Electrophysiological Delineation of the Specialized A-V Conduction System in Patients with Congenital Heart Disease

II. Delineation of the Distal His Bundle and the Right Bundle Branch

By Ehud Krongrad, M.D., James R. Malm, M.D., Frederick O. Bowman, Jr., M.D., Brian F. Hoffman, M.D., and Albert L. Waldo, M.D.

SUMMARY

The course of the distal His bundle and the right bundle branch was electrophysiologically delineated during open heart surgery in nine patients with tetralogy of Fallot and in six other patients with various forms of congenital heart disease. In patients with tetralogy of Fallot, right bundle branch electrograms were usually recorded up to 25 mm from the plane of the tricuspid valve annulus and only rarely beyond this site, indicating that the electrical activity in the right bundle branch was isolated from right ventricular myocardium to a site 25 mm away from the tricuspid annulus in the patients studied. In one patient with right bundle branch block pattern on the electrocardiogram induced by a ventriculotomy, the right bundle branch was traced to the Purkinje fiber-ventricular muscle junction, supporting the observation that a right bundle branch block pattern induced by ventriculotomy does not indicate that injury to the proximal part of the right bundle branch occurred.

In five patients with various forms of congenital heart disease we did not record electrical activity from the distal His and right bundle branch. The anatomic and functional reasons for this failure are discussed. In one patient with a common ventricle, the identification of the specialized atrioventricular (A-V) conduction system allowed for total surgical correction of this anomaly without injury to the conduction system. The electrophysiological delineation of the specialized atrioventricular conduction system is suggested for all patients undergoing open heart surgery who have complicated congenital heart disease on which no data are available regarding the exact location of the specialized atrioventricular conduction system, for patients with unusual ventricular anatomy, and for patients in whom the hemodynamic and angiographic studies do not correlate well with the electrocardiogram.

Additional Indexing Words:
His bundle Complete heart block His bundle electrogram
Congenital heart disease Right bundle branch Common ventricle
Tetralogy of Fallot

WE HAVE REPORTED on the electrophysiological delineation of the His bundle proximal to the membranous septum during open heart surgery in patients with congenital heart disease. Although complete heart block can occur during surgical manipulation in the atria, during correction of endocardial cushion defects or transposition of the great vessels, it is also likely to occur during surgical repair of a ventricular septal defect. Complete heart block can also occur as a result of surgical intervention in the left ventricle without an intraventricular communication as in patients with idiopathic hypertrophic subaortic stenosis. Delineation of the specialized atrioventricular (A-V) conduction system in the ventricle might therefore facilitate the surgical correction of congenital heart disease which requires intraventricular repair and closure of intraventricular communications. Electrophysiological delineation of the specialized A-V conduction system will also permit the identification of the conduction system in patients with forms of congenital heart disease for which there

From the departments of Pediatrics, Pharmacology, and Surgery, College of Physicians and Surgeons of Columbia University and the Surgical Service of the Presbyterian Hospital, New York, New York.

Supported in part by Research Grant HE 12758-04 from the National Heart and Lung Institute, U.S. Public Health Service. This work was performed during Dr. Krongrad's tenure as John Polacheck Medical Research Fellow and Dr. Waldo's tenure as Otto G. Storm Established Investigator of the American Heart Association.

Dr. Waldo's present address is University of Alabama Medical Center, Birmingham, Alabama.

Address for reprints: Ehud Krongrad, M.D., Department of Pediatrics, Columbia Presbyterian Medical Center, 622 West 168th Street, New York, New York 10032.

Received June 15, 1973; revision accepted for publication February 18, 1974.

1232

Circulation, Volume XLIX, June 1974
A-V CONDUCTION IN CONGENITAL HEART DISEASE

is little or no information on the exact location of these structures. Furthermore, the ease, reliability, and feasibility of electrophysiologically delineating the specialized A-V conduction system may permit surgical repair of some congenital heart defects previously thought incorrectable, in large part because of the great likelihood that complete heart block would be produced.

The purpose of this study is to report our observations during open heart surgery on the precise location of the intraventricular recording sites from which electrograms were recorded from the specialized conduction system in patients with various types of congenital heart disease.

Material and Methods

Following institution of cardiopulmonary bypass and using our previously described technique, the course of the intraventricular part of the specialized A-V conductor system was electrophysiologically delineated during open heart surgery in 20 patients: nine with tetralogy of Fallot and with 11 other forms of congenital heart disease (table 1). The ages ranged from 3 to 41 years.

