The Reduction of Infarct Size — An Idea Whose Time (For Testing) Has Come

EARLY IN THIS CENTURY, cardiovascular physiologists began to direct their attention to the study of the control of myocardial oxygen consumption (MVO$_2$). Evans and Matsuoka, in Starling’s laboratory in London,1 and Rohde, in Heidelberg,2 called attention to the importance of intraventricular pressure as a principal determinant of MVO$_2$. Technical developments during subsequent decades allowed a systematic reexamination of this problem in the mid-1950s,3 resulting in more precise elucidation of the role of intraventricular tension, myocardial fiber shortening, contraction frequency, and external cardiac work in regulating the heart’s oxygen needs. Later, the roles of myocardial contractility,4 the basal oxygen needs of the noncontracting heart,5 the costs of electrical depolarization of the myocardium,6 and the effect of shortening against a load7 on MVO$_2$ were defined.8

While of considerable interest to physiologists, an understanding of the determinants of MVO$_2$ has considerable clinical implications as well. After all, myocardial ischemia, the principal consequence of coronary arteriosclerosis, is characterized by an imbalance between myocardial oxygen needs and availability, which results in chest discomfort, as well as in alterations in the electrical, mechanical, and metabolic properties of the heart. Persistent, severe ischemia, of course, results in myocardial necrosis.

Armed with an understanding of the determinants of MVO$_2$, it seemed like a logical step to determine whether altering the relation between myocardial energy supply and demand might actually influence the severity and extent of ischemic injury, as well as the extent of actual myocardial necrosis following coronary occlusion.9,10 Utilizing a technique for epicardial electrocardiography, combined with myocardial enzyme (CPK) determinations,11 histologic, histochemical, and electronmicroscopic12 analysis of cardiac muscle, it soon became clear that following coronary occlusion, interventions which augment MVO$_2$ increase the extent and severity of ischemic injury and ultimately the quantity of necrotic tissue.13 A corollary of this observation was that in the first few hours following coronary occlusion, there is no clear demarcation between normal myocardium and tissue which has been irreversibly injured by ischemia. Indeed, pathologic observations have shown that ischemic tissue damage is spotty in the periphery of the injured zone.14 It now appears that for several hours following coronary occlusion the fate of substantial quantities of myocardium is delicately poised; relatively slight alterations in the balance between energy supply and demand at this time can influence the ultimate viability of large quantities of cardiac muscle.

Initially, we manipulated the balance between myocardial oxygen supply and demand by means of positive inotropic agents and tachycardia, both of which increased oxygen demands and, thereby, increased the extent and severity of ischemic injury.15 In other studies mechanical means were used to alter this balance. For example, raising aortic and thereby coronary perfusion pressure augmented perfusion of the border zone through collateral vessels despite increasing myocardial oxygen needs; that the net balance was affected favorably by raising aortic pressure was not surprising when considered in the light of the observation in the normal dog that when aortic pressure is elevated, coronary blood flow rises proportionately more than does MVO$_2$, so that myocardial oxygenation, as reflected in the coronary venous oxygen tension, rises.16

Since these initial investigations, work in our laboratory, as well as in others, has broadened the number and nature of interventions which can augment or reduce the quantity of infarcted tissue following coronary occlusion$^{17-35}$ (table 1). Substances as diverse as hyaluronidase,15 glucose-insulin-potassium,12 hypertonic mannitol,16 cobra venom factor, an inhibitor of the third component of complement,17 and hydrocortisone18 have been shown to exert beneficial effects. Two findings of great potential clinical interest have emerged from these studies on experimental animals: 1) the quantity of myocardium which can be salvaged by these interventions is substantial, and 2) it is possible to commence the treatment a number of hours following the occlusion and still demonstrate effectiveness.

To date, there has been only a limited number of clinical applications of these efforts designed to reduce myocardial ischemic damage. Freecordial maps have suggested the effectiveness of beta-adrenergic
blockade with propranolol19 and practolol,20 of hyaluronidase,21 of sublingual nitroglycerine,22, 23 and of intraaortic balloon counterpulsation24 in small numbers of patients. Serum CPK disappearance curves, as developed by Shell and collaborators,26 have indicated that lowering arterial pressure in hypertensive patients with acute myocardial infarction may also reduce infarct size.26 The aforementioned observations are preliminary, have been carried out on very small numbers of patients thus far, and while they constitute exciting pilot studies, they cannot and do not claim to be formal, clinical trials based on which the routine treatment of acute myocardial infarction can be altered.

