Echocardiographic Determination of Left Ventricular Stress-Velocity Relations in Man
With Reference to the Effects of Loading and Contractility

By Miguel A. Quinones, M.D., William H. Gaasch, M.D., James S. Cole, M.D., and James K. Alexander, M.D.

SUMMARY
The time course of left ventricular (LV) circumferential stress and fiber shortening velocity (V_{CF}) were determined at 20 msec intervals in 30 patients from simultaneous recordings of LV pressure (micromanometer) and LV dimensions (echography). In 12 patients with normal LV function, endocardial and midwall maximal (max) V_{CF}, V_{CF} at peak stress, and endocardial mean V_{CF} were significantly greater than in eight patients with myocardial disease. Peak stress was less in the normal subjects (mean = 241 g/cm², range 180 to 310 g/cm²) than in those with myocardial diseases (mean = 371 g/cm², range 280 to 513 g/cm²). V_{CF} was reduced in five out of seven patients with chronic LV volume overload, while peak stress ranged from normal in three to increased in four. Max V_{CF}, mean V_{CF}, and peak stress were normal in three patients with chronic LV pressure overload; V_{CF} at peak stress was normal in two. Good correlation was observed between angiographic determinations of mean V_{CF} and endocardial max V_{CF}, V_{CF} at peak stress and mean V_{CF}.

Induced changes in preload in five patients (dextran infusion at constant heart rate) produced a 12.2% increase in peak stress (P < 0.05), and insignificant changes in max V_{CF} (3.7% increase, P = NS), in V_{CF} at peak stress (5% decrease, P < 0.05), and in mean V_{CF} (0.7% increase, P = NS). Increasing afterload with angiotensin in seven patients (peak stress increased by 45%, P < 0.01) reduced max V_{CF}, V_{CF} at peak stress and mean V_{CF} by 33%, 39%, and 37% respectively. Lowering afterload in one patient (amyl nitrite) produced an increase in V_{CF}. Improvement in V_{CF} was observed in all instances during positive inotropic stimulation (isoproterenol in three normals, digoxin in four with myocardial disease). The response of endocardial and midwall V_{CF} to loading and contractility were similar.

In man V_{CF} is an index of myocardial contractility which is affected minimally by changes in preload but responds inversely to changes in afterload. Its sensitivity to acute afterload changes may, at times, limit its clinical applicability.

Additional Indexing Words:
Left ventricular contractility
Volume overload
Echography
Preload
Pressure overload
Stress-strain
Afterload
Cardiomyopathy
Digitalis

CIRCUMFERENTIAL FIBER SHORTENING velocity (V_{CF}) has been proposed by several investigators as a reliable index of left ventricular performance which reflects the isotropic state of the left ventricular (LV) myocardium.1-2 The effects of acute changes in loading conditions on V_{CF}, however, have not been studied in man. In recent years the echocardiogram has been shown to be a reliable method of determining the mean endocardial circumferential fiber shortening velocity.3-6 In this presentation we have used left ventricular echography in combination with simultaneous high fidelity pressure recordings to determine the time course of V_{CF} and of left ventricular circumferential wall stress during ejection, to study the relationship between stress and V_{CF} in various disease states of the left ventricle, and to evaluate the effects of induced changes in loading and contractility on V_{CF} in man.

