Predictive Implications of Stress Testing

Follow-up of 2700 Subjects After Maximum Treadmill Stress Testing

By Myrin H. Ellestad, M.D., and Maurice K. C. Wan, M.D.

SUMMARY
Follow-up data on 2700 subjects who had had maximum stress tests were assembled in life tables. A positive test, characterized by ST-segment depression of 1.5 mm, 0.08 sec from the J point, predicted an incidence of some new coronary event of 9.5% a year, as compared with 1.7% in those with a negative test.

The incidence of infarction and death was also significantly higher than in the negative responders. Early onset of ischemia occurring at moderate exercise (4 metabolic equivalents-METS) resulted in an incidence of all coronary events of 15% a year, while ischemia first manifested at the seventh minute of exercise (approximately 8 METS) results in an incidence of only 4% per year. The magnitude of ST depression and the age of onset of ischemia failed to influence the incidence of coronary events. A myocardial infarction previous to the test increased the incidence of events in both positive and negative responders. The positives with a previous infarction had more than double the incidence of coronary events than the positive responders with no pre-existing infarction. Those with chronotropic incompetence had a high incidence of coronary events even though the ECG response to exercise was normal.

Additional Indexing Words:
ST-segment depression
Exercise electrocardiography
Life tables
Chronotropic incompetence

THERE HAS BEEN considerable criticism of stress testing because of its failure to distinguish with certainty those with coronary heart disease from those without.1 This study was designed to determine the incidence of coronary events in subjects who had been subjected to a maximum stress test by evaluating follow-up information. Robb and Marks2 published follow-up data on patients who had been tested with a Master’s Test in 1957 and established for the first time the prognostic significance of findings obtained on stress testing. Since then stress testing has evolved into a more strenuous and complex procedure, but adequate follow-up data to correlate this with future events has not been assembled.

Materials and Methods
Follow-up information on 2700 of 8000 subjects who underwent maximum treadmill stress testing in the laboratory at Memorial Hospital Medical Center was collected from the referring doctors’ records. Either the doctors filled out a questionnaire or the doctors’ aides and a trained research clerk reviewed the records together to obtain the following data.

1. The incidence and dates of myocardial infarctions.
2. The presence and severity of angina. If angina had progressed in severity or if it had appeared for the first time since the test, it was labeled progression of angina.
3. The date and cause of death.

The information was computerized and filed on disc in a CDC 3300 computer. The output provided the number of patients in each cohort, the number lost to follow-up, standard deviation of the mean, and the accumulative percentage of events at each interval. The vertical lines at each interval on the life tables indicate two standard deviations. When these limits do not overlap, the groups are significantly different (P < 0.01) by Chi square analysis.

Stress testing was performed according to a progressive protocol previously reported, with continuous monitoring until a maximum predicted pulse had been reached.3 Termination of the test prior to this target pulse was often due to anginal pain, evidence of severe ischemia on the electrocardiogram, arrhythmias, progressively decreasing pulse or blood pressure, or overwhelming fatigue.

The patient population consisted of subjects referred for routine screening tests as part of an annual physical, for confirmation of suspected coronary insufficiency, or for quantitation of the degree of known coronary disease. The type of treatment subsequent to the stress test was not taken into
consideration in the follow-up study. The follow-up events
were analyzed by the life table method of Cutler and
Ederer.4 The time of follow-up was from six months to nine
years.
Subjects who had a pulse rate for the achieved workloads
outside the 95% confidence limits of the established normal
for age and sex were labeled as having chronotropic in-
competence. (Data for normal pulse responses to our
protocol have been published.) Subjects involved in
vigorous exercise programs or on a medication that might
reduce their pulse rates were not so designated.
Criteria for a Positive Test
The subjects were diagnosed as having a positive response
if they had ST-segment depression of 1.5 mm or more, 0.08
sec from the J point. ST-segment slopes characterized as flat,
upsloping, or downsloping were included. ST elevation of 1
mm when compared to control was also designated as
positive. Those diagnosed as having an equivocal response
included ST-segment depression of 0.5 mm to 1.4 mm and
those with multifocal or frequent premature contractions
initiated by exercise, even if there was no S-segment depres-
ion.
Predicted pulse response for our protocol are available on
request.
Age Distribution
The age and sex distribution of the subjects reported is
depicted in table 1. Approximately 80% of the total popula-
tion was found to be between 31 to 60 years. The majority
of the patients were male although a small group of females
was included. A breakdown as to the percentage of subjects
who were thought to be normal prior to the test as compared
to those with known disease was not available.