Electrograms recorded from the His bundle or right bundle branch were identified by criteria previously described. The appearance of a deflection in the electrograms during the isoelectric portion of the P-R interval identified conduction in the His bundle or the right bundle branch. Deflections in the specialized conduction system electrograms recording activity occurring simultaneously with the onset or during ventricular activation, i.e., at the beginning or during the QRS complex, were considered to be Purkinje fiber electrograms.

To delineate the specialized A-V conduction system in the right ventricle in patients with diseases which included a ventricular septal defect, a special grid system was used (fig. 1). The first recording site was under the septal leaflet of the tricuspid valve, immediately adjacent to the edge of the ventricular septal defect (fig. 1, site A). The electrode probe was then advanced by increments of 5 mm, i.e., the probe diameter, along the edge of the ventricular septal defect toward the papillary muscle of the conus (muscle of Lencizi) and from there toward the moderator band of the right ventricle. The sites were labeled according to their distance from the tricuspid valve annulus (fig. 1, sites A to A). Recordings were then obtained from a line one probe width (5 mm) from the edge of the ventricular septal defect (sites B to B) and following immediately below the A line. When appropriate, a third line of recordings, the C line, was obtained. The C line followed the B line in the fashion described above. Recordings from the surface of the papillary muscle of the conus or the moderator band were so labeled. Slight modification of this diagrammatic representation was needed for some patients due to differences in intraventricular anatomy, the distance of the papillary muscle of the conus from the tricuspid annulus, or the location or absence of a ventricular septal defect. None of the patients developed A-V conduction disturbances during the delineation of the intraventricular specialized A-V conduction system.

Results

Patients Studied

<table>
<thead>
<tr>
<th>Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetralogy of Fallot</td>
<td>9</td>
</tr>
<tr>
<td>Ventricular septal defect, pulmonary stenosis</td>
<td>1</td>
</tr>
<tr>
<td>and asymmetric septal hypertrophy</td>
<td>1</td>
</tr>
<tr>
<td>Common ventricle</td>
<td>1</td>
</tr>
<tr>
<td>L-Transposition of the great arteries,</td>
<td>1</td>
</tr>
<tr>
<td>complete heart block</td>
<td>1</td>
</tr>
<tr>
<td>Pulmonary valve stenosis</td>
<td>2</td>
</tr>
<tr>
<td>Pulmonary and aortic stenosis</td>
<td>1</td>
</tr>
<tr>
<td>Double chambered right ventricle</td>
<td>1</td>
</tr>
<tr>
<td>Subvalvar aortic stenosis</td>
<td>1</td>
</tr>
<tr>
<td>Double outlet left ventricle</td>
<td>1</td>
</tr>
<tr>
<td>Ostium primum defect</td>
<td>1</td>
</tr>
<tr>
<td>Isolated dextrocardia, common ventricle</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 1

Studies in Patients with Tetralogy of Fallot

Figure 2 presents the intraventricular electrophysiological delineation of the specialized A-V conduction system in a patient with tetralogy of Fallot. In this patient, specialized conduction system electrograms were recorded from sites A through A. Site A was under the septal leaflet of the tricuspid valve immediately adjacent to the tricuspid annulus. The specialized conduction system electrograms recorded from this site were considered to represent activation of the distal His bundle, first, because histological
studies show that in most cases the distal portion of
the His bundle extends a few millimeters inferiorly to
the tricuspid valve annulus, and second, because
selective pacing of the specialized conduction system
at site A₁ at threshold level produced a QRS complex
indistinguishable from that observed by pacing the
atria from the area of the sinus node or selective pacing
of the atrial part of the common bundle. Specialized conduction system electrograms recorded
at sites A₂ to A₄ were considered to represent right
bundle branch electrograms. Records obtained at sites
A₅, A₆, and the papillary muscle of the conus
demonstrated two specialized conduction system
electrograms, the first being a right bundle branch
electrogram, and the second, a Purkinje fiber electrogram
coinciding with the beginning of the QRS complex.
The record obtained from the moderator band showed
only a Purkinje fiber electrogram. These records were
obtained through a right ventriculotomy which
prolonged the QRS duration from 95 to 129 msec and
changed the scalar ECG configuration to a "right bun-
dle branch block pattern." Since the course of the
right bundle was delineated in this patient to the
Purkinje fiber-ventricular muscle junction, i.e., to the
point of its penetration into the myocardium, the
study provides further support to the observation that
an electrocardiographic pattern of right bundle branch
block can be seen in the presence of an intact proximal
right bundle branch. Figure 3 summarizes our experience for nine patients with tetralogy of Fallot. In two patients
records were obtained only from the papillary muscle
of the conus and the moderator band. In all patients,
we were able to trace the conduction system from sites
A₁ to A₅, i.e., about 15 mm from the tricuspid valve
annulus. From that latter site specialized conduction
system electrograms were found in a decreasing order
of frequency: 60% at 20 mm from the tricuspid an-
nulus, 50% at 25 mm, and 25% around the papillary
muscle of the conus. In no cases were we able to
record a right bundle electrogram from or around the
moderator band.

