The Gap Phenomena During Retrograde
Conduction in Man

By Masood Akhtar, M.D., Anthony N. Damato, M.D., Antonio R. Caracta, M.D.,
William P. Batsford, M.D., and Sun H. Lau, M.D.

SUMMARY

Ventricular refractory period studies were performed in 12 consecutive and unselected patients using the ventricular extrastimulus method (V2) at basic ventricular cycle lengths (V1 V4). In six of 12 patients two types of retrograde gaps occurred. At relatively long V1 V2 intervals, ventriculo-atrial (V-A) conduction failed and then resumed at shorter V1 V3 intervals. The initial sites of retrograde block were the A-V node in two patients and the His-Purkinje system in four patients. In both groups, resumption of V-A conduction at shorter V1 V3 intervals occurred because of retrograde delay within the His-Purkinje system. Retrograde gaps differ from previously described antegrade gaps in A-V conduction: The site of initial block in A-V gaps is the His-Purkinje system and resumption of A-V conduction occurs at shorter A1 A2 intervals because of proximal delay in the A-V node (type I) or delay in the proximal His-Purkinje system (type II). In V-A gaps the site of initial block may be either the A-V node or the His-Purkinje system and resumption of V-A conduction always occurs due to delay within the distal His-Purkinje system. A common feature of both A-V and V-A gaps is the fact that delay of the more premature impulses allows time for previously refractory areas to recover excitability and both can be functional in nature. Only one of the 12 patients had both A-V and V-A gaps in conduction. Retrograde gaps in V-A conduction are more commonly observed than A-V gaps.

Additional Indexing Words:

Atrioventricular node
His-Purkinje system
Retrograde refractory periods
Purkinje myocardial junction

THE GAP PHENOMENON in atrioventricular (A-V) conduction has been previously described in both canine1 and human hearts.2-4 As originally described by Moe et al.,1 the term “gap” was used to define a zone within the cardiac cycle during which premature atrial impulses failed to evoke ventricular responses. Atrial impulses outside that zone, however, maintained conduction to the ventricles. Clinically, two types of antegrade gap phenomena (arbitrarily designated as types I and II) have been described and characterized electrophysiologically.5,6,7 Common to both types of gap phenomena are the following features: 1) within the “gap” zone premature atrial impulses (A2) block within some portion of the His-Purkinje system (HPS) and 2) resumption of A-V conduction results when more premature atrial impulses encounter sufficient conduction delay proximal to the site of initial block.

The A-V node is the site of proximal delay in type I gap as indicated by longer H1 H2 intervals of the conducted beats during resumed A-V conduction compared to prior blocked beats. In type II gap, however, the H1 H2 intervals of the conducted beats are shorter than previously blocked beats, indicating that the site of delayed conduction is below the recording site in the His bundle. The longer H3 V4 intervals of the conducted beats are consistent with delay of the premature impulse within the proximal HPS. The purpose of this report is to describe the occurrence of gap phenomena during retrograde conduction, to illustrate some differences between the antegrade and retrograde forms of these phenomena, and to further emphasize that gaps in conduction are seen in a setting in which a distal site of refractoriness exists and conduction is resumed when more premature impulses are delayed at any site proximal to the initial site of the block.

Methods

Right heart catheterization was performed in 12 patients in the nonsedated, postabsorptive state. All patients were
advised of the nature of the study, and a signed consent was obtained. After administering local anesthesia, a tripolar electrode catheter was percutaneously introduced into a femoral vein and fluoroscopically positioned in the region of the tricuspid valve. Electrical activity of the low interatrial septum, His bundle, and ventricle was recorded as previously described. The extrastimulus method was used to determine the functional properties of the atrioventricular conduction system. Using a digital stimulator capable of delivering rectangular impulses of 1.5 msec duration and adjustable milliamperage, the right atrium or right ventricle was paced at a basic cycle length \(A_1, A_2, \text{ or } V_1, V_2\) and following every eighth basic driven beat a premature impulse \(A_2 \text{ or } V_2\) was introduced at progressively decreasing (5-10 msec) intervals until refractoriness was encountered in either the atrial or ventricular muscle. During retrograde refractory period studies the minimum milliamperage \(<1 \text{ ma}\) which allowed reliable ventricular capture was used. Refractory period studies during antegrade and retrograde conduction were compared at the same basic cycle lengths.

