Mitral Valve Prolapse and Coronary Artery Disease
Clinical, Hemodynamic, and Angiographic Correlations

By Juan M. Aranda, M.D., Benjamin Befeler, M.D., Ralph Lazzara, M.D., Abraham Emri, B.S., and Humberto Machado, M.D.

SUMMARY
Among 95 patients with angina pectoris and angiographically documented coronary artery disease (CAD), prolapse of the scallops of the posterior leaflet of the mitral valve (PLMV) was noted in 30 patients. Left ventriculograms in the right anterior oblique (RAO) projection revealed isolated prolapse of the posteromedial commissural scallop (PMCS) in 12 patients and the anterolateral commissural scallop (ALCS) in two patients. Seven patients had prolapse of both PMCS and ALCS, three had prolapse of the PMCS and middle scallop (MS), and six had prolapse of all three scallops of the PLMV.

Left ventricular dilatation with increased trabeculations was observed in 19 patients. Contractility determined in a quantitative fashion by segmental motion analysis was markedly impaired in 29 patients. None of the patients had angiographic evidence of mitral insufficiency. Left ventricular dysfunction was documented in 28 patients by either elevated left ventricular end-diastolic pressure (LVEDP), low cardiac index (CI) or decreased ejection fraction (EF). In two patients in whom left ventricular contractility improved after aortocoronary bypass, previously prolapsed scallops could not be identified in the postoperative ventriculogram.

Prolapsed PLMV is a frequent angiographic finding in patients with angiographically observed CAD. Impaired contractility of the ventricular myocardium and papillary muscles, left ventricular dilatation, and hypertrophy appear to play a significant role in the pathogenesis of this abnormality through distortion of the directional axis of the papillary muscles, asynchronous contraction of the related free wall of the left ventricle, and changes in the normal spatial alignment necessary for mitral valve closure. The syndrome of papillary muscle dysfunction in patients with coronary artery disease represents a wider clinical spectrum than previously described.

THE UNDERLYING CONDITIONS causing prolapse of the mitral valve leaflets are multiple and include the Marfan syndrome, trauma, hypertrophic obstructive cardiomyopathy, rheumatic endocarditis, congestive cardiomyopathy, atrial septal defect and periarteritis nodosa.1-5 This syndrome includes a spectrum of clinical findings which vary from a nonejection click without a systolic murmur to the presence of mitral incompetence with a holosystolic murmur and no click.6,7 Electrocardiographic findings characterized by ST and T wave changes in the inferior leads have been observed in some of the cases reported.8 The findings are not specific, but may occur in acquired mitral valve disease due to rheumatic fever or coronary atherosclerosis.9, 10, 11 Since patients with prolapsed mitral leaflets frequently develop recurrent chest pain and ventricular arrhythmias, the possibility that the electrocardiographic changes are caused by coronary artery disease has been suggested.9

Several recent reports in the literature have emphasized angiographic-morphologic correlations12,13 and left ventricular abnormalities14 in patients with this syndrome. However, to date the frequency of mitral valve prolapse in patients with coronary artery disease has not been systematically studied. This report describes the clinical, hemodynamic, and angiographic characteristics of patients with advanced coronary artery disease who demonstrated prolapsed scallops of the posterior leaflet of the mitral valve.

Material and Methods
Ninety-five patients, all males with angiographically documented coronary artery disease referred to the Cardiovascular Laboratory for evaluation of chest pain, arrhythmias, or congestive heart failure, provided the data for this report. An additional 12 patients studied because of atypical chest pain, who had normal resting and exercise hemodynamics, coronary arteriograms, LV contractility, and no evidence of prolapsed mitral valve, cardiomyopathy, or valvular disease served as normal controls. All patients were examined by at least two of the authors and all were examined by one of us (BB).

After informed consent was obtained, right and left heart
catheterization and selective coronary cineangiography by a modification of the Sones technique was performed in the postabsorptive state under mild sedation with diazepam and meperidine. Angiographic images were recorded on 35 mm film at 60 frames per second. Pressure was registered on an Electronics for Medicine Multi-channel DR-16 recorder, utilizing Statham PD-23 transducers and fluid-filled catheters. Cardiac output was determined in duplicate by the dye dilution technique using indocyanine green. Isometric exercise was performed for 5 min using a handgrip dynamometer. The maximal voluntary contraction was determined before the procedure was started as the average of three consecutive maximal attempts. Measurements were made of the intracardiac pressures and cardiac output at rest and at four minutes of sustained handgrip at 25% of maximal voluntary contraction.

