CLINICOPATHOLOGIC CORRELATIONS

Aneurysms of the Thoracic Aorta
Complicating Coarctation

By JESSE E. EDWARDS, M.D.

SUMMARY

Coarctation of the aorta may become complicated by aortic aneurysms involving either the proximal or distal compartment of the vessel. Such aneurysms principally are consequences either of hypertension or of bacterial infection. The aneurysms in either compartment may be of the classical dissecting or saccular types. Saccular aneurysm may result from infection or laceration of the aorta without intramedial dissection of blood.

In the ascending aorta, an additional basis for aneurysm is aortic stenosis, the latter either being congenital, or more commonly, acquired calcific in a congenital bicuspid valve.

Additional Indexing Words:
Dissecting aneurysm Incomplete dissecting aneurysm Mycotic aneurysm Aortic stenosis

Among patients with coarctation of the aorta, a complication may develop or be manifest in the form of an aortic aneurysm. Although this possibility exists in children, such lesions are usually not observed until adolescence or adult life. Included among such aneurysms is the false aneurysm which results from leakage at the anastomosis done as part of the surgical correction for the fundamental lesion.\(^1\)\(^,\)\(^2\) This particular condition will not be further considered, as emphasis will be made upon those aneurysm which occur spontaneously. Usually, such aneurysms are derived either from 1) hypertension, which characteristically is present, along with varying degrees of cystic medial necrosis, or 2) from the complication of infection. An additional potential is that aneurysm of the ascending aorta which may complicate the aortic stenosis which forms on a bicuspid valve.

Infection may occur at one or two sites, namely, the commonly present congenital bicuspid valve or the lining of the descending aorta at the site of

\(^1\) From the Departments of Pathology of the United Hospitals-Miller Division, St. Paul, Minnesota and of the University of Minnesota, Minneapolis, Minnesota.

\(^2\) Supported by Public Health Service Research Grant 5 R01 HL05694 and Research Training Grant 5 T01 HL05570 from the National Heart and Lung Institute.

Address for reprints: Dr. Jesse E. Edwards, Department of Pathology, United Hospitals, Inc.-Miller Division, 125 West College Avenue, St. Paul, Minnesota 55102.

Circulation, Volume XLVIII, July 1973

195
impact of the jet-like stream which passes through
the narrow segment of the vessel. Aneurysms may
involve either the compartment proximal or that
distal to the coarctation.

The most common basis for an aneurysm is
hypertension and complicating spontaneous laceration
of the aortic intima and varying depth of the
underlying media. Following the laceration, pro-
gressive dissecting of blood within the media of the
aorta may occur, the condition commonly called
classical dissecting aneurysm of the aorta. If the
laceration is followed by limited or no appreciable
intramural dissection of blood, the tendency is for a
saccular aneurysm to develop at the weakened zone
Corresponding with the laceration. The resulting
aneurysm may be termed an incomplete dissecting
aneurysm.

Aneurysms of Proximal Compartment

The most common type of aortic aneurysm
complicating coarctation is classical dissecting
aneurysm of the proximal compartmentb (fig. 1).
The internal tear usually occurs in the ascending
aorta and this is followed by external rupture of the
ascending aorta leading to hemopericardium (fig.
2). As with all dissecting aneurysms, obstruction of
aortic branches may develop by the extension of the
aortic medial hematoma into the walls of branches.
A characteristic of dissecting aneurysm complicat-
ing coarctation, however, is that the intramural
dissection classically does not extend beyond that
segment of the aorta which harbors the lesion of
coarctation, so that only the coronary arteries and
branches of the arch are subject to obstruction.

Figure 2
Dissecting aneurysm of the proximal aorta complicating coarctation in a young man. a. Roentgenogram of
thorax. b. Interior of the aorta shows major laceration which had resulted in dissecting aneurysm and
hemopericardium. At the junction of the arch and the descending portions is a characteristic indentation
(point of arrow) in the exterior of the aorta corresponding with the zone in which the lumen showed ma-
jor narrowing.

Figure 3
Diagrams of incomplete dissecting aneurysm of the aortic arch complicating coarctation.
In subjects with coarctation, those lacerations of the aorta occurring proximal to the coarctation and not followed by intramural extension of blood most often lie in the arch and lead to saccular aneurysm (incomplete dissecting type)\(^5\) (fig. 3).

Those saccular aneurysms of the proximal compartment which result from infection are uncommon. Such aneurysms are classified as mycotic and result from infection secondary to bacterial endocarditis of an associated congenital bicuspid aortic valve (fig. 4a and b). Mycotic aneurysms usually involve the aorta only a short distance above the valve and they may rupture into adjacent structures such as the right atrium or the outflow tract of the right ventricle leading to an acquired left-to-right shunt.