Studies in Patients with Other Forms of
Congenital Heart Disease

We studied patients with complicated and less
common forms of congenital heart disease in which
little or no information was available regarding the
anatomical course of the specialized A-V conduction
system.

In one patient with a ventricular septal defect,
pulmonary stenosis, and asymmetrical septal hyper-

Figure 2
Electrograms recorded from the distal His bundle (A₁) and right
bundle branch (sites A₂-A₄) in a patient with tetralogy of Fallot. The
records were obtained through a right ventriculotomy which
prolonged the QRS complex from 95 to 129 msec and produced an
ECG pattern of right bundle branch block. Note that the right bun-
dle branch could be traced to the Purkinje fiber-ventricular myocar-
dial junction in the presence of an electrocardiographic pattern of a
right bundle branch block. RB = right bundle branch electrogram;
H = His bundle electrogram; P = Purkinje fiber electrogram; Pap.
m = papillary muscle; Mod. band = moderator band.

Figure 3
Frequency of specialized A-V conduction system electrograms
recorded at various intraventricular sites in patients with tetralogy
of Fallot. The intraventricular sites are labeled according to their
distance from the plane of the tricuspid valve. Specialized A-V con-
duction system electrograms were obtained over 50% from sites 25
mm or less from the tricuspid valve plane, and less frequently
beyond 25 mm. Right bundle branch electrograms were not ob-
tained from the moderator band in any of the five cases. The
numbers at the top of the curve represent the ratio of successful
attempts/total attempts to record His bundle electrograms at these
sites.
trophy we recorded electrograms of the right bundle branch on line B, about 5 mm from the edge of the ventricular septal defect (fig. 4, sites B2 to B4). Therefore, the ventricular septal defect in this patient was repaired with sutures placed above the conduction system instead of the usual site, which in this patient would have included the right bundle branch. The location of recording sites of the intraventricular specialized conduction system in this patient is similar to the location of the specialized conduction system electrograms described previously in one patient with idiopathic hypertrophic subaortic stenosis.19

In one patient with a common ventricle without an outflow tract and with both great vessels in a side-to-side relationship14, 15 (fig. 5), the specialized conduction system electrograms were recorded along a ridge 7 mm in height on the posterior-inferior ventricular wall and could be traced 30 mm away from the plane of the atrioventricular valves. The favorable distribution of the papillary muscles and the chordae tendineae and the presence of two atriocentric valves allowed for total surgical repair and division of this common ventricle into two functional cavities. The patient had an uneventful recovery and was in normal sinus rhythm when discharged from the hospital.

We have also operated on one patient with dextrocardia, levo-transposition of the great vessels, and a common ventricle. In this patient, the specialized conduction system electrograms were identified along a segment 15 mm in length along the left side of a posterior ventricular ridge close to a large papillary muscle supplying both atrioventricular valves. The proximal intraventricular part of the specialized conduction system from the plane of the A-V valves toward the site of its identification 30 mm from the A-V valves was not delineated. In this patient the arrangement of the papillary muscles and chordae tendineae was such that a patch could not be inserted without extensive damage to the atrioventricular valve apparatus. This anatomic arrangement prohibited total surgical repair.

In one patient with levo-transposition of the great vessels, inversion of the ventricles, a ventricular septal defect, and complete heart block, we were not able to identify any specialized conduction system electrograms from 29 recording sites, inferior, superior, anterior, and posterior to the ventricular septal defect, nor from sites in the atrium, nor from sites which included an extensive search of the right-sided ventricular septum (anatomic left ventricle).

In two patients with isolated pulmonary stenosis and in one patient with isolated pulmonary and aortic stenosis, we were unable to identify specialized A-V conduction system electrograms along the crista supraventricularis. In one patient with a double-chambered right ventricle, records obtained at sites B2, B3, C3, and C4 did not show specialized conduction system electrograms. In one patient with a fibrous subvalvar aortic stenosis and mild right ventricular obstruction, electrograms denoting the specialized conduction system were recorded at sites A3 through A4 and the papillary muscle of the conus.