Methods
Thirty patients were studied during diagnostic right and left heart catheterization in the postabsorptive state following premedication with 10 mg of intramuscular diazepam.
Informed consent was obtained from each patient. Nine patients had chest pain syndrome with normal coronary arteriograms, one patient had a functional murmur, two patients had mitral stenosis, five patients had aortic insufficiency, three patients had mitral regurgitation, two patients had aortic stenosis (one valvular, one subvalvular membranous), one patient had hypertension with secondary left ventricular hypertrophy, and seven patients had myocardial disease with varying degrees of left ventricular dysfunction (table 1). None of the patients had arteriographic evidence of significant (>50%) coronary artery disease or abnormalities of segmental wall motion. Pressure and echocardiographic data were obtained prior to angiography. Left ventricular (LV) pressure was measured with a Millar Instruments 5F (four patients) or 8F (two patients) catheter-tip micromanometer, and recorded in an Electronics for Medicine DR-8 multichannel photographic recorder. The high fidelity pressures were calibrated either by matching the signal from the micromanometer with a simultaneous lumen pressure (Millar SF), using a Statham P-23 Db transducer with reference to a zero level 5 cm below the angle of Lewis, or by a predetermined electronic calibration constant (Millar 5F catheter). In each patient a central aortic pressure or a brachial artery pressure was recorded simultaneously with LV pressure. The ultrasound recordings were obtained with a Smith-Kline ultrasonoscope interfaced to the multichannel recorder, using a 2.25 MHz, 0.5 inch transducer focused at 5 cm, with a repetition rate of 1,000 impulses/sec. Echograms from the interventricular septum, posterior wall endocardium, and epicardium were obtained as described previously. Briefly, the transducer was placed in the third, fourth, or fifth intercostal space, to the left of the sternum and the ultrasound beam was directed posteriorly to the mitral valve and then inferolaterally in order to traverse the interventricular septum, fragments of the mitral valve apparatus and the posterior wall. The echograms, the LV pressure, and the central aortic or brachial artery pressure were recorded simultaneously on the multichannel recorder at a paper speed of 100 mm/sec.

Measurements and Calculations

The LV internal diameter (D) was measured in cm from the posterior wall endocardium to the interventricular septum (fig. 1). Measurements of D and of LV pressure were obtained every 20 msec from the time of the LV end-diastolic pressure recording (EDP) to end systole (time when the LV pressure descent crosses the level of the incisura in the central aortic or brachial artery pressure) utilizing an X-Y digitizer and programmed calculator. Posterior wall thickness (h) at end diastole and at end systole was measured as the distance from epicardial to endocardial echoes; intermediate points between end diastole and end systole were calculated every 20 msec assuming a linear change in h from end diastole to end systole. The time course of endocardial VCF was determined as:

$$V_{CF} \text{ (circ/sec)} = \frac{(D_1 - D_2)}{t} \times D_1$$

where D1 and D2 represent sequential measurements of D, and t = the time between the two measurements (20 msec).

In order to attenuate the random motion associated with the manual planimetry, the posterior wall endocardial and the interventricular septal echoes from a single beat were digitized five times: each D represented the average of 5 measurements. Mean VCF was calculated as:

$$\text{Mean } V_{CF} \text{ (circ/sec)} = \frac{D_d - D_s}{\text{LVET} \times D_d}$$

where Dd and Ds represent measurements of D at end diastole and end systole respectively, and LVET = the LV ejection time measured from the time when the LV pressure trace crosses the level of the diastolic central aortic or brachial artery pressure to end systole; in patients with mitral regurgitation LVET was measured from end diastole to end systole. The velocity of circumferential fiber shortening at the midwall was derived as:

$$\text{Midwall } V_{CF} \text{ (circ/sec)} = \frac{D_1 + h - (D_2 + h)}{t \times (D_1 + h)}$$

The time course of LV circumferential wall stress was determined using the formula utilized by Gault and associates with an angiographic technique. Thus:

$$\text{LV stress (g/cm^2)} = (P \times r/h) (1 - 2r^2/L^2)$$

where P = intracavitary pressure in g/cm2; r = intracavitary radius (D/2) in cm; and L = long axis of the LV which was assumed in this study to be twice the minor diameter (D) in all instances. The reliability of the echogram in estimating the internal LV minor axis, wall thickness, and circumferential wall stress has recently been demonstrated.

All measurements were processed by the programmed calculator, and time plots of endocardial VCF, midwall VCF, and LV loop stress were constructed (fig. 1). A fifth order polynomial equation was fitted to the VCF curves. From these graphs the following data were derived: maximal (max) VCF, peak LV stress, and VCF at peak stress.

Experimental Protocol

Measurements were made at rest in all 30 patients. In 12 of the 30 patients data were collected during one or more of the following interventions: (A) Acute preload increase: In five patients with normal LV function 250 to 400 cc of dextan were infused in a 10 to 15 minute period to achieve an increase in LVEDP from normal to 16–20 mm Hg. Heart rate was kept constant by atrial pacing in all five patients. (B) Acute afterload increase: In seven patients (5 with normal LV function, 1 volume overload, 1 myocardial disease) angiotensin (2 mcg/cc) was infused at a rate sufficient to produce an increase in arterial pressure. Heart rate was held constant by atrial pacing in five of the seven patients. In one patient, afterload was subsequently reduced acutely by amyl nitrite inhalation. (C) Changes in isotropic state: Three patients with normal LV function were studied during isoproterenol infusion; four patients with LV dysfunction were studied before and one hour after acute digitalization with 1 mg of digoxin intravenously.