Left ventriculography was performed in all patients in the right anterior oblique projection at 30°. Thirty-five to fifty ml of methylglucamine diatrizoate (Renografin-76) was injected into the left ventricle at a rate of 26 to 30 ml per second, using a Cordis II power injector.

Individual systolic frames of the ventriculogram were carefully studied. The mitral valve and the atriocentral ring at the base of the opacified left ventricle, as well as the postero medial and anterolateral commissural areas, were identified. A distinct convol bark in the area of the postero medial or anterolateral commissure suggested prolapse of the postero medial (PMCS) or anterolateral commis sorial scallop (ALCS), respectively. A distinct central bulge was judged to be secondary to prolapse of the middle scallop (MS), as described by others. All angiograms were reviewed independently by at least two observers who assessed the contractility of the left ventricle in a qualitative fashion. Regional wall segments were classified into one of four possible categories: normal, hypokinetic, akinetic, or dyskinetic. 1) normal — the segment had synchronous and inward movement of good amplitude during systole; 2) hypokinetic — a portion or all of the segment had inward movement judged qualitatively to be diminished in amplitude; 3) akinetic — a portion or all of the segment had complete absence of wall motion; 4) dyskinetic — a portion or all of the segment had paradoxical systolic outward motion.

Quantitative angiographic methods were used to determine volumes and ejection fractions (EF) using the area-length method of Dodge modified for single plane calculations. The 35 mm cine film was viewed on a Tagarno projector where a normal sinus beat was selected for volume determination. The left ventricular end-systolic and diastolic silhouettes were traced on paper and the areas measured by planimetry. The correction factor for volume determination was obtained by counting and planimetrizing one centimeter squares in a grid that was filmed at the level of the patient’s left ventricle using the same fluoroscopic height that was used during the ventriculogram. The counted area of the grid was then compared to its planimetrized area recorded on cine film. Stroke volume obtained by this method correlated closely with the value obtained by dye dilution curves (r = 0.95).

Left ventricular hypertrophy was assessed cineangio graphically in the RAO by the method of Gulotta. The left ventricular wall thickness (LVWT) in end-diastole was measured anteriorly at a point midway between the apex and the aortic valve. The linear correction factor was derived by comparing the projected longitudinal diameter of a grid to the known previously measured diameter (5 cm). The grid was filmed as previously described. Segmental motion analysis was performed by superimposing tracings of end-diastolic and systolic frames using the cardiac apex and mid-aortic valve as fixed points. The long axis (L) of the left vent ricle was determined from the midpoint of the aortic valve to the ventricular apex. It was quadrisecked independently at end-systole and end-diastole by three diameters drawn perpendicular to it. These diameters were designated as proximal (PD), midventricular (MD), and apical (AP) segment diameter. Shortening of each diameter was expressed as percent shortening of its end-diastolic dimension.

The head of the postero medial papillary muscle was identified angiographically at end-systole and end-diastole in the RAO projection. Its orientation within the left ventricular cavity was determined as reported by Liedtke, by comparing the ratio of the distances between the papillary muscle to the mitral valve ring and left ventricular apex to mitral valve ring in end-systole and end-diastole.

The same measurements were performed in the control group. Left ventricular wall thickness between 12 and 15 mm was considered as mild hypertrophy; 15–18 mm, moderate hypertrophy, and more than 18 mm, severe hypertrophy. Left ventricular dilatation was considered to be significant if the left ventricular end-diastolic volume measured by planimetry was more than two standard deviations from the normal mean. The data was analyzed by means of the Student’s t-test.