Figure 4

The figure shows sites from which intraventricular specialized conduction system electrograms were recorded in a patient with ventricular septal defect, pulmonary stenosis, and left ventricular obstruction due to asymmetric septal hypertrophy. Sites in which specialized conduction system electrograms were recorded are marked (+) and sites in which they were not recorded are marked (−).

Figure 5

The course of the intraventricular part of the specialized A-V conduction system, recorded in a patient with common ventricle. Specialized conduction system electrograms in this patient were recorded from the posterior-inferior ventricular wall along a segment of 30 mm in length. See text for discussion.
In one patient with an ostium primum defect, specialized conduction system electrograms were recorded from an area which extended from a site inferior to the coronary sinus ostium onto the left side of the ventricular septum up to 5 mm from the plane of the mitral valve. No conduction system electrograms were found on the right side of the ventricular septum immediately adjacent to the tricuspid annulus in this patient.

In one patient with double outlet left ventricle and a severely stenotic pulmonary artery arising to the left and posterior to the aorta, specialized conduction system electrograms were recorded at sites B1, B2, and B3. A specialized A-V conduction system electrogram was not recorded at sites A1 and A2 but was recorded at sites A3 and A4, sites which were close to the papillary muscle of the conus in this patient. No specialized conduction system electrograms were recorded in this patient anterior to the ventricular septal defect. Total surgical correction of the lesion in this patient was performed by closure of the ventricular septal defect and homograft insertion from the right ventricle into the pulmonary artery.

Discussion

Electrophysiological and methodological considerations

In all patients with tetralogy of Fallot, we were able to electrophysiologically delineate the location of the right-sided specialized A-V conduction system. This electrophysiologically-anatomical correlation agrees well with results of previously described histological studies.9, 10 Our results indicate that with our method, specialized conduction system electrograms in these patients are usually recorded at sites up to 25 mm from the tricuspid valve annulus and only rarely beyond this site. The progression of the specialized conduction system electrograms recorded from the right bundle, as we have shown for sites A1 to A4, prior to the beginning of the QRS complex and prior to the activation of Purkinje fibers at these sites, indicates that the right bundle branch was electrically isolated from the right ventricular myocardium up to 25 mm from the tricuspid valve annulus. This observation is similar to that made by Myerburg et al.17 for the canine heart and to our findings for the left bundle branch of man.18

In five patients we failed to record any specialized conduction system electrograms from sites inside the right ventricular cavity. In the first such patient, one with a double-chambered right ventricle, records were obtained only from lines B and C. It seems likely that in this patient the specialized A-V conduction system was in its usual location along line A, a site from which records were not obtained.

In a second patient with levo-transposition of the great vessels, ventricular septal defect, and complete heart block, an extensive search of the right side of the septal endocardial surface (anatomic left ventricle) failed to demonstrate any specialized conduction system electrograms. In a similar case described by Lev et al.,19 neither the common bundle nor bundle branches could be identified in their usual location. The absence of specialized conduction system electrograms on the right-sided ventricular septum in the case described by us might therefore suggest the absence of specialized conduction tissue from its usual location. However, since electrograms on this patient were recorded during a ventricular rhythm, the possibility exists that specialized conduction system electrograms were not identified due to depolarizations of the specialized conduction system and the ventricular myocardium simultaneously. The specialized conduction system electrograms may then occur within the ventricular electrogram or during the QRS complex preventing their recognition.

In three patients, none of whom had a ventricular septal defect, two with pulmonary stenosis, and one with aortic stenosis and pulmonary stenosis, we also failed to identify the specialized conduction system electrograms distal to the membranous septum. Since the proximal right bundle branch frequently appears on the left side of the ventricular septum,4, 20–22 it is likely that we were unable to record specialized A-V conduction system electrograms from some of the patients because the proximal right bundle was located too deeply beneath the right endocardial septal surface. Such an explanation is also supported by finding specialized conduction system electrograms in one patient with ostium primum defect recorded at site A4 on the left side of the ventricular septum and the absence of such an electrogram on the right side of the ventricular septum immediately adjacent to the tricuspid valve leaflet (right-sided A1). Such a leftward shift of the distal portion of the common bundle did not, however, affect our ability to record specialized conduction system electrograms in patients with a ventricular septal defect, such as in patients with tetralogy of Fallot. Further, failure to record specialized conduction system electrograms with our technique under the septal leaflet of the tricuspid valve might be due to the anatomy of the tricuspid septal leaflet and of its attachment by multiple chordae tendineae to the right ventricular septum.23 Such an arrangement might preclude the proper placement of the electrode probe under the tricuspid leaflet. Since we were able to localize the distal His bundle and proximal right bundle branch in all patients who had a ventricular septal defect, it seems likely that the
presence of a septal defect might favor the recording from this proximal intraventricular part of the specialized A-V conduction system.