The problem of limiting infarct size in patients with occlusive coronary artery disease is of the utmost importance. Acute myocardial infarction constitutes the most common cause of death in this country. In patients with this condition who reach the hospital, death due to arrhythmias has been brought under control, but no real dent has been made on the mortality due to pump failure or on the incidence of postinfarction heart failure, both of which result from reduction of the quantity of the viable contractile mass. These very serious consequences of the atherosclerotic process can obviously be avoided by prevention of the development or actual reversal of the fundamental atherosclerotic process itself. In the very long term this approach is clearly the one of choice, and research into the mechanism of development of atherosclerosis must receive the highest priority. Despite a number of interesting leads, however, the elimination of atherosclerosis still seems far away. Therefore, since millions of individuals now have or are developing serious coronary atherosclerosis, it would appear prudent to pursue a multipronged attack on the problem. We submit that one of these prongs should be the limitation of the extent of myocardial necrosis following coronary occlusion.

Abundant experimental evidence indicates that this is now possible. Pilot studies support its clinical feasibility, and a careful, rigorously conducted prospective trial is likely to provide useful results and would now be timely. If such a clinical trial demonstrated success in reducing infarct size, it would represent the extension of a chain whose earliest links were represented by the investigations of Evans and Matsuoka,1 and Rohde2 which, at the time they were carried out, must have seemed of little, if any, clinical relevance.

EUGENE BRAUNWALD, M.D.
PETER R. MAROKO, M.D.

References

2. ROHDE E: Über den Einfluss der mechanischen Bedingungen

\textbf{Table 1}

\textbf{Interventions That Modify Myocardial Injury Following Coronary Occlusion}

<table>
<thead>
<tr>
<th>I. Interventions That Reduce Myocardial Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. By decreasing myocardial oxygen demand</td>
</tr>
<tr>
<td>1. propranolol16, 11, 19, 27-29</td>
</tr>
<tr>
<td>2. practolol20, 23</td>
</tr>
<tr>
<td>3. cardiac glycoside in the failing heart11, 12</td>
</tr>
<tr>
<td>4. counterpulsation</td>
</tr>
<tr>
<td>a. intraaortic balloon treatment24, 27, 34</td>
</tr>
<tr>
<td>b. external counterpulsation28</td>
</tr>
<tr>
<td>5. nitroglycerin29, 30, 34-38</td>
</tr>
<tr>
<td>6. by decreasing afterload in hypertensive individuals — Arfonad26</td>
</tr>
<tr>
<td>7. by inhibition of lipolysis — beta-pyridyl-carbinal27</td>
</tr>
<tr>
<td>B. By increasing myocardial oxygen supply</td>
</tr>
<tr>
<td>1. directly</td>
</tr>
<tr>
<td>a. coronary artery reperfusion40-44</td>
</tr>
<tr>
<td>b. elevating arterial pO\textsubscript{2}45</td>
</tr>
<tr>
<td>c. thrombolytic agents46</td>
</tr>
<tr>
<td>2. through collateral vessels</td>
</tr>
<tr>
<td>a. elevation of coronary perfusion pressure by methoxamine, neseynephrine, or norepinephrine41, 11, 18, 34, 47</td>
</tr>
<tr>
<td>b. intraaortic balloon counterpulsation24, 31, 34</td>
</tr>
<tr>
<td>c. external counterpulsation35</td>
</tr>
<tr>
<td>3. by increasing plasma osmolality</td>
</tr>
<tr>
<td>a. mannitol14, 48</td>
</tr>
<tr>
<td>b. hypertonic glucose12</td>
</tr>
<tr>
<td>C. By augmenting anaerobic metabolism (presumed)</td>
</tr>
<tr>
<td>1. glucose-insulin-potassium12, 49</td>
</tr>
<tr>
<td>2. hypertonic glucose47</td>
</tr>
<tr>
<td>D. By enhancing transport to the ischemic zone of substrate utilized in energy production (presumed) — hyaluronidase15, 21</td>
</tr>
<tr>
<td>E. By protecting against autolytic and heterolytic processes (presumed)</td>
</tr>
<tr>
<td>1. hydrocortisone10, 48</td>
</tr>
<tr>
<td>2. cobra venom factor17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. Interventions That Increase Myocardial Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. By increasing myocardial oxygen requirements</td>
</tr>
<tr>
<td>1. isoproterenol10, 11, 19, 30-37</td>
</tr>
<tr>
<td>2. glucagon11, 31</td>
</tr>
<tr>
<td>3. ouabain11</td>
</tr>
<tr>
<td>4. bretylium tosylate11</td>
</tr>
<tr>
<td>5. tachycaardia17, 47-48</td>
</tr>
<tr>
<td>B. By decreasing myocardial oxygen supply</td>
</tr>
<tr>
<td>1. directly</td>
</tr>
<tr>
<td>a. hypoxemia13</td>
</tr>
<tr>
<td>b. anemia14</td>
</tr>
<tr>
<td>2. through collateral vessels — reducing coronary perfusion pressure (hemorrhage)11, 11, 20, 47</td>
</tr>
</tbody>
</table>
| C. By decreasing substrate availability — hypogly-

*UIt denotes intervention which has received some clinical application.

