in turn, led to perforation of the intervalvular fibrosa. Hemorrhage and infection then extended into the epicardial wedge (fig. 3b). The hemorrhage evaginated the epicardial wedge to form the false aneurysm situated between the aorta and the left atrium. It is postulated that the hemorrhage was contained within the epicardial sac for only a short time before the rupture, since there was no evidence of clotting of blood in the sac.

References

Fifty Years Ago—ECG Diagnosis of Coronary Disease

The changes in the T-wave . . . were so characteristic in dogs watched for several days, that similar changes in the wave in man might reasonably be supposed to be due to similar lesions. In fact, one case in man, which will be reported later, was observed in which a clinical diagnosis of coronary thrombosis was made by Dr. James B. Herrick which was verified later at necropsy. The T-wave of the electrocardiogram of the patient ran a course similar to that of the dogs previously described. In other cases believed to be coronary thrombosis similar changes in the electrocardiogram have been seen but no verification of the diagnosis has been made, the patients either living or no necropsy having been obtained.—Fred M. Smith: The Ligation of Coronary Arteries with Electrocardiographic Study. Arch Intern Med 22: 27, 1918.


Early Correlations Between Electrocardiogram and Coronary Occlusion (1919)

... if it can be proved that with a certain artery obstructed there is a definite lesion in the heart muscle or in the conducting system, and if with that lesion there is a definite electrocardiogram, may we not, when we encounter that abnormal electrocardiogram in the human being, particularly if he has had symptoms suggestive of coronary thrombosis, be able to state with a reasonable degree of certainty that the patient has had obstruction in a particular portion of the coronary system? May it perhaps be possible to localize a lesion in the coronary system with an accuracy comparable to that with which we locate obstructive lesions in the cerebral arteries?—James B. Herrick: Thrombosis of the Coronary Arteries. JAMA 72: 390, 1919.

100 Years Ago
Stokes on Medical Ethics

... he exposes the errors too often committed by medical men when called on to act as witnesses. He shows that their principles should be to give independent opinion without being swayed by partisanship, that no man should ever act as a trained expert to prompt a lawyer in his cross-examination. "Knowledge may be held as property, but it is, as such, held on trust, and that trust, looking at its source, forbids its being used as an article of commerce without some restriction. It is to be employed for the establishment of truth, not for its suppression or mystification. We hold knowledge as under a trust from a higher power, and the greater the value of the trust the more careful should we be that in our hands it be not desecrated."—WILLIAM STOKES: William Stokes: His Life and Work (1804-1878). London, T. Fisher Unwin, 1898, p. 167.
Maelstrom of Medical Practice and Teaching

Dissatisfaction with scientific medicine as presently conceived extends beyond the uneducated public. It reaches into the most sophisticated classes of society and indeed into many strata of the medical profession. The complaint that the doctor treats the disease but is not interested in the patient or that medicine loses contact with the human condition when it becomes "too" scientific is voiced almost as loudly and frequently by physicians as it is by the general public. The uneasy feeling of the medical profession in this regard expresses itself in many forms, for example: the assertion that the science of medicine must be complemented by the "art" of medicine; the plea for more emphasis on "the whole man" in clinical teaching; the wide-spread practice of urging prospective medical students to cultivate the "humanities" rather than purely scientific disciplines during their college years. I shall discuss together these various symptoms of uneasiness because they all have the same origin and the same implications. In particular, I shall emphasize that the solution to the difficulty is not to make medicine less scientific but rather to broaden its scientific basis.

Interestingly enough, emphasis on the "whole man" in medical schools became fashionable at the same time that schools of technology began to find it advisable to introduce humanistic disciplines on their campuses. Engineering and architecture, just like medicine, present of course technical problems which are interesting per se and which can be studied for their own sake. But engineers and architects just like physicians can successfully relate their work to human welfare only if they are guided by the knowledge of man's fundamental needs and aspirations.—RENE' DUBOS: Hippocrates in Modern Dress. Proc Inst Med Chicago 25: 243, 1964-65.
INFLUENCE OF A DEFOAMING AGENT


The Majesty of the Unknown

... In our moods of abstract theorization we tend to forget how great and how diverse are the functional commitments of biological macromolecules. They insulate, they fill out; they fetch and carry; they prevent the Organism as a Whole from falling apart or from dissolving in water; they prop up, they protect; they attack and defend; they store energy and catalyze its transfer; they store information and convey messages, and sometimes they themselves are messages. The successful prosecution of all these activities depends upon properties more complex, various and particular than can be written down in the language of energetics or information theory.—P. B. MEDAWAR: The Art of the Soluble. London, Methuen & Co. Ltd., 1967, p. 57; also distributed by Barnes & Noble, Inc., New York.


Literary Carping

... Dr. Obispo went on, why should some animals live much longer than human beings and yet show no signs of old age? Somehow, somewhere we had made a biological mistake. ...

Those sterols! ... Always linked up with senility. The most obvious case, of course, was cholesterol. A senile animal might be defined as one with an accumulation of cholesterol in the walls of its arteries. ... He himself would go even further and say that such sterol-poisoning was responsible for the entire degenerative process of senescence in man and the other mammals. What nobody had done hitherto was to look into the part played by fatty alcohols in the life of such animals as carp. That was the work he had been doing for the last year. His researches had convinced him of three things: first, that the fatty alcohols in carp did not accumulate in excessive quantity; second, that they did not undergo transformation into the more poisonous sterols; and third, that both of these immunities were due to the peculiar nature of the carp's intestinal flora. What a flora! Dr. Obispo cried enthusiastically. So rich, so wonderfully varied! He had not yet succeeded in isolating the organism responsible for the carp's immunity to old age, nor did he fully understand the nature of the chemical mechanisms involved. Nevertheless, the main fact was certain. In one way or another, in combination or in isolation, these organisms contrived to keep the fish's sterols from turning into poisons. That was why a carp could live a couple of hundred years and show no signs of senility.