As bacterial endocarditis of the aortic valve in coarctation patients is classically dependent upon the presence of a congenital bicuspid aortic valve, the potential for an aortic mycotic aneurysm remains in those patients with an anomalous valve, even after repair of the coarctation.

It is recognized that calcific aortic stenosis commonly forms on a congenital bicuspid aortic valve. This means that in a significant number of patients in whom the coarctation has been corrected there remains the chance of aortic stenosis developing with the passage of time. In such patients or in those in whom congenital aortic stenosis coexists with the coarctation, the potential for an aneurysm of the ascending aorta remains, since aortic stenosis may effect a spontaneous laceration of the ascending aorta.\(^6\)\(^7\) Such a

Figure 4

Diagrams of mycotic aneurysm of ascending aorta complicating bacterial endocarditis of a congenital bicuspid aortic valve. a. Vegetations of bacterial endocarditis (S.B.E.) on aortic valve are sources of infection (Veg.) of aortic wall. b. Destruction of aortic tissue leads to a mycotic aneurysm (M.A.) c. Calcific aortic stenosis developing in congenital bicuspid aortic valve with secondary laceration of ascending aorta. The latter process may lead to intramural dissection of blood (D.A.) of varying degree. The process shown may occur years after adequate resection of the coarctation.
Diagrams of dissecting aneurysm of descending aorta.

Figure 5

Diagrams of dissecting aneurysm of descending aorta.

a. Classical situation.
b. The classical dissecting aneurysm has become complicated by a localized saccular aneurysm.

A laceration may lead to classical dissecting aneurysm or to a localized saccular aneurysm (fig. 4c).

Aneurysms of Distal Compartment

Aneurysms related to the aorta distal to the site of coarctation include aneurysmal formation in intercostal arteries, which vessels play a well known role in the collateral circulation. Aneurysms of the descending aorta itself may occur. In that segment, aneurysms, with the exception of that complicating aortic stenosis, are derived from the same causes as those involving the aorta proximal to the obstruction.

Since classical dissecting aneurysm beginning in the descending aorta is distinctly less common than the relatively common dissecting aneurysm of the proximal compartment, isolated cases have been described (fig. 5a). The basis for this uncommon complication is probably hypertension. It is to be recalled that, while in the aorta distal to the coarctation the systolic pressure is within normal limits, diastolic hypertension, occurs here as it does in the proximal compartment.

Saccular aneurysms involving the descending aorta may be part of classical dissecting aneurysm

Figure 6

Diagram of incomplete dissecting aneurysm of descending aorta resulting in a saccular aneurysm distal to the site of coarctation.
CLINICOPATHOLOGIC CORRELATIONS

Figure 7

a. Thoracic roentgenogram of a patient with coarctation of the aorta and a saccular aneurysm involving the upper portion of the descending aorta. The aneurysm has displaced the esophagus. b. Photomicrograph of one edge of the mouth of the aneurysm. There is abrupt interruption in the continuity of the aortic media (arrow) representing the laceration which allowed the formation of the saccular aneurysm (A.). Elastic tissue stain (×4.5).

Figure 8

Basis for mycotic aneurysm of descending aorta developing upon the site of impact of the jet-like stream extending through the narrow segment of the aorta. a. The first step appears to be that of the formation of the jet lesion (J.L.). b. This is followed by infection with formation of vegetations (Veg.). c. Finally a mycotic aneurysm (M.A.) results from loss of integrity of the aortic wall on the basis of infection.
Aortic aneurysm distal to coarctation. The lesion is presumed to have resulted from infection of the aorta.

a. Roentgenogram of thorax. b. The opened aorta from in front. Beyond the zone of coarctation (Coar.) is a circular perforation (between arrows) in the medial aspect of the upper descending aorta. This led to an aneurysm which ruptured into the right pleural cavity. c. The tracheal bifurcation and the upper descending aorta viewed from behind. The fundus of the aneurysm has been removed. The probe extends from the aortic lumen through the ostium observed in b and enters the aneurysm (A.M.).

Figure 9
References

9. Moragues V, Moore LT, Rossen JA: Coarctation of the aorta, with rupture of the wall below the point of constriction; report of a case and review of the literature. Amer Heart J 24: 828, 1942

10. France NE, Levin B, McNicholl B: Coarctation of the aorta (adult type) with rupture distal to the coarctation. Arch Dis Child 25: 175, 1950

Aneurysms of the Thoracic Aorta Complicating Coarctation

JESSE E. EDWARDS

Circulation. 1973;48:195-201
doi: 10.1161/01.CIR.48.1.195

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1973 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/48/1/195

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/