Results

Clinical and Electrocardiographic Features

Of the 95 patients studied, 30 had angiographic evidence of prolapse of the posterior mitral leaflet (table 1). Their average age was 54 years (range 38–66). Twenty-six of the patients were significantly disabled with Class III-IV symptoms of angina and/or congestive heart failure (New York Heart Association functional classification). A left ventricular lift was palpable in 24 of 30 patients and in one it was diffuse and paradoxical, suggesting a ventricular aneurysm. A fourth heart sound was heard in 28 patients, a third heart sound in seven. Early or mid-systolic apical murmurs (grade I–II) were detected in five patients and recorded at the time of catheterization in three patients. In two patients it was intermittently present. Systolic clicks were not heard in any of the cases.
Table 1

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>S1</th>
<th>S2</th>
<th>Murmur</th>
<th>Class</th>
<th>ECG</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>63</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>II</td>
<td>ST-T</td>
</tr>
<tr>
<td>RB</td>
<td>63</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>II</td>
<td>ALMI</td>
</tr>
<tr>
<td>JT</td>
<td>64</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>ST-T</td>
</tr>
<tr>
<td>JW</td>
<td>61</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>IV</td>
<td>ASMI</td>
</tr>
<tr>
<td>AP</td>
<td>54</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>ASMI</td>
</tr>
<tr>
<td>HB</td>
<td>47</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>IAMI</td>
</tr>
<tr>
<td>AA</td>
<td>63</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>IV</td>
<td>ASMI</td>
</tr>
<tr>
<td>RM</td>
<td>38</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>II</td>
<td>ST-T</td>
</tr>
<tr>
<td>CM</td>
<td>47</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>ST-T</td>
</tr>
<tr>
<td>MM</td>
<td>55</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>ST-T</td>
</tr>
<tr>
<td>TC</td>
<td>54</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>IV</td>
<td>IAMI</td>
</tr>
<tr>
<td>WO</td>
<td>48</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>IV</td>
<td>ST-T</td>
</tr>
<tr>
<td>AE</td>
<td>44</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>ASMI</td>
</tr>
<tr>
<td>MP</td>
<td>66</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>ST-T</td>
</tr>
<tr>
<td>AL</td>
<td>44</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>ASMI</td>
</tr>
<tr>
<td>JB</td>
<td>53</td>
<td>+</td>
<td>+</td>
<td>intermittent+</td>
<td>IV</td>
<td>ASMI</td>
</tr>
<tr>
<td>WC</td>
<td>62</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>ALMI</td>
</tr>
<tr>
<td>HG</td>
<td>48</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>ASMI</td>
</tr>
<tr>
<td>HC</td>
<td>54</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>EAMI</td>
</tr>
<tr>
<td>PU</td>
<td>46</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>ASMI</td>
</tr>
<tr>
<td>CC</td>
<td>48</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>II</td>
<td>ST-T</td>
</tr>
<tr>
<td>SM</td>
<td>57</td>
<td>−</td>
<td>+</td>
<td>intermittent+</td>
<td>IV</td>
<td>LBBB, LAD</td>
</tr>
<tr>
<td>WL</td>
<td>54</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>IWMI</td>
</tr>
<tr>
<td>IA</td>
<td>58</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>ST-T</td>
</tr>
<tr>
<td>JZ</td>
<td>61</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>IV</td>
<td>IWMI</td>
</tr>
<tr>
<td>GH</td>
<td>50</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>Normal</td>
</tr>
<tr>
<td>JS</td>
<td>50</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>III</td>
<td>Normal</td>
</tr>
<tr>
<td>RA</td>
<td>38</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>IV</td>
<td>ASMI</td>
</tr>
<tr>
<td>SJ</td>
<td>48</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>IV</td>
<td>ALMI</td>
</tr>
<tr>
<td>MY</td>
<td>50</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>IV</td>
<td>VAP</td>
</tr>
</tbody>
</table>

Abbreviations: Class = New York Heart Association Functional Classification; ST-T = nonspecific abnormalities; ALMI = anterolateral myocardial infarction; ASMI = anteroseptal myocardial infarction; IAMI = inferior wall myocardial infarction; EAMI = extensive anterior myocardial infarction; LBBB = left bundle branch block; LAD = left axis deviation; VAP = variant angina pectoris; + = present; − = absent.