Circulation, Volume 50, August 1974
auf die Tätigkeit und den Sauerstoffverbrauch der
Wärmbildner der menschlichen Leber. Naunyn Schmiedeberg's Arch Pharmakol 203: 401, 1912
3. Sarnoff SJ, Braunwald E, Welch GH Jr, Case RB, Stainsby
WN, Macruz R: Hemodynamic determinants of oxygen
consumption of the heart with special reference to the
4. Sonnenblick EH, Ross J Jr, Covell JW, Kaisar GA,
Braunwald E: Velocity of contraction as a determinant of
5. McKeever WP, Gregg DE, Canney PC: Oxygen uptake of
7. Coleman HE, Sonnenblick EH, Braunwald E: Myocardial
oxygen consumption associated with external work: the
8. Braunwald E: Control of myocardial oxygen consumption:
physiologic and clinical considerations. Am J Cardiol 27:
416, 1971
influencing the severity of myocardial ischemia following
experimental coronary occlusion. (abstr) Circulation 40
(suppl III): III-130, 1969
10. Braunwald E, Covell JW, Maroko PR, Ross J Jr: Effects of
drugs and of counterpulsation on myocardial oxygen
11. Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covell
JW, Ross J Jr, Braunwald E: Factors influencing infarct size
12. Maroko PR, Libby P, Sobel BE, Bloor CM, Sybers HM,
Shell WE, Covell JW, Braunwald E: The effect of glucose-
insulin-potassium infusion on myocardial infarction
following experimental coronary artery occlusion.
Circulation 45: 1160, 1972
Myocardial changes associated with cardiogenic shock. N
GH Jr: Hemodynamic determinants of coronary flow: effect
of changes in aortic pressure and cardiac output on the
relationship between myocardial oxygen consumption and
15. Maroko PR, Libby P, Bloor CM, Sobel BE, Braunwald E:
Reduction by hyaluronidase of myocardial necrosis following
16. Willerson JT, Powell WJ Jr, Guiney TE, Stark JJ, Sanders
CA, Leaf A: Improvement in myocardial function and
coronary blood flow in ischemic myocardium after amrinone.
J Clin Invest 51: 2980, 1970
17. Maroko PR, Carpenter CB: Reduction in infarct size
following acute coronary occlusion by the administration of
18. Libby P, Maroko PR, Sobel BE, Bloor CM, Covell JW,
Braunwald E: Reduction of experimental myocardial
infarct size by corticosteroid administration. J Clin Invest
52: 599, 1973
Braunwald E: Precordial ST segment mapping: an
atraumatic method for assessing alterations in the extent of
myocardial ischemic injury. The effects of pharmacologic
and hemodynamic interventions. Am J Cardiol 29: 223, 1972
20. Pelleides L, Reid DW, Thomas M, Shillingford JP: Inhibition
by beta-blockade of the ST segment elevation after acute
E: Effect of hyaluronidase on myocardial ischemic injury in
patients with acute myocardial infarction. (abstr) Clin Res
21: 436, 1973
22. Gold HK, Leinbach RC, Sanders CA: Use of sublingual
nitroglycerin in congestive failure following acute myocar-
B: Effect of nitroglycerin on ST segments in acute myocar-
dial infarction. (abstr) Circulation 48 (suppl IV): IV-207,
1973
24. Maroko PR, Bernstein EF, Libby P, DeLaria GA, Covell
JW, Ross J Jr, Braunwald E: The effects of intraaortic
balloon counterpulsation on the severity of myocardial
ischemic injury following acute coronary occlusion. Counter-
pulsation and myocardial injury. Circulation 45: 1150, 1972
of the extent of myocardial infarction in the conscious dog by
means of analysis of serial changes in serum creatine
26. Shell WE, Ehsani AA, Sobel BE: Reduction of infarct size
in hypertensive patients with acute myocardial infarction.
(abstr) J Clin Invest 52: 76a, 1973
27. Watanabe T, Shintani F, Fu L, Fuji J, Watanabe H, Kato K:
Influence of inotropic alteration on the severity of myocar-
dial ischemia after experimental coronary occlusion. Jap
Heart J 13: 222, 1972
28. Sommers HM, Jennings RB: Ventricular fibrillation and
myocardial necrosis after transient ischemia. Arch Intern
Med 129: 780, 1972
29. Pierce WS, Carter DR, McGavran MH, Waldhausen JA:
Modification of myocardial infarct volume. Arch Surg 197:
682, 1973
30. Libby P, Maroko PR, Covell JW, Molloch CI, Ross J Jr,
Braunwald E: The effects of praoetol on the extent of
myocardial ischemic injury following experimental coronary
occlusion and its effects on ventricular function in the
31. Watanabe T, Covell JW, Maroko PR, Braunwald E, Ross J Jr:
The effects of increased arterial pressure and digitalis on the
severity of myocardial ischemia in the pharmacologically
depressed heart. Ischemia and cardiac depression. Am J Cardiol
30: 371, 1972
32. Maroko PR, Braunwald E, Ross J Jr: Metabolic costs of
inotropic agents. In, Myocardial Infarction, edited by
Corday E, Swan HJC, Baltimore, Williams and Wilkins,
1973, p 244
33. Levine HD, Maroko PR, Bernstein EF: Comparison of
intraaortic balloon pumping and left ventricular decompress-
ion on myocardial ischemic injury after experimental coro-
34. Leinbach RC, Gold HK, Buckley MJ, Austen GW, Sanders
CA: Reduction of myocardial injury during acute infarction
by early application of intraaortic balloon pumping and
propranolol. (abstr) Circulation 48 (suppl IV): IV-100, 1973
35. Johansen KH, DeLaria GA, Bernstein EF: Effect of external
counterpulsation in reduction of myocardial ischemia follow-
ing coronary artery occlusion. Trans Am Soc Artif Intern
Organs 19: 419, 1973
36. Smith ER, Redwood DR, McCarron WE, Epstein SE:
Coronary artery occlusion in the conscious dog. Effects of
alterations in arterial pressure produced by nitroglycerin,
hemorrhage, and alpha-adrenergic agonists on the degree of
myocardial ischemia. Circulation 47: 51, 1973
37. Hirschfeld JW Jr, Boxer JS, Goldstein RE, Barrett MJ,
Epstein SE: Reduction in severity and extent of myocardial
infarction when nitroglycerin and methoxamine are administered during coronary occlusion. Circulation 49: 291, 1974