Definition of Terms

Antegrade Conduction

The \(A-H\) interval, measured from the beginning of low atrial electrogram to the beginning of the His bundle deflection, was taken as an approximation of \(A-V\) nodal conduction time (normal \(A-H\) for our laboratory is 60-140 msec). The \(H-V\) interval represented His-Purkinje conduction time and was measured from the onset of the His deflection to the onset of ventricular activation (normal for our laboratory 30-55 msec).

Antegrade refractory periods

See reference 11.

Effective refractory period (ERP) of the atrioventricular (A-V) conduction system

The longest \(A_1, A_2\) interval where \(A_2\) fails to evoke a ventricular response.

ERP of the atrium

The longest \(S_1, S_2\) interval where \(S_2\) does not cause an atrial depolarization.

ERP of the A-V node

The longest \(A_1, A_2\) interval at which \(A_2\) does not conduct to the bundle of His.

ERP of the His-Purkinje system (HPS)

The longest \(H_1, H_2\) interval where \(H_2\) blocks within the HPS.

Functional refractory period (FRP) of the atrioventricular (A-V) conduction system

The shortest \(V_1, V_2\) interval in response to a given range of \(A_1, A_2\) intervals.

FRP of the A-V node

The shortest \(H_1, H_2\) interval in response to two successive atrial impulses both propagated through the A-V node.

FRP of the His-Purkinje system

The shortest \(V_1, V_2\) interval in response to two successive atrial impulses, both propagated through the bundle of His.

Retrograde conduction

The onset of induced ventricular depolarization was measured from the corresponding stimulus artifact. Ventriculo-atrial intervals were measured from the corresponding stimulus artifact to the onset of low atrial electrogram.

Retrograde refractory period measurements

The retrograde His deflection for the basic drive beats during 1:1 V-A conduction was obscured by the ventricular electrogram and could not be identified. Data from experimental studies indicate that for the basic ventricular drive beats the interval between the stimulus artifact and the retrograde His deflection is constant. Thus, \(H_2\) was taken from the onset of ventricular activation of the last beat of the basic drive \(V_1\). During ventricular premature stimulation, the retrograde His deflection emerged from the ventricular electrogram and was identified by its morphology and expected physiologic behavior. For purposes of comparison, \(V_1, H_2\) can be used interchangeably with \(H_1, H_2\) intervals, since the former interval always exceeds the latter by a constant amount. The following definition of terms during retrograde refractory period studies applies to conduction through the normal pathways in the absence of functional bypass tracts.

Effective Refractory Period (ERP) of the Ventriculo-atrial (V-A) Conduction System

The longest \(V_1, V_2\) interval at which \(V_2\) fails to propagate to the atria.

ERP of the A-V Node

The longest \(V_1, H_2\) interval at which the retrograde His bundle deflection of the premature beat \(H_2\) is not followed by atrial depolarization.

ERP of the HPS

The longest \(V_1, V_2\) interval at which the premature impulse blocks within the HPS. This can be determined only if the retrograde His bundle deflection of the premature beat is clearly identifiable prior to the blocked beats.

ERP of the Ventricular Myocardium

Longest \(S_1, S_2\) interval at which \(S_2\) does not evoke a ventricular response.

Functional Refractory Period (FRP) of the V-A Conduction System

The minimum interval between two successive atrial responses \(A_1, A_2\), both propagated from the ventricle.

FRP of the A-V node

The shortest \(A_1, A_2\) interval in response to two successive retrograde impulses, both propagated from the His bundle.

FRP of the HPS

The shortest \(V_1, H_2\) interval in response to any \(V_1, V_2\) intervals.
Results

Twelve patients were studied, all of whom demonstrated 1:1 ventriculo-atrial conduction at one or more ventricular paced cycle lengths. During programmed premature ventricular stimulation studies, retrograde gap phenomena were consistently seen in six of the 12 patients. Only one of these six patients also demonstrated a gap during antegrade conduction. The remaining six patients did not demonstrate gap phenomena during either antegrade or retrograde conduction. Essential clinical and electrophysiologic data on all patients who demonstrated retrograde gaps are presented in table 1. During retrograde refractory period studies no significant effect from sympathetic stimulation occurred, as indicated by lack of appreciable changes in sinus escape intervals, sinus rates, or conduction time of sinus beats (A-H interval), when ventricular pacing was periodically interrupted. In patients with retrograde gaps, as the V1 V2 intervals were progressively decreased, a zone was encountered during which premature ventricular depolarization failed to evoke a retrograde atrial response. Ventriculo-atrial (V-A) conduction was re-established when the V1 V2 intervals were shortened further. In all instances it was possible to define the site of the block of the premature ventricular beats.