Figure 2

Postoperative left ventriculogram, patient M.M., showing isolated prolapse of the anterolateral commissural scallop (ALCS) of the posterior mitral leaflet. Note the hypertrophy of the papillary muscles and their abnormal orientation within the left ventricular cavity. MS = middle scallop; PMCS = posteromedial commissural scallop; ALPM = anterolateral papillary muscle; PMPM = posteromedial papillary muscle.

Circulation, Volume 52, August 1975

studied. All patients were in normal sinus rhythm. Electrocardiographic evidence of healed transmural myocardial infarction was noted in 16 patients, 12 anterior, four inferior and nonspecific ST-T abnormalities in ten. Two patients had normal electrocardiograms, a third had extensive intraventricular conduction abnormalities, and another had variant angina pectoris with transient elevation of ST segment. Ten patients with transmural myocardial infarction had left anterior hemiblock.

Hemodynamic Measurements

Table 2 summarizes the hemodynamic and angiographic data. Twenty-three of the 30 patients had resting left ventricular end-diastolic pressures (LVEDP) greater than 12 mm Hg, and 17 had right ventricular end-diastolic pressures (RVEDP) over 5 mm Hg. Fourteen patients had a cardiac index (CI) below 2.5 L/min/m². The ejection fraction was reduced (<57%) in 13 of 23 patients, ten had EF less than 50%. Of the 17 patients in whom the EF was normal or not measured, the CI was decreased in eight patients and the LVEDP increased in seven. Thus in 28 of the 30 cases reported, abnormal left ventricular function was demonstrated at rest.

The following values were obtained in the control group: EF = 0.73 ± .07 (range .63-.81), LVEDV = 74.2 ± 8.6 cc³ (range 66-87), LVT = 9.5 ± 2.5 mm (range 6.3-12).

Angiographic Findings

Left ventriculography in the 30° RAO projection revealed isolated prolapse of the PMCS in 12 patients and the ALCS in two (fig. 2). Six had prolapse of both the PMCS and ALCS, three had prolapse of the
Table 2

Hemodynamic and Angiographic Data

Patient	LVEDP Rest	LVEDP Exercise	RVEDP Rest	RVEDP Exercise	CI Rest	CI Exercise	EF	LVEDV	LVWT	AW	IW	RCA%	LAD%*	Circ%†	PMCS	ALCs	MS	Surgery
RC	18	22	7	2.70	2.97	0.74	133	10.4	H	N	60	50	50	+	+	+	None	
RB	16	5	1.94	1.92	0.86	113	2.6	12.6	H	H	70	90	70	+	+	+	Aneurysectomy	
JT	15	16	8.57	0.86	1.13	2.6	3.9	8.2	H	N	80	90	80	+	+	+	Aneurysrectomy and Aneurysectomy	
JW	14	15	10.46	1.81	1.10	0.67	14	A	N	N	100	N	100	+	+	+	ACB	
AP	16	17	11.15	1.96	1.90	0.49	126	H	A	H	90	90	90	+	+	+	ACB	
HB	13	5	2.90	0.66	0.60	9.6	H	N	90	N	60	+	+	Aneurysrectomy and Aneurysectomy				
AA	13	6	3.91	0.49	0.46	10.0	N	H	100	80	50	+	+	ACB				
RM	10	20	6.03	1.83	2.3	0.65	106	H	H	60	90	50	+	+	+	ACB		
CM	16	24	4.00	1.96	1.90	0.49	126	H	H	90	70	+	+	+	+	ACB		
MM	9	4	2.70	0.66	0.60	9.6	H	N	90	N	60	+	+	ACB				
TC	5	4	3.91	0.49	0.46	10.0	N	H	100	80	50	+	+	ACB				
WO	18	25	8.45	3.35	0.35	163	10.7	N	H	70	90	70	+	+	+	ACB		
AE	10	20	6.03	1.83	2.3	0.65	106	H	H	60	90	50	+	+	+	ACB		
MP	18	14	4.00	1.96	1.90	0.49	126	H	H	90	70	70	+	+	+	ACB		
AL	16	24	4.00	1.96	1.90	0.49	126	H	H	90	70	+	+	ACB				
JB	20	24	6.28	2.95	0.47	160	10.4	D	H	70	100	70	+	+	+	Aneurysrectomy and Aneurysectomy		
WC	18	30	10.30	3.10	0.50	90	H	N	100	50	70	+	+	Aneurysrectomy and Aneurysectomy				
HG	26		2.60	0.57	128	15.0	D	A	50	100	70	+	+	+	Aneurysrectomy and Aneurysectomy			
HC	7	5	2.15	0.57	128	15.0	D	A	50	100	70	+	+	+	Aneurysrectomy and Aneurysectomy			
PU	14	12	2.50	0.57	128	15.0	D	A	50	100	70	+	+	+	Aneurysrectomy and Aneurysectomy			
CC	17	15	3.41	0.57	128	15.0	D	A	50	100	70	+	+	+	Aneurysrectomy and Aneurysectomy			
MM	10	8	2.07	0.74	116	13.0	H	H	70	60	60	+	+	+	Aneurysrectomy and Aneurysectomy			
WL	22	8	1.46	1.74	0.53	94	8.3	H	N	50	70	+	+	+	Aneurysrectomy and Aneurysectomy			
IA	14	5	2.86	0.57	121	13.0	H	H	90	70	100	+	+	+	Aneurysrectomy and Aneurysectomy			
JZ	24	12	1.90	0.36	153	10.4	H	D	90	70	100	+	+	+	Aneurysrectomy and Aneurysectomy			
GH	10	5	2.88	0.48	73	12.3	A	N	50	70	100	+	+	+	Aneurysrectomy and Aneurysectomy			
JS	10	5	2.00	0.68	94	11.9	N	N	100	50	70	+	+	+	Aneurysrectomy and Aneurysectomy			
RA	18	5	1.93	0.44	160	12.0	A	N	50	80	100	+	+	+	Aneurysrectomy and Aneurysectomy			
SJ	13	6	2.45	0.40	106	14.0	A	H	90	100	70	+	+	+	Aneurysrectomy and Aneurysectomy			
MY	16	5	2.35	0.40	106	14.0	A	H	90	100	70	+	+	+	Aneurysrectomy and Aneurysectomy			
Average	15	20	7	2.53	2.47	0.56	115	11.6	+	+	+	+	+	+	Aneurysrectomy and Aneurysectomy			