42. BLOOR CM, WHITE FC: Coronary artery reperfusion: early effects on coronary hemodynamics. (abstr) Am J Cardiol 31: 121, 1973

43. McNAMARA JJ, SOETER JR, SUEHIRO GT: Myocardial viability after transient ischemia. (abstr) Am J Cardiol 31: 146, 1973

45. MAROKO PR, HALE SL, BRAUNWALD E: The influence of oxygen inhalation on the severity of myocardial ischemic injury following experimental coronary occlusion. (abstr) Circulation 48 (suppl IV): IV-128, 1973

46. POLIWODA H: The thrombolytic therapy of acute myocardial infarction. Angiology 17: 528, 1966

47. REDWOOD DR, SMITH ER, EPSTEIN SE: Coronary artery occlusion in the conscious dog. Effects of alterations in heart rate and arterial pressure on the degree of myocardial ischemia. Circulation 46: 323, 1972

50. SPATH JA Jr, LANE DL, LEFER AM: Preservation of cardiac cell integrity by methylprednisolone in acute myocardial ischemia. (abstr) Am J Cardiol 33: 171, 1974

52. SHELL WE, SOBEL BE: Deleterious effects of increased heart rate on infarct size in the conscious dog. Am J Cardiol 31: 474, 1973

55. LIBBY P, MAROKO PR, BRAUNWALD E: Increased myocardial ischemic injury during insulin induced hypoglycemia. (abstr) Am J Cardiol 33: 152, 1974
The Reduction of Infarct Size — An Idea Whose Time (For Testing) Has Come
EUGENE BRAUNWALD and PETER R. MAROKO

Circulation. 1974;50:206-209
doi: 10.1161/01.CIR.50.2.206
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1974 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on
the World Wide Web at:
http://circ.ahajournals.org/content/50/2/206.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally
published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not
the Editorial Office. Once the online version of the published article for which permission is being
requested is located, click Request Permissions in the middle column of the Web page under Services.
Further information about this process is available in the Permissions and Rights Question and Answer
document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/