Implanted Standby Defibrillators

When a problem gains wide social consciousness a diversity of practical and impractical solutions is engendered. This is now the case with the formidable problem of sudden death in patients with coronary heart disease.

Sudden death largely afflicts the ambulatory subject, prodromes are not distinctive, lead time is short, and death probably results from ventricular fibrillation (VF). Tragedy is magnified by the realization that the heart may have been only minimally impaired, that the arrhythmia could have been reversed, and, if reversed, a long and productive life would have been possible. Hospital experiences during this past decade have amply demonstrated that survival depends upon promptness in defibrillation. The time for effective action is limited to a few minutes. It seems unlikely, therefore, that medical intervention after the event will yield a substantial harvest of survivors. The inexorable logic of the problem coerces a new direction, namely, identification and protection of the patient at high risk from sudden death. One intriguing approach is to prevent sudden death by the implantation in the body of a standby automatic defibrillator system.2,3

A completely implanted defibrillator can reverse VF in dogs.2 A special transducer-tipped catheter, sensing pulsatile pressure, is introduced through a peripheral vein into the right ventricle. Six seconds of asystole initiates automatic charging of a 16-μfarad capacitor to a preset limit of 2500 volts, which is completed 50 sec after cessation of the heart beat. If phasic right ventricular pressure returns, the discharge is inhibited; otherwise the charge is delivered through the right ventricular electrode. The circuit is completed by a second electrode positioned in the superior vena cava. As compared to delivery of the shock transthoracically,4 only a fraction of the energy is necessary for intracardiac defibrillation.

Though fraught with a multitude of technical difficulties, on first examination, this method bears the stamp of logic. The underdamped exponential waveform currently employed for external defibrillation and cardioversion5 is unsuitable for an internal system because of the weight required by the series inductor. A change in waveform is necessary.

From the Cardiovascular Research Laboratories, Department of Nutrition, Harvard School of Public Health, and Cardiovascular Service, Department of Medicine, Peter Bent Brigham Hospital, Boston, Massachusetts.

Supported in part by Grants HE-14602-01 and HE-07776-08 from the National Institutes of Health, U. S. Public Health Service.

Address for reprints: Dr. Bernard Lown, Department of Nutrition, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115.
so that an adequate charge can be generated with lightweight switching devices. Trapezoidal and truncated waveforms can be produced by these means which defibrillate the heart. However, there has been no systematic and thorough study of the possible immediate and delayed deleterious effects on the myocardium.

Sensing of the onset of VF presents a difficult problem. Unlike asystole which serves as a ready trigger for demand pacemakers, VF may present large depolarizations simulating the QRS complex. No doubt, this is why Mirowski et al.2 have selected a pressure sensor as a trigger for their device. Should such a sensing probe migrate into the pericardial sac or become encased in fibrous tissue or thrombus, unnecessary shocks would be delivered. Such random discharges could even precipitate VF. Many safety features and complex electronics will be required to circumvent these hazards.

Electrical discharge can damage the myocardium even when delivered transthoracically despite relatively uniform energy density within the heart. The more proximate the electrodes are to the heart and the smaller the area of contact, the higher is the electrical density in tissue adjacent to the electrodes, and the greater is the predisposition to myocardial injury. It requires about 5 w-sec to defibrillate dog's ventricle with large electrode paddles directly cradling the heart. Such shocks may provoke epicardial burns. The smaller the surface through which defibrillation is effected, the higher the energy required. It is therefore likely that energies in excess of 5 w-sec will be necessary to defibrillate the ischemic dog heart through an electrode catheter system. The energy for defibrillation is a function of heart weight. The human heart is far heavier than that of large dogs. It follows that even higher energies will be required for defibrillation in man. That the heart will be injured is certain; the only uncertainty is its extent. In preliminary studies, delivery of single or double truncated exponential discharges to dog's endocardium resulted in 2-10-mm areas of petechial hemorrhage of 1 mm in depth. These were still in evidence as small fibrous scars 6 weeks later.

An additional problem is the absence of a method for testing operational readiness and reliability of the implanted defibrillator. Experience with pacemakers has demonstrated the need for frequent evaluation of function. This is particularly important when a device is in the standby mode. In the case of an implanted defibrillator, proof of function would require several different tests. Verification of adequacy would include not only the triggering of the device exclusively by VF, but delivery of a charge sufficient to defibrillate. In the case of a cardiac pacemaker, slowing or transient asystole is a suitable test condition. What constitutes a suitable test in the case of a standby defibrillator? Even in this age of derringer-do and erosion of ethical constraints, it is unlikely that VF will be induced deliberately to ascertain performance. Barring such a test, how can one be certain that the fixed charge will prove adequate? The catheter position and orientation no doubt will prove crucial. However, more important is the complex geometry and electrophysiologic properties of a particular heart which cannot be readily modeled. It is known that recurrent VF in the same patient on different occasions may require strikingly different defibrillation energies. How then is one to be guided in selecting a fixed charge? Experience teaches that a rigid solution to a biologic problem is usually no solution. If the patient with such an implanted device is found dead, numerous questions will loom including the gnawing doubt that electrocution may have been a factor.

Nevertheless, the above cited objections are by no means decisive. Great caution needs to be exercised in stating that a problem is insoluble. Technologic advance is so rapid that the man who says, "it cannot be done," is frequently interrupted by someone who has done it. The most crucial question, however, is not technical but clinical, namely, for whom is such a device intended? The promulgators of this method have stated: "It is too early to
determine exactly the indications and contraindications of the standby automatic defibrillator. Should not such a question be answered before social energies are expended? If no indications can be clearly defined, why dissipate scarce health resources?

There is serious question whether an indication can be spelled out for the use of an implanted standby defibrillator. The patient who survives an acute myocardial infarction has about 3% risk of dying suddenly in the ensuing year. Since there is currently no precise method for identifying the susceptible subject, obviously there is little justification in burdening a large group in order to possibly save the very few. Furthermore, there is no evidence that the individual who has a single bout of VF is likely to have recurrences. The very rare patient who has frequent bouts of VF is best treated in a coronary care unit and is better served by an effective antiarrhythmic program or surgical correction of inadequate coronary flow or ventricular malfunction. In fact, the implanted defibrillator system represents an imperfect solution in search of a plausible and practical application.

In the absence of a clearly defined clinical purpose, what then energizes such undertakings by a number of groups? The rationale for some current bioelectronic development is best exemplified by Edmund Hillary's reasons for climbing Mt. Everest, "Because it was there." The same holds for some electronic gadget manufacture: "It was developed because it was possible."

Bernard Lown
Paul Axelrod

References
Implanted Standby Defibrillators
BERNARD LOWN and PAUL AXELROD

_Circulation_. 1972;46:637-639
doi: 10.1161/01.CIR.46.4.637

_Circulation_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1972 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/46/4/637.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/