| SEA | 0.861 | 1.149 | 0.508 | 0.105 | 0.246 | 2.83 | 0.049| 0.405 |

+ = present.
- = absent.

*Lesions in left anterior descending or first diagonal branch.
†Lesions in proximal circumflex or obtuse marginal.

Abbreviations: LVEDP = left ventricular end-diastolic pressure; RVEDP = right ventricular end-diastolic pressure; CI = cardiac index; EF = ejection fraction; LVWT = left ventricular wall thickness; LVEDV = left ventricular end-diastolic volume; AW = anterior wall; IW = inferior wall; H = hypokinesis; D = dyskinesis; A = akinesis; N = normal; RCA = right coronary artery; LAD = left anterior descending; Circ = circumflex; PMCS = postero-medial commissural scallop; ALCs = antero-lateral commissural scallop; MS = middle scallop; ACB = aortocoronary bypass; SEA = standard error of the average.
PMCS and MS (fig. 3), and seven had prolapse of all three scallops of the posterior leaflet (fig. 4).

Mitril regurgitation was not observed in any of the cases reported. Left ventricular dilatation was present in 19 of 23 patients; left ventricular hypertrophy was detected in ten out of 22 patients. Hypokinesis or akinetic segments in the anterior wall were identified in 18 patients while 16 others showed these contraction abnormalities in the inferior wall. Dyskinetic areas with paradoxical movements and aneurysm formation were angiographically identified in nine patients (fig. 5).

Segmental motion analysis corroborated the qualitative observations. The end-diastolic left ventricular dimensions in the cases reported were significantly different from those observed in patients with normal LV function (table 3). The extent of shortening of the midventricular, apical and long diameter of the left ventricle was significantly reduced in patients with prolapsed scallops compared to patients with normal LV function ($P < 0.01$, $P < 0.05$, $P < 0.01$, respectively). The difference in the extent of shortening of the proximal diameter was not statistically significant ($P > 0.05$).