The following results from three patients are representative of our findings. Figures 1 and 2 are taken from the same patient and demonstrate the characteristic features of V-A conduction which underlie the retrograde gap phenomenon. Figure 1 shows sinus rhythm (panel A) and 1:1 retrograde conduction (panel B) during ventricular pacing at a cycle length of 500 msec. Note the high to low sequence of atrial activation during sinus rhythm and the low to high relationship of atrial activation during 1:1 retrograde conduction.

Figure 2 illustrates the effects which retrograde conduction delay within the HPS has upon retrograde A-V nodal conduction during progressive premature stimulation of the ventricles. The basic ventricular cycle length (V1 V1) is 550 msec in all panels and at a V1 V4 interval of 280 msec (panel A), V2 conducts retrogradely to the atrium and encounters delay below the His bundle (V2 H2: 170 msec) as well as in the A-V node (H2 A2: 180 msec). The arrival time of V2 at the A-V node relative to preceding activation of the A-V node as measured from V1 (V1 H2 interval) is 450 msec. On decreasing the V1 V2 interval to 250 msec (panel B), V2 reaches the A-V node earlier (V1 H2: 425 msec) and delays further within the A-V node (H2 A2: 230 msec). An even earlier premature impulse (panel C) results in marked delay below the His bundle (V2 H2: 220 msec). This infra-His bundle conduction delay results in the later arrival of the premature ventricular impulse at the A-V node (V1 H2: 450 msec) compared to panel B. The V1 H2 and H2 A2 intervals in panels A and C are the same in spite of the fact that V1 V4 interval in panel C measures 50 msec less. Although no gap in V-A conduction was seen in this patient, the tracings in figure 2 emphasize the way in which proximal retrograde conduction delay encountered by a premature impulse facilitates distal conduction simply due to its late arrival at that area.

Figure 3 illustrates one type of gap in retrograde conduction in which the site of initial retrograde block was within the A-V node and upon decreasing the ventricular coupling interval resumption of V-A conduction occurred because of proximal retrograde delay within the His-Purkinje system. In panels A-E, the V1 V4 interval is progressively decreased. At a V1 V4 interval of 360 msec (panel B) V2 fails to conduct to the atria. The site of retrograde block, as will be evident subsequently, was the A-V node. Upon further decreasing the V1 V2 interval (panel C) the retrograde

Clinical and Electrophysiologic Data

<table>
<thead>
<tr>
<th>Pt. no.</th>
<th>Age</th>
<th>Dx.</th>
<th>Resting ECG</th>
<th>Basic cycle length (msec)</th>
<th>Gap in V-A conduction</th>
<th>Gap in A-V conduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initial site of retrograde block</td>
<td>Gap zone (msec) (V1, V2)</td>
</tr>
<tr>
<td>1</td>
<td>47</td>
<td>NHD</td>
<td>Normal</td>
<td>700</td>
<td>A-V node</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>47</td>
<td>ASHD</td>
<td>Old diaphragmatic MI, RBBB</td>
<td>500</td>
<td>His-Purkinje system</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>ASHD</td>
<td>Normal</td>
<td>550</td>
<td>A-V node</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>ASHD</td>
<td>Short P-R interval</td>
<td>Normal QRS</td>
<td>His-Purkinje system</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>52</td>
<td>NHD</td>
<td>RBBB</td>
<td>600</td>
<td>His-Purkinje system</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>46</td>
<td>NHD</td>
<td>Normal</td>
<td>700</td>
<td>His-Purkinje system</td>
<td>20</td>
</tr>
</tbody>
</table>

Abbreviations: ASHD = atherosclerotic heart disease; NHD = no heart disease; A-V = atrioventricular; V-A = ventriculo-atrial; MI = myocardial infarction; RBBB = right bundle branch block.
His bundle deflection emerges. At a $V_1\ H_2$ interval of 440 msec or less retrograde block of V_2 continued to occur within the A-V node. As shown in panel D, V-A conduction resumes when the $V_1\ V_2$ interval was decreased to 310 msec. Because of retrograde His-Purkinje delay, the $V_1\ H_2$ interval (445 msec) falls outside the ERP of the A-V node. Upon further decreasing the $V_1\ V_2$ interval (panel E), retrograde A-V nodal block again occurred. Despite the additional retrograde delay within the His-Purkinje system ($V_2\ H_2$ of 195 msec), the resultant $V_1\ H_2$ interval of 435 msec is within the ERP of the A-V node.

