CIRCULATION
AN OFFICIAL JOURNAL OF THE AMERICAN HEART ASSOCIATION

EDITOR-IN-CHIEF
HERRMAN L. BLUMGART, Boston, Mass.
EDITH E. PARRIS, ASSISTANT EDITOR

ASSOCIATE EDITORS
STANFORD WESSLER, Boston, Mass.
P. A. ZOLL, Boston, Mass.

EDITORIAL BOARD
WRIGHT R. ADAMS, Chicago, Ill.
E. COWLES ANDRUS, Baltimore, Md.
BENJAMIN M. BAKER, Baltimore, Md.
WILLIAM B. BBEAN, Iowa City, Iowa
STANLEY E. BRADLEY, New York, N. Y.
EUGENE BRAUNWALD, Bethesda, Md.
BERNARD B. BRODIE, Bethesda, Md.
HOWARD B. BURCHELL, Rochester, Minn.
ANDRE COURNA, New York, N. Y.
MICHAEL E. DE BAKEO, Houston, Texas
PAUL M. DENSEN, New York, N. Y.
ALBERT DORFMAN, Chicago, Ill.
CHARLES T. DOTTER, Portland, Ore.
LUDWIG W. EITOWHA, Brooklyn, N. Y.
A. CARLTON ERNSTEN, Cleveland, Ohio
A. STONE FREDENBERG, Boston, Mass.
DAVID G. FREEMAN, Boston, Mass.
HARRY GOLDBLATT, Cleveland, Ohio
ROBERT P. GRANT, Bethesda, Md.
HANS H. HECHT, Salt Lake City, Utah
EDGAR A. HINES, J.R., Oteen, N. C.
SIBLEY W. HOUBLER, Ann Arbor, Mich.
FRANKLIN D. JOHNSTON, Ann Arbor, Mich.

EDITORIAL BOARD
LOUIS N. KATZ, Chicago, Ill.
ROBERT H. KIRKLAND, Rochester, Minn.
CHARLES E. KOSMANN, New York, N. Y.
HOWARD P. LEWIS, Portland, Ore.
JERE W. LORD, Jr., New York, N. Y.
H. M. MARVIN, New Haven, Conn.
VICTOR A. MCKUSICK, Baltimore, Md.
THOMAS M. McMILLAN, Philadelphia, Pa.
FELIX E. MOORE, Ann Arbor, Mich.
DAVID F. ODPYKE, Jersey City, N. J.
OSCAR D. RATNOFF, Cleveland, Ohio
MINDEL C. SHEPS, Pittsburgh, Pa.
SOL SHERWIN, St. Louis, Mo.
ALBERT SJOERDSMA, Bethesda, Md.
HOWARD B. SPARGUE, Boston, Mass.
FREDRICK J. STARE, Boston, Mass.
EUGENE A. STEAD, Jr., Durham, N. C.
SAMUEL A. TALBOT, Baltimore, Md.
HELEN B. TAUSKIS, Baltimore, Md.
LEWIS THOMAS, New York, N. Y.
EARL H. WOOD, Rochester, Minn.
IRVING S. WRIGHT, New York, N. Y.
D. B. ZILVERSMIT, Memphis, Tenn.

PUBLICATIONS COMMITTEE, AMERICAN HEART ASSOCIATION
CHARLES A. R. CONNOR, Chairman
New York, N. Y.

WRIGHT R. ADAMS
Chicago, Ill.
ROBERT H. FURMAN
Oklahoma City, Okla.
HANS H. HECHT
Salt Lake City, Utah
RALPH E. KNUTTI
Bethesda, Md.
PAUL MONTGOMERY
New York, N. Y.
W. HENRY RUSSELL
Mount Kisco, N. Y.

GEORGE E. WAKERLIN, Medical Director, American Heart Association, New York, N. Y.

E. COWLES ANDRUS
Baltimore, Md.
HERRMAN L. BLUMGART
Boston, Mass.
CARL F. SCHMIDT
References

When we hear that Alcin ordered the formal teaching of medicine, it was under the name of "Physica"; and not until the Physics of Aristotle came to light did the various branches of natural history become in their turn not only definite studies but also self-sufficient, aside from the art of healing. To this day the healer keeps the name of "physician"; and the subject at Cambridge the name of Physic. It is well to be reminded that although the soldiers of truth must be separated into several regiments, nevertheless for its edification the healing art must draw, directly or indirectly, on all natural science.—Thomas Clifford Allbutt, M.D. Science and Medieval Thought. London, C. J. Clay and Sons, 1901, p. 52.