A left ventricular cineangiogram (right anterior oblique, 60 frames/sec) was obtained in each patient with the injection of 50 cc of contrast medium (Renografin 76) at 12 cc/sec. Measurements of mean VCF were performed as described previously. In brief, the angiographically visualized LV cavity was drawn at end diastole (first frame with the largest cavity silhouette) and at end systole (frame showing the smallest cavity). A major axis was drawn from the LV apex to the angle formed by the junction of the mitral and aortic valves, and bisected by a perpendicularly drawn minor axis (D^2). Mean VCF was calculated by sub-

*Hewlett Packard Model 9100B.
Figure 1

Example of left ventricular echogram recorded simultaneously with left ventricular and brachial artery pressure. Measurements of dimensions and pressures allow calculations of the time course of circumferential fiber shortening velocity (Vcf) and of left ventricular hoop stress (see Methods). Abbreviations: LV = left ventricle, IVSE = interventricular septum, PWE = posterior wall endocardium, h = posterior wall thickness, BA = brachial artery, EKG = electrocardiogram.

Results

A summary of the data from 30 patients is shown in table 1. Patients 1 to 12 had normal values for LVEDP (≤ 12 mm Hg), end-diastolic volume index (≤ 90 cc/m²), systolic ejection fraction (≥ 50%), and angiographically determined mean Vcf (≥ 1.20 circ/sec). They were all considered to have normal left ventricular function. The extent of shortening of the internal diameter (D) from end diastole to end systole in these patients ranged from 27–48% (average = 36.2%); the percent increase in wall thickness during systole ranged from 35 to 80% (average = 49.6%); peak stress ranged from 180 to 310 g/cm² (average = 241 g/cm²), maximal endocardial Vcf ranged from 2.3 to 3.9 circ/sec (average = 2.88 circ/sec); endocardial Vcf at peak stress ranged from 1.7 to 2.9 circ/sec (average = 2.03 circ/sec); and endocardial mean Vcf ranged from 1.10 to 1.70 circ/sec (average = 1.45 circ/sec).

Patients #14 to #19 were diagnosed as having myocardial disease (LV dysfunction without mechanical overload, normal coronary arteriograms). All of them had reduced angiographic mean Vcf (< 1.20 circ/sec), and all except one had ejection fractions of less than 50%. Endocardial max Vcf, Vcf at peak stress, and mean Vcf were lower than in any of the patients with normal LV. In two additional patients (#13 and #20) the diagnosis of myocardial disease was also strongly considered. Patient #13 had reduced endocardial max Vcf and Vcf at peak stress with a low normal value for mean Vcf; all three velocities increased to normal following digitalization (fig. 4). Likewise, angiographic mean Vcf was normal after digitalis (no control angiographic data available). End-diastolic volume index was slightly greater than...
normal (98 cc/m²). These findings were interpreted as consistent with a mild cardiomyopathy. Patient #20 (mitral stenosis) had rather marked reduction in endocardial V_{CF} by echo and an elevated LVEDP to 18 mm Hg (no angiographic data available). The extent of shortening of D in these eight patients with myocardial disease was significantly lower ($P < 0.01$) than in the normal group (average % reduction in $D = 18.9\%$, range from 8 to 33%). The percent increase in wall thickness during systole was not significantly different from the normal group (average % increase in $h = 40.2\%$, range from 33 to 60%); however, in four patients the values were lower than the normal range. Although overlap was observed between the two groups, peak stress (average = 370.8 g/cm², range from 280 to 513 g/cm²) was significantly higher in the patients with myocardial disease ($P < 0.01$) than in the normal group. Examples of the time course of endocardial V_{CF} and LV hoop stress in a normal compared to a myocardial disease are shown in figure 2.