Figure 4 is an example of a gap in retrograde conduction in which the initial site of retrograde block was within the His-Purkinje system and resumption of V-A conduction at shorter $V_1\ V_2$ intervals occurred because of increasing delay in retrograde conduction within the His-Purkinje system.

Discussion

The period of gap in A-V conduction describes a zone in which early premature atrial impulses (A_2) fail to conduct to the ventricles, whereas, at still closer coupling intervals A_3 successfully propagates and evokes a ventricular response. In the two types of gap phenomena described in man (type I and II), the ERP of some portion of the HPS exceeds the FRP of the A-V node so that A_2 initially blocks within the HPS at shorter $A_1\ A_2$ intervals. Resolution of A-V conduction results from delay of A_2 in the A-V node (type I gap) or within the proximal HPS (type II gap), allowing time for previously refractory tissue to recover excitability.

The results of this study show that gap phenomena can occur during V-A conduction as well. V_2 may initially block in the A-V node when the ERP of the latter exceeds that of HPS. A-V nodal block of V_2 is recognized when a retrograde His deflection (H_2) is not followed by an atrial depolarization (A_2). At even...
shorter \(V_1 \), \(V_2 \) intervals, resumption of V-A conduction can occur if \(V_2 \) encounters sufficient infra-His bundle delay such that it arrives at the A-V node when the latter is not effectively refractory. In this form of retrograde gap the \(V_1 \), \(H_2 \) intervals of blocked beats are shorter than those of conducted beats. Figure 3 demonstrates this form of gap phenomenon in V-A conduction. Schuilenberg and Durrer\(^4\) and Castillo and Castellanos\(^5\) have described similar zones where no V-A conduction occurred at a certain range of \(V_1 \), \(V_2 \) intervals while at shorter and longer coupling intervals \(V_2 \) successfully propagated to the atria. The proposed site of block in these cases was the A-V node.

The second form of retrograde gap phenomenon was seen when the ERP of some portion of the HPS was longer than that of the A-V node. At shorter \(V_1 \), \(V_2 \) intervals conduction delay between the site of stimulation and area of initial block enables conduction of \(V_2 \) through previously refractory tissue. The exact site of initial retrograde block within the HPS is difficult to determine in the intact human heart. Results of experimental studies have indicated that any one of several areas may be the site of maximum refractoriness and block, e.g., at the Purkinje-myocardial junction, within the distal HPS, within any portion of bundle branches, or within the bundle of His itself.\(^6\)\(^-\)\(^22\) Resumption of V-A conduction occurs with \(V_2 \) of greater prematurity because conduction is delayed between the ventricular muscle and the initial area of block.

The gap phenomenon in retrograde conduction
differs from its antegrade counterpart in the following respects:

1) In both types of gap in A-V conduction the initial site of block of premature atrial impulses is within some portion of the HPS; in V-A gaps the initial site of block of premature ventricular impulses may be either above or below the His bundle.

2) During periods of resumed A-V conduction the site of delay of the conducted premature atrial impulses is within the A-V node in type I gap and within the proximal HPS in type II gap. In both forms of retrograde gap, the site of proximal delay, which allows resumption of V-A conduction, is within the His-Purkinje system.

Thus, the designation of type I and type II gap in atrioventricular conduction is not strictly applicable to retrograde forms of gap because the initial sites of block as well as the area of proximal delay during resumed conduction are different. It is apparent that unless areas of conduction delay and block are specifically defined, classification of gaps by numerical designations limits the broad concept of these phenomena. The basic underlying mechanism responsible for demonstration of gap phenomena is that the premature impulses initially block in some area and then resume conduction at shorter coupling intervals as a result of conduction delay more proximal to the area of initial block.