Table 1

<table>
<thead>
<tr>
<th>Age</th>
<th>Males</th>
<th>Females</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–20</td>
<td>15</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>21–30</td>
<td>59</td>
<td>35</td>
<td>84</td>
</tr>
<tr>
<td>31–40</td>
<td>343</td>
<td>58</td>
<td>401</td>
</tr>
<tr>
<td>41–50</td>
<td>922</td>
<td>158</td>
<td>1080</td>
</tr>
<tr>
<td>51–60</td>
<td>681</td>
<td>144</td>
<td>855</td>
</tr>
<tr>
<td>61–70</td>
<td>214</td>
<td>92</td>
<td>306</td>
</tr>
<tr>
<td>71–99</td>
<td>7</td>
<td>9</td>
<td>16</td>
</tr>
</tbody>
</table>

Results
Combined Coronary Events: Progression of Angina, Myocardial
Infarctions and Death
The incidence of all coronary events (either one, two,
or three of the listed events was counted as a single event) in the positive responders is depicted in
figure 1. The incidence of coronary events in the positive responders is almost 10% a year. The four-
year incidence of events in the positive responders is
46%, as contrasted with 7% for the negative responders (line labeled A), a sevenfold difference. A
two-year incidence among equivocal responders (line
B) of 25% was found. After eight years 76% of the positive responders had had some coronary event, an
eight-year average of 9.5% per year. When the male
and female positive responders were analyzed

Figure 1
Life table display with two standard deviations of the mean at each
year calculated. A) The incidence of all coronary events in the
negative responders. B) Incidence of events in equivocal responders
(those with ST depression from 0.5 to 1.4 mm). C) Classically
positive responders (ST depression of 1.5 or more mm).
separately, there was no statistical difference between the sexes.

Myocardial Infarction

In figure 2 the incidence of myocardial infarction is shown. The four-year incidence of infarction in the positive responders is 15%, as compared to 1% in the negative responders. Those with equivocal response had a 5% incidence of infarction in four years. The eight-year incidence of myocardial infarction of 27% results in an average infarct incidence of 3.5% per year in positive responders as opposed to less than ½% a year in negative responders.

Death

Figure 3 illustrates the mortality rate of 13.2% over four years, which is more than ten times the 1.1% incidence in negative responders. Again there was no statistical difference in the death rate of males and females at four years.

Time of Onset of Ischemia

When the incidence of all coronary events is analyzed according to the time of onset of ischemia, the incidence of events is as depicted in figure 4. Those with 2 mm ST depression which appeared by 3

A. Sample# 1013
Year 0 1 2 3 4 5 6 7 8
B. Sample# 269
Year 0 1 2 3 4 5 6 7 8
C. Sample# 578
Year 0 1 2 3 4 5 6 7 8

A. Sample# 1219
Year 0 1 2 3 4 5 6 7 8
B. Sample# 397
Year 0 1 2 3 4 5 6 7 8
C. Sample# 658
Year 0 1 2 3 4 5 6 7 8
min on the treadmill (a workload equivalent to 4 METS) have an incidence of 15% a year. Those whose ischemic ST depression does not appear until 5 min on our protocol (a workload equivalent to the double Master’s Test) have an incidence of approximately 8% a year while those whose ischemia does not become evident until 7 min (a workload very near the peak capacity of most subjects) have an incidence of coronary events of only 4% per year. These differences are statistically significant ($P = 0.01$).

The incidence of combined events as related to the time of recovery from ischemic ST change was analyzed. Those whose ST depression returned to normal at one minute following the test and those whose ST depression returned to normal 3 min following the test had the same incidence of coronary events as when all positives were lumped together.

Magnitude of ST-Segment Depression

In order to study the magnitude of ST-segment depression, the incidence of all coronary events of those subjects manifesting 4 mm or more ST-segment depression at any time during the test was compared with the incidence in those with 2 mm ST-segment depression. Figure 5 reveals that their prognosis for future problems appears to be almost the same as those positive responders with a lesser degree of depression. The assumption that people with extreme

Figure 4

Incidence of combined events. When the onset of 2 mm ST-segment depression is at 3 minutes or before, the prognosis is significantly worse than when it is manifested first at 5 minutes. When ST depression is first manifested at 7 minutes, which is near peak capacity, the incidence of coronary events is only slightly greater than those with a negative test.

<table>
<thead>
<tr>
<th>Onset 7 min</th>
<th>Sample #</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Onset 5 min</th>
<th>Sample #</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>93</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Onset 3 min</th>
<th>Sample #</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>131</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5

When the incidence of coronary events in those with 4 mm or more ST depression are compared with those with 2 mm depression, the incidence of events is not significantly different.

<table>
<thead>
<tr>
<th>ST Dep</th>
<th>Sample #</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>4mm Pos</td>
<td>432</td>
<td>0</td>
</tr>
<tr>
<td>ST Dep</td>
<td>279</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>167</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ST Dep</th>
<th>Sample #</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2mm Pos</td>
<td>609</td>
<td>0</td>
</tr>
<tr>
<td>ST Dep</td>
<td>408</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>283</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>214</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>164</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>116</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>7</td>
</tr>
</tbody>
</table>
degrees of ischemic ST-segment depression are in more danger than those with 1½ to 2 mm depression was not substantiated by this data.