Seven patients (#21 to #27) had left ventricular volume overload (mitral regurgitation in three, aortic insufficiency in four); all except one had enlarged ventricles (end-diastolic volume index > 90 cc/m²). Peak stress in these patients ranged from normal (three patients) to increased (four patients). Likewise, the extent of shortening of D, max V_{CF}, V_{CF} at peak stress, mean V_{CF}, ejection fraction and angiographic mean V_{CF} ranged from normal to markedly reduced.
Patients #28 to #30 had LV pressure overload, but in spite of elevated intracavitary pressures, peak stress fell within the normal range (200 to 277 g/cm²). Endocardial max V_CF and mean V_CF were normal in all three; V_CF at peak stress was normal in two and reduced in one.

The correlation of endocardial max V_CF, V_CF at peak stress, and mean V_CF with angiographic mean V_CF was good (fig. 3). The correlation analysis was performed using data collected immediately prior to the LV angiogram. Separation between normal and abnormal LV function was seen with all three measurements; discrepancy between angiographic and echocardiographic data was observed with max V_CF and mean V_CF in only one patient.

Table 2 summarizes the data (excluding V_CF) before and during the interventions performed in 12 patients. Figure 4 summarizes the response of V_CF to changes in preload, afterload, and contractility. Figure 5 shows examples of stress-V_CF plots during acute changes in preload, afterload, and contractility.

Preload

In five patients the rapid infusion of dextran (constant heart rate) produced an increase in LVEDP from normal values to 16-20 mm Hg, and a 9.3% increase in the end-diastolic dimension from a mean of 4.3 cm to 4.7 cm. This amount of preload increase was accompanied by a 12.2% average increase in peak stress (P < 0.05) and by a 5% average decrease in V_CF at peak stress (P < 0.05). The 0.7% average increase in mean V_CF and 3.7% increase in endocardial max V_CF were not statistically significant. The extent of shortening of D was augmented by preloading in all five patients from a mean of 38.4% to 44.2%.

Afterload

In seven patients (five normal, one volume overload, one myocardial disease) angiotensin infusion produced a rapid increase in blood pressure which led to a 45.1% average increase in peak stress (P < 0.01). This increase in afterload was associated with a 33.4% average reduction in endocardial max

Circulation, Volume 51, April 1975
V_{CF}, a 38.9% average reduction in V_{CF} at peak stress, and with a 36.5% average reduction in mean V_{CF}. The extent of shortening of D likewise was reduced in all patients. All changes were statistically significant at the 0.01 level. The response to increased afterload in patient #6 (heart rate fell from 100 to 88 beats/min; no atrial pacing) was similar to the response of the five patients whose heart rates were held constant (atrial pacing). However, the 7.1% increase in end-diastolic dimension (preload) in this patient was greater than in the other five (2.0 to 3.6% increase). Heart rate in patient #16 (myocardial disease) remained constant without pacing throughout the intervention. In one patient (#1) amyl nitrite inhalation was administered following a return of blood pressure to control levels after angiotensin infusion. Heart rate was maintained constant by atrial pacing during the onset of hypotension induced by amyl nitrite (arterial pressure dropped from a control of 105/65 to 65/42 mm Hg). As shown in figure 6, the reduction in peak stress accompanying hypotension (from 180 to 110 g/cm²) was associated with significant increases in endocardial max V_{CF} (2.7 to 4.0 circ/sec), in V_{CF} at peak stress (2.0

Figure 2

The time course of endocardial V_{CF}, of left ventricular hoop stress, and a plot of stress vs V_{CF} from a patient with normal left ventricular (LV) function are compared to similar measurements from a patient with myocardial disease. Differences in magnitude, orientation, and configuration of the stress-V_{CF} plot are apparent between the normal and the myocardial disease.