The ratio of the distance between the posteromedial papillary muscle to mitral valve ring and apex to mitral valve ring was calculated at end-diastole and end-systole in ten patients with prolapsed scallops and in five patients with normal LV function. In the latter group the ratio varied by an average of 0.010 (table 3) while in the former it changed by an average of 0.136 ($P < 0.01$) indicating failure of the posteromedial papillary muscle to shorten and sustain contraction. Thus, left ventricular dilatation, impaired segmental contractility, hypertrophy of the ventricular myocardium, or changes in the directional axis of the papillary muscles were present in all of the patients with prolapsed scallops.

Selective coronary angiograms in multiple projections demonstrated in every patient advanced

Figure 3

Left ventriculogram, patient I.A., showing prolapse of the posteromedial commissural scallop (PMCS) and middle scallop (MS). The left separating the PMCS from the MS is clearly seen. A significant asynergic area is noted in the anterior wall (black arrow). See figure 2 for abbreviations.

Figure 4

Left ventriculogram, patient A.D., showing triscalloped prolapse of the posterior mitral leaflet without mitral insufficiency. ALCS = anterolateral commissural scallop; MS = middle scallop; PMCS = posteromedial commissural scallop.
Table 3

<table>
<thead>
<tr>
<th>Parameters of Left Ventricular Segmental Motion</th>
<th>Normals</th>
<th>Prolapsed scallops</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximal diameter (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED</td>
<td>11.38 ± 1.03</td>
<td>15.66 ± 2.48</td>
<td><0.001</td>
</tr>
<tr>
<td>ES</td>
<td>6.96 ± 1.04</td>
<td>11.26 ± 4.08</td>
<td></td>
</tr>
<tr>
<td>% shortening</td>
<td>38.4 ± 11.71</td>
<td>32.4 ± 10.8</td>
<td>N8</td>
</tr>
<tr>
<td>Midventricular diameter (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED</td>
<td>12.94 ± 1.22</td>
<td>15.56 ± 1.79</td>
<td><0.01</td>
</tr>
<tr>
<td>ES</td>
<td>6.52 ± 1.48</td>
<td>11.44 ± 4.09</td>
<td></td>
</tr>
<tr>
<td>% shortening</td>
<td>50 ± 6.74</td>
<td>33.1 ± 14.8</td>
<td><0.01</td>
</tr>
<tr>
<td>Apical diameter (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED</td>
<td>9.42 ± 0.97</td>
<td>11.61 ± 1.85</td>
<td><0.02</td>
</tr>
<tr>
<td>ES</td>
<td>3.54 ± 1.00</td>
<td>7.30 ± 3.14</td>
<td></td>
</tr>
<tr>
<td>% shortening</td>
<td>62.2 ± 11.1</td>
<td>37.6 ± 22.2</td>
<td><0.05</td>
</tr>
<tr>
<td>Longitudinal diameter (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED</td>
<td>23.48 ± 1.03</td>
<td>26.92 ± 3.09</td>
<td><0.05</td>
</tr>
<tr>
<td>ES</td>
<td>18.26 ± 1.29</td>
<td>23.87 ± 4.08</td>
<td></td>
</tr>
<tr>
<td>% shortening</td>
<td>22.4 ± 5.36</td>
<td>11.8 ± 6.83</td>
<td><0.01</td>
</tr>
<tr>
<td>PMPM-MVR ED</td>
<td>0.306 ± 0.065</td>
<td>0.233 ± 0.059</td>
<td><0.01</td>
</tr>
<tr>
<td>APEX-MVR ES</td>
<td>0.316 ± 0.071</td>
<td>0.369 ± 0.083</td>
<td></td>
</tr>
<tr>
<td>∆</td>
<td>0.010</td>
<td>0.136</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Abbreviations: ED = end-diastole; ES = end-systole; PMPM = posteromedial papillary muscle; MVR = mitral valve ring; N8 = not significant.

Figure 5

Left ventriculogram before (A) and after (B) ventricular aneurysmectomy at similar points in the cardiac cycle. Note significant prolapse of the posteromedial commissural scallop (PMCS), middle scallop (MS), and anterolateral commissural scallop (ALCS) before surgery. After ventricular resection, significant asynnergy of the inferior wall and minimal prolapse of the ALCS are noted; however, the previously prolapsed PMCS and MS are not identified. The black arrows point to the left atrium opacified by contrast media injected in the left ventricular cavity.