In patients with aortic and pulmonary valvar stenosis who require surgery, a significant septal and infundibular hypertrophy is usually present. This also might affect the position or the depth of the specialized conduction system. The case reported by us in which a significant difference in the location of the specialized conduction system was found in the presence of asymmetric septal hypertrophy, and the case previously described by Coyne,18 support such speculation.

Latham,4 Titus,22 Truex,24 and Anderson25 reported on the presence of the specialized conduction system superior to the septal defect in some patients with various forms of congenital heart disease. In some patients, we attempted to record specialized conduction system electrograms superior to the defect, but in no case were such electrograms recorded in this position.

Figure 6 summarizes some anatomical considerations affecting the recording of intraventricular specialized conduction system electrograms by our method.

Surgical Considerations

The incidence of surgically-induced complete heart block following total correction of congenital heart disease associated with surgical closure of any ventricular septal defect is currently estimated to be 1–%.6 This incidence increases in patients who undergo total correction of endocardial cushion defects,27 idiopathic hypertrophic subaortic stenosis,5,6 and in patients undergoing surgical closure of a ventricular septal defect in the presence of levo-transposition of the great vessels. The incidence of complete heart block in patients with a single ventricle is so high as to be considered prohibitive to total surgical repair.

Surgically-induced complete heart block following repair of ventricular septal defect or tetralogy of Fallot can usually be prevented by avoiding the postero-inferior aspect of the septal defect by placing sutures into the base of the tricuspid leaflet and avoiding placing sutures that reach too deep into the ventricular septum, thus avoiding the specialized conduction system.28 The occasional downward displacement in the location of the specialized A-V conduction system, as has been shown by us, might account for the infrequent occurrence of complete heart block following surgery in patients even when the surgeon was careful to avoid the immediate postero-inferior aspect of the defect.

With the improvement of surgical techniques which permit surgical correction of the more complicated and unusual congenital heart disease, it seems prudent to electrophysiologically delineate the conduction system in these cases during surgery.1, 7, 8 This is especially useful for those diseases in which there are no data about the exact location of the specialized A-V conduction system. Our technique
offers hope for future successful surgical correction in patients hitherto considered unoperable.

The electrophysiological delineation of the intraventricular part of the specialized A-V conduction system is, therefore, used by us routinely for all patients with unusual ventricular anatomy, in patients with complicated congenital heart disease, and in patients in whom the hemodynamic and angiographic studies do not correlate well with the electrocardiogram.

References
6. **MORROW AG, LAMBREW CT, BRAUNWALD E**: Idiopathic hypertrophic subaortic stenosis II. Operative treatment and results or pre- and postoperative hemodynamic evaluations. Circulation 30 (suppl IV): IV-120, 1964
10. **REMTSSMA K, COPENHAVER WM**: Anatomic studies of the cardiac conduction system in congenital malformations of the heart. Circulation 17: 271, 1958
15. **HALLERMAN FJ, KINGSTON OW, RITTER DO, ONGLEY PA, HALLERMAN FJ**: Hemodynamics in cases of origin of both great vessels from right ventricle (abstr). Circulation 36 (suppl II): II-138, 1967
18. **KRONGRAD E, WALDO AL, KUPERSMIT J, SAROFY AL, BOWMAN FO JR, MALM JR, HOFFMAN BF**: Observation of human left ventricular endocardial activation sequence. (abstr) Am J Cardiol 31: 143, 1973
22. **TITUS JL, NEUFIELD HN, EDWARDS JE**: The atrioventricular conduction system in hearts with both great vessels originating from the right ventricle. Am Heart J 67: 588, 1964
Electrophysiological Delineation of the Specialized A-V Conduction System in Patients with Congenital Heart Disease: II. Delineation of the Distal His Bundle and the Right Bundle Branch

EHUD KRONGRAD, JAMES R. MALM, FREDERICK O. BOWMAN, JR., BRIAN F. HOFFMAN and ALBERT L. WALDO

Circulation. 1974;49:1232-1238
doi: 10.1161/01.CIR.49.6.1232

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1974 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/49/6/1232

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/