In this series of 12 patients, retrograde gaps were more commonly demonstrated (six of 12) than antegrade gaps (one of 12). There are several reasons for this difference:

1) An essential requirement for the demonstration of both type I and type II gaps in A-V conduction is that the ERP of the HPS exceed the ERP and FRP of the A-V node. In most patients this requirement during antegrade conduction is not achieved because a) the ERP of the A-V node exceeds that of the HPS (six of 12 patients in this study) or b) the ERP of the HPS is never reached due to progressive increase in A-H interval with progressive decrease in A1 A2 interval (five of 12 patients in this study). In contrast some retrograde gaps (two of five in this study) occurred when the ERP of the A-V node exceeded that of the HPS. Thus a long ERP of the A-V node favors the demonstration of retrograde gaps but limits the demonstration of antegrade gaps.

2) Some patients may demonstrate initial block within the HPS during antegrade conduction but neither type of gap can be elicited because the ERP of the A-V node is quickly reached on further increasing the atrial prematurity (i.e., the ERP of the A-V node and the HPS are nearly equal). In four of six retrograde gaps in this series where the site of initial block was within the HPS, the likelihood of achieving a delay proximal to the site of block was increased because the premature ventricular impulse was delivered almost directly into the HPS without an intervening A-V node.

3) Although not a limiting factor in this series of patients, atrial refractoriness may limit the demonstration of antegrade gaps in some patients by limiting the achievement of closer A1 A2 intervals. During retrograde conduction, however, refractoriness of ventricular muscle very rarely exceeds that of the HPS or the A-V node. Following the initial block of relatively late V2 in the HPS or the A-V node, a wider range of coupling intervals (V1 V2) is still available where V2 may delay more proximally (i.e., in the most distal parts of the HPS) and consequently conduct through previously refractory area.

References

4. CANNON DS, GOLDREYER BN, DAMATO AN: Evidence for a "gate" in the distal human ventricular specialized conduction system. (abstr) Circulation 44 (suppl II): II-148, 1971
7. GALLAGHER JJ, DAMATO AN, VARGHESE PJ, LAU SH: Localization of an area of maximum refractoriness or "gate" in the ventricular specialized conduction system in man. Am Heart J 84: 310, 1972
9. KRAYER O, MANDEZ C: Studies on veratrum alkaloids XVI. The action of epinephrine and veratramine on the functional refractory period of the auriculo-ventricular node and the heart in the perfused dog. J Pharmacol Exp Ther 103: 412, 1951
13. AKHTAR M, DAMATO AN, CARACITA AR, BATSFORD WP, VARGAS G, LAU SH: Unmasking and conversion of gap phenomenon
14. SCHUILENBERG RM, DURRER D: Ventricular echo beats in
human heart elicited by induced ventricular premature
15. CASTILLO CA, CASTELLANOS A JR: Retrograde activation of the
His bundle during intermittent paired ventricular stimula-
16. MOORE EN: Microelectrode studies on retrograde concealment
of multiple premature ventricular responses. Circ Res 20: 88,
1967
17. HOFFMAN BF, MOORE EN, STUCKEY JH, CRANEFIELD PF:
Functional properties of the atrioventricular conduction
18. MENDEZ C, MUELLER WJ, MERIDETH J, MOE GK: Interaction of
transmembrane potentials in canine Purkinje fibers and at
19. MOORE EN, PRESTON JB, MOE GK: Durations of
transmembrane action potentials and functional refractory
periods of canine false tendons and ventricular myocardium:
20. HOFFMAN BF, KAO CY, SUCKLING EE: Refractoriness in cardiac
muscle. Am J Physiol 190: 473, 1957
21. MYERBURG RJ, STEWART JW, HOFFMAN BF: Electro-
physiological properties of the canine peripheral A-V con-
22. MYERBURG RJ, GELBAND H, HOFFMAN BF: Functional
characteristics of the gating mechanism in the canine A-V
The Gap Phenomena During Retrograde Conduction in Man
MASOOD AKHTAR, ANTHONY N. DAMATO, ANTONIO R. CARACTA, WILLIAM P. BATSFORD and SUN H. LAU

Circulation. 1974;49:811-817
doi: 10.1161/01.CIR.49.5.811

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1974 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/49/5/811

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/