Arteriographic obstruction (>50%) in one or more major vessels. Significant obstruction of the left anterior descending artery was present in 27 patients (90%), of the circumflex artery in 17 (57%), and the right coronary artery in 22 (73%). Eleven patients (37%) had obstruction of two major vessels and 13 (43%) had obstruction of all three major vessels. Three of the 30 patients reported (RS, MP, GH) had significant lesions of the main left coronary artery.

Eighteen patients in the group underwent aortocoronary bypass surgery while eight others had ventricular aneurysmectomy with or without aortocoronary bypass. To date nine of the 26 patients have been restudied with left ventriculography, selective coronary arteriography as well as direct visualization of the grafts. In three of the patients restudied (RB, RM, CM), previously prolapsed scallops were not evident on re-examination. One of them with an apical ventricular aneurysm and prolapsed PMCS, MS, and ALCS underwent ventricular aneurysmectomy. He sustained an inferior wall myocardial infarction during the surgical procedure. The postoperative ventriculogram revealed marked asynnergy of the inferior wall, prolapsed ALCS, and minimal mitral insufficiency. The PMCS and MS were not visualized.
The auscultatory findings of mitral valve prolapse syndrome have been well documented in patients with atherosclerotic heart disease. However, there are no reports in the literature on clinical-angiographic correlations of prolapsed mitral leaflets in patients with advanced obstructive coronary artery disease.

The absence of clinical-angiographic correlations may arise from the fact that there have been many discrepancies in the description of the mitral valve. There is still much controversy as to the definition of the commissural areas and arguments as to the number of leaflets of the mitral valve. Recently, Ranganathan et al. studied 50 normal mitral valves from adults. Commisures identified by commissural chordae tendineae divided the mitral valve into anterior and posterior leaflets. They found that the posterior leaflet was further subdivided into scallops by clefts or indentations. In 92% of the hearts examined, the posterior leaflet was constantly notched and was divisible into three scallops. In 84% of the cases a large middle scallop was present with two smaller scallops in either side; posteromedial and anterolateral commissural scallops. They suggested that prolapse of any part of the triscalloped structure of the posterior leaflet should be recognized in a left ventriculogram and that prolapse of commissural scallops should be observed as bulges at either extremity of the posterior leaflet area. In subsequent reports Ranganathan and Trent demonstrated the angiographic appearances of pathologic proven prolapses of the different scallops of the posterior mitral leaflet.

The selection of patients in this study was based on the angiographic observations of prolapsed scallops of the posterior leaflet of the mitral valve in patients with documented obstructive coronary artery disease. Our series differs from the series reported by Scampordonis et al. and Gulotta et al. in that their patients were selected because of the presence of nonejection clicks, late systolic murmurs, troublesome arrhythmias, or disabling chest pains. Most of their cases had normal coronary arteries and their series represented a heterogeneous clinical spectrum of patients with this syndrome in which different etiological factors accounted for the abnormalities observed. Nonetheless, our observations are in agreement with these and other reports of asymmetric disordered patterns of left ventricular contraction in patients with systolic click, late systolic murmur, and prolapse of the posterior leaflet of the mitral valve, but are different from the observations made by Ranganathan et al. In their study prolapsed middle scallop was most frequently seen while isolated prolapse of a commissural scallop occurred only once.

The explanation for these observed differences is not clear at the present time. However, the selection of patients may account for some of these differences. In patients with coronary artery disease, infarction or fibrosis of papillary muscles, left ventricular abnormalities, and normal mitral valves have been reported. In patients with prolapsed mitral valve and normal coronary arteries, necropsy studies have shown myxomatous degeneration of the valve, with elongated and thickened chordae but no intrinsic pathologic changes in the papillary muscles. This might be better understood if one considers the blood supply of the papillary muscles. The anterior papillary muscle receives its blood supply from branches of the left anterior descending and circumflex arteries, while the posterior muscle gets its blood supply from branches of the right coronary and left circumflex arteries in 70%, from the right coronary artery alone in 20%, and the left circumflex artery in 10% of the cases. The presence of severe obstructive coronary artery disease in all of our cases appears to be the most important contributing factor accounting for the differences in the number of prolapsed scallops observed, since normal mitral valve function depends on a rather complex and finely coordinated system of which the papillary muscle is one of the principal components.