Table 2

<table>
<thead>
<tr>
<th>Patient no.*</th>
<th>Heart rate (beats/min)</th>
<th>LV (mm Hg)</th>
<th>AO (mm Hg)</th>
<th>Dd (cm)</th>
<th>ΔD (%)</th>
<th>Peak S (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>PL</td>
<td>PL</td>
<td>PL</td>
<td>C</td>
<td>Dd</td>
<td>ΔD</td>
</tr>
<tr>
<td>1</td>
<td>75</td>
<td>75</td>
<td>102/10</td>
<td>124/17</td>
<td>102/64</td>
<td>124/76</td>
</tr>
<tr>
<td>2</td>
<td>94</td>
<td>94</td>
<td>155/8</td>
<td>165/20</td>
<td>155/103</td>
<td>165/100</td>
</tr>
<tr>
<td>3</td>
<td>86</td>
<td>86</td>
<td>110/9</td>
<td>127/19</td>
<td>110/77</td>
<td>127/86</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>100</td>
<td>105/3</td>
<td>120/16</td>
<td>105/71</td>
<td>120/73</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>100</td>
<td>141/11</td>
<td>158/20</td>
<td>141/82</td>
<td>158/84</td>
</tr>
<tr>
<td>C</td>
<td>AL</td>
<td>AL</td>
<td>AL</td>
<td>C</td>
<td>AL</td>
<td>AL</td>
</tr>
<tr>
<td>1</td>
<td>75</td>
<td>75</td>
<td>102/10</td>
<td>124/17</td>
<td>102/64</td>
<td>124/76</td>
</tr>
<tr>
<td>2</td>
<td>94</td>
<td>94</td>
<td>140/9</td>
<td>200/12</td>
<td>140/97</td>
<td>200/12</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>100</td>
<td>105/3</td>
<td>156/10</td>
<td>105/70</td>
<td>156/90</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>88</td>
<td>123/4</td>
<td>178/10</td>
<td>123/85</td>
<td>178/118</td>
</tr>
<tr>
<td>7</td>
<td>75</td>
<td>75</td>
<td>120/8</td>
<td>143/20</td>
<td>120/71</td>
<td>143/95</td>
</tr>
<tr>
<td>16</td>
<td>140</td>
<td>140</td>
<td>85/25</td>
<td>95/30</td>
<td>85/70</td>
<td>98/80</td>
</tr>
<tr>
<td>24</td>
<td>100</td>
<td>100</td>
<td>111/3</td>
<td>159/8</td>
<td>111/60</td>
<td>159/68</td>
</tr>
<tr>
<td>C</td>
<td>ISO</td>
<td>ISO</td>
<td>ISO</td>
<td>C</td>
<td>ISO</td>
<td>ISO</td>
</tr>
<tr>
<td>1</td>
<td>75</td>
<td>125</td>
<td>101/12</td>
<td>110/11</td>
<td>101/65</td>
<td>110/60</td>
</tr>
<tr>
<td>2</td>
<td>94</td>
<td>125</td>
<td>153/12</td>
<td>102/6</td>
<td>153/98</td>
<td>102/62</td>
</tr>
<tr>
<td>7</td>
<td>75</td>
<td>120</td>
<td>120/8</td>
<td>120/7</td>
<td>120/70</td>
<td>120/57</td>
</tr>
<tr>
<td>C</td>
<td>DIG</td>
<td>DIG</td>
<td>DIG</td>
<td>C</td>
<td>DIG</td>
<td>DIG</td>
</tr>
<tr>
<td>13</td>
<td>58</td>
<td>59</td>
<td>150/10</td>
<td>160/9</td>
<td>150/90</td>
<td>160/92</td>
</tr>
<tr>
<td>14</td>
<td>107</td>
<td>86</td>
<td>130/33</td>
<td>140/25</td>
<td>130/100</td>
<td>140/94</td>
</tr>
<tr>
<td>15</td>
<td>107</td>
<td>86</td>
<td>120/8</td>
<td>130/6</td>
<td>120/100</td>
<td>130/86</td>
</tr>
<tr>
<td>16</td>
<td>140</td>
<td>115</td>
<td>85/25</td>
<td>92/19</td>
<td>85/70</td>
<td>92/75</td>
</tr>
</tbody>
</table>

*Patient number as in table 1.

Abbreviations: C = control; PL = preload (dextran); AL = afterload (angiotensin); ISO = isoproterenol; DIG = digoxin. The others as in table 1.
2.0
r=0.80

1.0
0.5

Max Endocardial VCF (circ/sec)

2.0
r=0.83

1.5
1.0
0.5

Mean Endocardial VCF (circ/sec)

2.0
r=0.80

1.0
0.5

Endocardial VCF at Peak Stress (circ/sec)

Figure 3

Comparison of angiographic mean VCF with echocardiographic endocardial maximal (max) VCF, mean VCF, and VCF at peak stress. All three velocities by echography correlated well with angiographic mean VCF.

to 2.4 circ/sec), and in mean VCF (1.48 to 1.79 circ/sec). Thus, the data indicate an inverse relation between changes in afterload and VCF.