Effects of Age

The patients were divided into three age groups, zero to 40, 41 to 50, and 51 to 99, and the positive responders were analyzed. The incidence of all coronary events was the same. The group under 40 years of age was too small to be tested for statistical significance, but there appears to be no long-term difference in the outcome of those who have an early onset of ST-segment depression as compared to those who develop it later. When the negative responders are separated into age groups and analyzed for occurrence of myocardial infarction alone, there is a slight tendency for the older subjects to have an increased incidence of myocardial infarction.

Effect of a Previous Myocardial Infarction

Figure 6 demonstrates that a negative stress test in a subject with previous infarction does not insure that a coronary event may not occur later. These subjects had a four-year incidence of coronary events of 40% as compared to the positive responders with a previous infarction who had a four-year incidence of 70%. Subjects who had never had a myocardial infarction but have a positive stress test have a 30% incidence of coronary events in four years, which is 16% less than all positives in our total study. Therefore the likelihood of having a new coronary event is more than twice as great in positive responders who have had a previous infarction as in those with no infarction.

Chronotropic Incompetence

Subjects with normal ST segments but with a reduced heart rate response to the stress test protocol when compared to normals of the same age and sex were found to have the same incidence of all coronary events as patients with ischemic ST segments classified as positive. Those who had reason to be well conditioned by their exercise history were excluded.

Figure 7 illustrates that the incidence of all coronary events in those with a slow pulse and with a normal ECG pattern was similar to those classified as positive responders. Approximately 20% of the subjects died and the remaining events were infarction and the onset of angina.

Discussion

The high incidence of coronary events in the equivocal responders in our study indicate to us that the lower limit for a positive stress test should be modified to at least 1.0 mm rather than the 1.5 mm.
level now used. Bruce\(^6\) and others\(^7\) have recommended 1.0 mm ST depression be required for positivity, and if the ST segment is horizontal or downsloping, we would concur in this conclusion. The high incidence of coronary events in the positive responders has established the importance of this data in patient management. By using 1.5 mm instead of 1.0 mm as the criteria for positivity, the specificity was probably improved but the sensitivity decreased.

The recognition that the positive test is more serious in patients who have had a previous myocardial infarction as compared to those who have not had an infarct is of special importance. The use of this information in evaluating the response to certain therapeutic interventions such as vein graft surgery should be especially interesting.

It was surprising to us to find that those subjects having 4 mm or more ST-segment depression did not show a higher incidence of coronary events than those with 2 mm. It is well known that previous myocardial infarction decreases the incidence of positive stress tests\(^8\) and it would be our opinion that it also decreases the incidence of deep ST-segment depression. Thus subjects with myocardial scars would actually fall into the group with less ST-segment depression than for example those with left ventricular hypertrophy and ischemia, who are inclined to have greater ST depression.

The high proportion of those with an inadequate chronotropic response to exercise developing some new coronary event, even when they did not develop ischemic ST-segment changes, confirms our suspicions about this still poorly understood process. Hinkle, Carver, and Plakum\(^9\) have described an increased incidence of sudden death in subjects with a reduced heart rate response to exercise. They did not present a satisfactory mechanism for this finding, however. Studies now underway in our laboratory suggest that a high proportion of these patients have poor left ventricular function and most have severe three vessel coronary disease. Thirty percent have had previous myocardial infarction. Improvement after successful vein graft surgery may occur, a fact which establishes that the process may be reversible, but this response is by no means the rule. The mechanisms responsible for this phenomenon are now under study and will be the subject of another report.

It must be emphasized that this study includes many subjects known to have advanced coronary disease as well as many who were believed to be perfectly normal. The incidence of events would be different if we had restricted our data to a group of people believed to be normal. No selection was made in sampling subjects except that follow-up information be available.

The types of treatment subjects may have been under was also not taken into consideration. Many were on no treatment, some on so-called coronary dilators, anticoagulants, and some even in exercise programs. One hundred and forty-six had undergone coronary bypass surgery. No separation of these will be presented in this report, but it was determined that they had no significant statistical impact on the outcome.

The heterogeneous nature of the subjects in the cohort studied should be re-emphasized. The fact that follow-up data was the sole criteria for inclusion may introduce a bias due to the failure to include either those who were unknown deaths and possibly those who did well may not have reported back to their family physicians.

It seems that information obtained from stress tests,
when combined with associated risk factors and eventually effects of various treatment protocols, should contribute to more reliable predictions of future coronary events and mortality in subjects with coronary heart disease.

Acknowledgments

We are grateful to the attending physicians of Memorial Hospital Medical Center who helped us obtain follow-up data on the subjects tested. Also to Cheryl Ellestad and others who assembled the follow-up data, entered it into the computer, and prepared the tables. Finally the support from Lee Richard, our computer programmer, and from William Kirk, statistician, who made it possible to analyze the data in a meaningful way, deserve special credit.

References

Predictive implications of stress testing. Follow-up of 2700 subjects after maximum treadmill stress testing.
M H Ellestad and M K Wan

Circulation. 1975;51:363-369
doi: 10.1161/01.CIR.51.2.363

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1975 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/51/2/363

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at: http://circ.ahajournals.org//subscriptions/