The high incidence of transmural myocardial infarction, ST-T wave abnormalities, hypokinesis, and dyskinesis of various segments of the left ventricular cavity found in our series agree with the recent clinical and experimental evidence that incompetence of the mitral valve depends not only on the intrinsic dysfunction of the papillary muscles but also upon distortion of the papillary muscle foundation by asynergic contraction of the related free wall of the left ventricle. Infarction of a portion of the left ventricular wall at the base of the papillary muscle may interfere with the proper functioning of the muscle by forming an aneurysm, thus changing the directional axis of the papillary muscle. The paradoxical expansion of the wall of the aneurysm may carry the base of the muscle away from its normal position, thus changing the normal spatial three dimensional alignment necessary for proper mitral valve closure. The relatively high incidence of ventricular aneurysms in our patients agree with the above observations. In-
fraction of the base of the papillary muscle or the related free wall of the left ventricle may also interfere with its function by failure to provide adequate anchorage to the muscle and chordae tendineae during left ventricular systole.

Considering the above mechanisms, we were not surprised to find two patients who showed improved left ventricular contractility after aortocoronary bypass and whose previously prolapsed scallops were absent in a postoperative ventriculogram. On the other hand, prolapse of the scallops of the posterior mitral leaflet might represent an intermediate stage before clinically apparent mitral insufficiency occurs. As shown by the patient RB (fig. 5), infarction of the base of the papillary muscle and its related free wall of the left ventricle interfered with proper closure of the mitral valve by failure to provide anchorage to the papillary muscle and chordae tendineae. As a result, the previously prolapsed leaflet became insufficient.

The absence of mitral insufficiency in our group of patients contrasts sharply with the previous angiographic documentation of mild to severe mitral insufficiency in most patients with systolic click, late systolic murmur, and prolapsed posterior leaflet. In view of the findings of Ranganathan et al. it is interesting to speculate that since the middle scallop is usually the largest of the posterior leaflet, prolapse of this scallop might be accompanied more frequently by mild to moderate insufficiency than prolapse of the two smaller commissural scallops. In some of our cases turbulence in the prolapsed scallop without regurgitation might have been responsible for the presence of the systolic murmur.

The syndrome of papillary muscle dysfunction in patients with coronary artery disease appears to represent a wider clinical spectrum than previously described. At one end of the spectrum are those patients with prolapsed scallops of the mitral valve without mitral insufficiency. In the middle of the spectrum are patients with systolic murmurs and/or systolic clicks and compensated congestive heart failure. At the other end of the spectrum are those patients with progressive cardiac decompensation and severe mitral insufficiency.

In view of the recommendations regarding antibiotic prophylaxis in patients with mitral valve prolapse syndrome and considering the reports of bacterial endocarditis complicating mitral regurgitation after an acute myocardial infarction, the use of antibiotic prophylaxis should be considered in patients with coronary artery disease and prolapsed scallops of the posterior leaflet of the mitral valve.

Although prolapse of the posterior mitral leaflet have heterogeneous origins, impaired contractility, left ventricular hypertrophy, and dilatation appear to be the most significant contributing factors in patients with coronary artery disease by causing distortion of the papillary muscle foundation during left ventricular contraction.

Acknowledgment

We acknowledge the secretarial help of Miss Diana Smith, Miss Bonnie Agnell and the medical artistry of Mr. Marcelino Obaya.

References

34. Estes EH, Entman ML, Dixon HB, Hackel DB: The vascular supply of the left ventricular wall. Am Heart J 71:58, 1966
Mitral valve prolapse and coronary artery disease. Clinical, hemodynamic, and angiographic correlations.
J M Aranda, B Befeler, R Lazzara, A Embi and H Machado

Circulation. 1975;52:245-253
doi: 10.1161/01.CIR.52.2.245

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1975 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/52/2/245

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/