Contractility

Isoproterenol infusion in three patients with normal LV function produced a significant increase in the extent of shortening of D as well as in endocardial max VCF, VCF at peak stress, and mean VCF (table 2, figures 4 and 5). Peak stress increased by 14% in one patient, and decreased by 43% and 18% in the other two. Intravenous digoxin administration, likewise, produced significant increases in mean and instantaneous VCF, as well as in the extent of shortening of D in four patients with reduced LV function secondary to myocardial disease (table 2 and fig. 4). Peak stress in-

Figure 4

Summary of the response of endocardial VCF (maximal, at peak stress, and mean) to acute increase in preload (PL), afterload (AL), and contractility. VCF changed minimally with preload, was reduced by increasing afterload, and responded directly to positive inotropic stimulation. Abbreviations: Max = maximal, C = control, ISO = isoproterenol, DIG = digoxin.

Circulation, Volume 51, April 1975
The time course of midwall \(V_{CF} \) was determined in all 30 patients at rest, and in several patients during the various interventions. Although the absolute values for midwall \(V_{CF} \) were lower than endocardial \(V_{CF} \), the morphology of the two curves was identical and the correlations between endocardial max \(V_{CF} \) and midwall max \(V_{CF} \), and between endocardial \(V_{CF} \) at peak stress and midwall \(V_{CF} \) at peak stress were excellent (\(r = 0.97 \) and 0.95 respectively). As shown in figure 7, good correlation between endocardial and midwall \(V_{CF} \) was seen not only during single control measurements but also during the various interventions, thus indicating that the responses of midwall \(V_{CF} \) to acute changes in preload, afterload, and contractility were similar to those of endocardial \(V_{CF} \).

Discussion

The time course of circumferential fiber shortening velocity at the midwall and of left ventricular hoop stress was first described in man by Gault and associates using simultaneous left ventricular pressure and angiographic LV dimensions. Since velocity of fiber shortening is equal to the algebraic sum of the contractile element velocity (\(V_{CE} \)) and the series elastic shortening (or shortening) velocity (\(V_{SE} \), and since at peak stress \(V_{SE} \) equals zero, velocity of fiber shortening at peak stress is equivalent to \(V_{CE} \)). Gault et al. found that the magnitude of values for max \(V_{CF} \) and for \(V_{CE} \) at peak stress was significantly higher in patients with normal LV function when compared to patients with myocardial disease. Qualitative differences in the stress-\(V_{CF} \) plots between the two groups of patients were also observed. The same group of investigators subsequently presented data suggesting that measurements of the mean endocardial circumferential fiber shortening velocity by angiography could be used as a simplified index of LV performance which separated normal from abnormal LV function. Peterson and associates measured the time course of LV wall tension and endocardial \(V_{CF} \) in patients with normal and abnormal LV function by using simultaneous LV pressure and central aortic blood flow (electromagnetic velocity probe) assuming a thin-walled spherical model for the left ventricle. Results similar to those of Gault et al. with the angiographic technique were observed. Mean endocardial \(V_{CF} \) has also been measured using echocardiography by different investigators; correlation with the angiographic technique has been excellent, particularly in the absence of LV asynergy.

In this study, echocardiography, in combination with simultaneous high fidelity LV pressure record-
LV stress/velocity relations in man

Figure 7

Comparison of endocardial and midwall VCF in the patients at rest and during some of the interventions. As shown by the strong correlation coefficient, midwall VCF does not offer any advantage over endocardial VCF in patient separation or in degree of responsiveness to loading and contractility.

