studies into the complexities of left ventricular contraction clearly indicate that the left ventricle undergoes sequential contraction manifest by a series of rotational and other three dimensional movements. It is, accordingly, difficult to imagine that data derived from a one-dimensional echo recording faithfully reflects these complexities of motion. Second, while it is possible to obtain useful information concerning intracardiac spatial relationships by sweeping the ultrasonic transducer from structure to structure from a relatively fixed position on the chest wall, it cannot be assumed that these time-motion recordings represent a true picture of the spatial relationships between the targets. The resulting images are, of course, distorted by both the time it takes to perform the sweep and the changing transducer to target distance.

It is not yet possible to describe the actual role of real-time two-dimensional imaging devices in clinical diagnosis. Early reports by Sahn and Henry, however, indicate that such devices show promise in the diagnosis of a variety of cardiac disorders. It is likely that both one and two-dimensional imaging systems will, in time, work effectively together to expand the diagnostic capability of cardiac ultrasound.

The present report concerns results of the initial clinical application of a new ultrasound scanning system. The system is unique and utilizes phased array principles to electronically steer and focus the ultrasound beam and thus develop high-resolution, two-dimensional images of cardiac structures in real-time. To our knowledge, no such imaging system has previously been applied to cardiac use.

Some operational aspects of this imaging device in clinical use are notable. First, the small transducer is relatively easily manipulated on the chest wall, so that there is no need for a cumbersome B-scan arm or mechanical scanning device. There is, therefore, little impairment of sensation in detecting ribs, costal cartilage, sternum or other aspects of chest wall configuration. Severe angulations of the transducer are, however, limited to the size of the present transducer face plate. In order to minimize loss of skin contact, smaller transducer arrays are currently under construction.

Second, the wide field of view (15 cm wide at 15 cm range), is superior to that provided by mechanical sector scanners. An added advantage of the wide sector arc is that it allows visualization of substernal structures such as the tricuspid valve and the right atrium when the transducer is held adjacent to the sternum and angled in position II.

Third, the ultrasonic images are of high resolution and high line density. Unfortunately, the image is significantly degraded in the video tape stop-frame mode and subsequent photographic processes necessary to capture an image for publication. Moreover, real-time playback of these images provides a visual integration of cardiac motion not possible to experience in the stop-frame mode.

Fourth, the computer controlled scan process provides a unique flexibility for future expansion of system capabilities.

Figure 5 Paired diastolic (panel a) and systolic (panel b) scans in position I in a patient with mild pulmonary hypertension. The scan format and recording process used in this patient differ from the others presented. The arrow indicates a structure in the posterior atrioventricular groove that is most likely either the coronary sinus or a large circumflex coronary artery. For details, see text.
FIGURE 6 Serial scans at different levels through the short axis of the left ventricle. In each, right is to the top of the scan. Panel A is at the level of the mitral orifice (position IV). Panel C is at the level of the papillary muscles (position V) and Panel E is at the level of the left ventricular apex. MVO = mitral valve orifice. See text for details.

For example, different scan programs may be written to maximize the system performance for use in pediatric, abdominal or cranial application.

Other planned additions to the system include an ECG display and timing reference marks. The incorporation of controls for time gain control ramp, video tape recorder and digital computer into one console will allow one man operation of the system. Ultimately, means for simultaneous M-mode recording of any selected line within the sector arc will be provided.

At the present time, a variety of clinical diagnoses may be based on the results of imaging with this new phased array system. Several examples of cardiac abnormalities are in-

FIGURE 7 Scan through the mitral valve orifice (position IV) in a patient with mitral stenosis. Note the narrowed mitral orifice. The arrow points to the thickened anterior mitral leaflet.

FIGURE 8 Paired diastolic (panel a) and systolic (panel b) scans through the short axis of the left ventricle (position V) of a patient with severe pulmonary hypertension. Note the flattened appearance of the left ventricle. Compare this appearance to the normal circular configuration of the ventricle in figure 6C.
In the future, the authors gratefully acknowledge the efforts of David Phillips, Ph.D., and Steven Smith, Ph.D., for their many contributions to the development of this imaging system. The authors further acknowledge the efforts of Robyn Haney, R.N., for her contributions to the clinical aspects of this study.

References

Cardiac imaging using a phased array ultrasound system. II. Clinical technique and application.
J Kisslo, O T vonRamm and F L Thurstone

Circulation. 1976;53:262-267
doi: 10.1161/01.CIR.53.2.262
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1976 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/53/2/262

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/