ing, was used to plot the time course of LV hoop stress, endocardial VCF and midwall VCF in man. An important assumption in measuring endocardial VCF by echocardiography is that the size and motion of the echocardiographic left ventricular internal diameter reflects the size and motion of the minor axis of the LV. Previous studies have validated this assumption.9,10 Left ventricular circumferential wall stress was measured using a prolate ellipsoid as a reference figure assuming a fixed ratio of long axis to minor axis of 2:1. Even though this assumption failed to hold when comparisons were made, Ratshin and associates found an excellent correlation between measurements of stress at end diastole and at the time of aortic valve opening by angiography versus echocardiography (using the 2:1 assumption) in 48 subjects with a variety of heart diseases.10 In addition, due to the nature of the formula for wall stress used in this study, if the true ratio of L to D is other than 2:1 the error in over or underestimation of wall stress will be small. For example, if at the time of peak stress the ratio of L to D is 1.5:1 (as may occur in a large dilated LV), peak stress will be overestimated by 11%; if the L to D ratio is 3:1 (as may occur in a small elongated LV), peak stress will be underestimated by 8%. Accepting this potential error in the absolute value of LV hoop stress, the time to peak stress should be affected minimally and therefore measurements of VCF at peak stress (or VCE) should be valid. When spherical models are used and tension (force per unit length) rather than stress (force per unit cross-sectional area) is calculated, the time to peak tension and stress are nearly identical.15 An accurate measurement of LV wall thickness (h) is essential in calculating LV hoop stress. The reliability of the echocardiogram in measuring h at end diastole has been well established.10,16 In this study h was measured at end diastole and at end systole, intermediate points were calculated assuming a linear change throughout ejection.1,7,8 The percent wall thickening during ejection found in our patients with normal LV function (average = 49.6%) is in general agreement with that obtained by Eber and associates using a constant LV mass and an angiographically measured end diastolic h,7 but is slightly greater than the values observed by Mitchell et al. in dogs using endocardial and epicardial markers (25–45%).9 Even though some patients with myocardial disease had an increase in h of less than the normal range, the mean for the group was not significantly different from normal. Midwall VCF was measured assuming a uniform wall thickness throughout the left ventricular circumference; none of the patients studied had asymmetric septal hypertrophy.

Our results indicate that both endocardial max VCF, VCF at peak stress, and mean VCF were reliable in identifying normal versus abnormal LV function. As anticipated, the correlation between echocardiographic VCF and angiographic mean VCF was good (fig. 3). Even though echocardiographic mean VCF correlated well with max VCF (r = 0.93), a few instances were observed in which mean VCF was either normal (~ 1.10 circ/sec) or nearly normal (table 1, #13 and
patient #14 postdigoxin, mean \(V_{CF} = 1.07 \) (circ/sec) while max \(V_{CF} \) was clearly depressed. This finding suggests that at times measurements of the time course of \(V_{CF} \) may be more meaningful than mean \(V_{CF} \) in assessing LV performance. Measurements of \(V_{CF} \) at 20 msec intervals is a time consuming procedure requiring the use of an X-Y digitizer and programmed calculator for accuracy. An estimate of the time course of \(V_{CF} \) may be simply obtained by measuring the internal LV diameter (D) manually from end diastole to end systole at further spaced intervals (such as 60 msec) so that dimensional changes may be easily visualized. Since the calculated velocity is normalized (equation #1), measurements of D may be performed with a standard metric scale. This type of analysis can be done with the aid of a desk calculator in less than 10 minutes. An example of an endocardial \(V_{CF} \) curve derived from sampling at 60 msec intervals is shown in figure 8 and compared to a 20 msec interval curve obtained with the digitizer from the same beat. Data from the 30 patients in this study are also shown. Due to the excellent correlation observed between the two measurements \((r = 0.99)\), the simplified method seems to be a practical alternative for clinical use.

In this study, the values obtained for peak stress in the normal group were within the range observed by other investigators. The largest values were seen in patients with myocardial disease and in some patients with LV volume overload. Of interest are three patients with pressure overload who in spite of very high intracavitary pressures had normal values for peak stress (afterload) due to small intracavitary radii and to LV hypertrophy. Differences in magnitude, orientation, and configuration were observed in the stress-\(V_{CF} \) plots between patients with normal LV function and those with myocardial disease (fig. 2).

The response of \(V_{CF} \) to acute changes in loading and contractility has not been previously evaluated in man. In this study, an acute increase in preload was accompanied by small increases in peak stress and by minor changes in \(V_{CF} \); the extent of shortening of the internal diameter (D), however, was significantly augmented. An example of the change in the stress-\(V_{CF} \) plot during preloading is seen in figure 5. Of interest is that even though the changes in velocity were small, the total area under the curve (an index of muscle fiber power) was significantly greater during the increased preload. An acute increase in afterload (45.1% average increase in peak stress) was accompanied by significant reduction in \(V_{CF} \) and in the extent of fiber shortening. In one patient in whom afterload was acutely reduced, \(V_{CF} \) was significantly augmented. In this patient \(V_{CF} \) at peak stress in the three afterload curves are theoretically falling on the same force-velocity curve (fig. 6).

The response of \(V_{CF} \) to acute changes in loading found in this study in man is in agreement with the findings of Covell et al. in the conscious dog. The inverse relation between \(V_{CF} \) and afterload is similar to the changes in \(V_{CF} \) observed in isolated muscle preparations during acute changes in afterload. However, in contrast to our findings in the intact human heart, increasing preload in the isolated mus-
cle preparation produces a definite increase in V_{CF} at comparable levels of afterload. One possible reason why this response was not observed in this study may be that in the intact heart it is impossible to completely separate preload from afterload, so that increasing preload leads to some increase in afterload (peak stress) which in turn attenuates the V_{CF} response.

Benzing and associates measured V_{CF} during acute changes in preload, afterload, and contractility in a group of opened chest anesthetized dogs. They found a consistent inverse relation between mean V_{CF} and afterload in all of their experiments. Mean V_{CF} during volume loading was not statistically different from control; however, marked variation in the individual responses were observed. In evaluating the response of V_{CF} to changes in the inotropic state these investigators found V_{CF} (max V_{CF} and V_{CF} at peak stress) to be less sensitive to the negative inotropic effect of ischemia than mean LV hydraulic output power, another parameter of LV function. However, we have found V_{CF} to be responsive to the positive inotropic effect of isoproterenol and digoxin in man; Covell and associates found V_{CF} responsive also to the negative inotropic effect of propranolol as well as to the positive effect of isoproterenol in the conscious dog.

Since V_{CF} varies inversely with afterload, whenever a low value for V_{CF} is observed in a patient with increased LV hoop stress, the question may arise whether this value reflects a reduced inotropic state of the myocardium or a point on a normal (but afterload increased) force-velocity curve. Figure 9 shows the relation between LV peak stress and V_{CF} at peak stress (V_{CF}) before and during an increase in afterload for five patients with normal LV function (average and standard error), for one patient with LV volume overload (aortic insufficiency, patient #24), and for one patient with myocardial disease (#16). The control values for both patients, if seen in relation to the curve from the normals, could be interpreted as falling on the same force-velocity curve; however, when a second afterload point is plotted it can be seen that the slope from the curves in both the volume overload and the myocardial disease are less steep, and the V_{CF} intercept at zero load are lower than in the normal group. These findings suggest that in these two patients myocardial contractility was indeed depressed.

The orientation of myocardial fibers in a cross-section of the left ventricular wall at the minor equator varies from epicardium to endocardium, so that the greatest concentration of fibers aligned along the circumference of the ventricle occurs at the mid-wall. Accordingly, one might expect midwall V_{CF} to be more representative of fiber shortening velocity than endocardial V_{CF}. In this study, however, midwall V_{CF} did not offer any advantage over endocardial V_{CF} in patient separation or in degree of responsiveness to loading and contractility (fig. 7).

In conclusion, the time course of V_{CF} and LV hoop stress throughout ejection may be determined in man with the combined use of echocardiography and intracardiac pressure recordings. In man V_{CF} is relatively unaffected by acute changes in preload but varies inversely with afterload changes; its sensitivity to inotropic stimulation seems to be good. V_{CF} appears to adequately separate normal from reduced LV function, but its sensitivity to afterload may at times limit its clinical utility. Construction of a stress-V_{CF} curve during two afterload states may provide an improved insight into the inotropic state of a given ventricle.

Acknowledgment

The authors wish to thank Mr. Alan D. Waggoner for technical assistance in collecting data, and Mr. James Savage for technical assistance in analysis of data.

References

2. KARLNER JS, GAULT JH, ECKBERG D, MULLINS CB, ROSS JR: Mean velocity of fiber shortening. A simplified measure of left ventricular myocardial contractility. Circulation 44: 323, 1971

Circulation, Volume 51, April 1975
Echocardiographic determination of left ventricular stress-velocity relations.
M A Quiones, W H Gaasch, J S Cole and J K Alexander

Circulation. 1975;51:689-700
doi: 10.1161/01.CIR.51.4.689

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1975 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/51/4/689

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at: http://circ.ahajournals.org//subscriptions/