The discoverer in science may justifiably entertain the deeply gratifying thought that work well done, observations carefully made and recorded, will ultimately combine with other observations, perhaps made long afterward, in forming the body of truth. The conquest of yellow fever, for example, involved the identification of mosquitoes, and that in turn depended on previous descriptions by entomologists who had studied scales and veins on the wings, and hairs on the bodies of the insects in order to classify them. Little did they realize how their descriptions would fit into the strategy of abolishing a devastating disease. An investigator may never see the synthesis which brings his work into its relations with the work of others, but from historical evidence he can be assured that such may be the destiny of his observations. If, perchance, the labors in which he engages result in immediately practical consequences beneficial to all mankind, he has the happiness of knowing that there will be a continuing beneficence long after his own labors have ceased. There is great reward in the thought of these "durable results of the perishable years."—Walter B. Cannon, M.D. The Way of An Investigator. New York, W. W. Norton & Company, Inc., 1945, p. 212.

Death Hath No Terrors

I thank GOD I have not those strait ligaments, or narrow obligations to the World, as to jote on life, or be convulst and tremble at the name of death. Not that I am unsensible of the dread and horror thereof; or by raking into the bowels of the deceased, continual sight of Anatomies, Skeletons, or Cadaverous reliques, like Vespilloes, or Grave-makers, I am become stupid, or have forgot the apprehension of Mortality; but that, marshalling all the horrors, and contemplating the extremities thereof, I find not any thing therein able to daunt the courage of a man, much less a well-resolved Christian; and therefore am not angry at the error of our first Parents, or unwilling to hear a part of this common fate, and like the best of them to dye, that is, to cease to breathe, to take a farewell of the elements, to be a kind of nothing for a moment, to be within one instant of a Spirit.—Sir Thomas Browne. Religio Medici. Edited by W. A. Greenhill, M.D. London, MacMillan and Co., Ltd., 1950, p. 61.

Galvani and the Electrophysiology of Muscular Contraction

Galvani's merits as a physicist and physiologist obscured his contributions to anatomy, yet his morphological investigations by themselves would have been sufficient to secure his reputation. His first publication dated 1762, discussed the anatomy and pathology of bones. These Theses, according to the custom of the times, were publicly discussed by Galvani at the Archiginnasio (to enable him to lecture at the University). His first dissertation inserted in the Commentaries of the Academy is dated 1767 and was concerned with bird kidneys. In order to investigate the disposition and thin structure of renal tubules, Galvani caused a natural injection of the tubules by ligating the ureters and in that way anticipated by almost a century, the approach of Hoppe-Seyler and Zaleski. In that paper, for the first time, the three layers of the ureteral walls as well as the peristaltic and antiperistaltic motions of the ureters were described.

In his second dissertation, read before the Academy on February 19, 1767, Galvani reported the results of his experiments on the nasal mucosa in men and several animals, and described in detail the mucous glands and the tubercles situated in the inferior portion of the septum and the anterior portion of the inferior turbinates. He also read several Latin essays before the Academy on the structure and functions of the ear in birds shortly before Scarpa published his famous paper on the round window and secondary tympanum.

Several historians and anatomists have commented on the great value of Galvani's investigations on the ear. He discussed the variation in diameter of the auditory canal, its straight direction, slight depth and different configurations in various kinds of birds.

He was the first to write of the bony cavity leading to the oval or round window, which he called the antvestibolo. He investigated the function of the two muscles which end and are inserted into the auditory ossicle. He also followed the entire course of the chorda tympani by means of a lens.—Giulio Pupilli. Commentary on the Effect of Electricity on Muscular Motion. BY LUIGI GALVANI. Translated by Robert Montraville Green, M.D., Cambridge, Massachusetts, Elizabeth Licht, Publisher, 1953, p. xv.
are presented, and it is indicated that this abnormality presents a characteristic clinical, physiologic, and pathologic syndrome.

It is postulated that the aneurysmal dilatation of the pulmonary artery may result either from a congenital weakness at the base of the pulmonary artery or from the hemodynamic effects of a ventricular septal defect and infundibular stenosis in the presence of pulmonary regurgitation.

The absence of the pulmonary valve has not been a deterrent to successful corrective surgery aimed at the basic pathology of tetralogy of Fallot in three cases.

References

To wrest from nature the secrets which have perplexed philosophers in all ages, to track to their sources the causes of disease, to correlate the vast stores of knowledge, that they may be quickly available for the prevention and cure of disease—these are our ambitions.—Sir William Osler. Aphorisms From His Bedside Teachings and Writings. Edited by William Bennett Bean, M.D. New York, Henry Schuman, Inc., 1950, p. 57.
ence, and then, in addition to the common diagnostic aids, an angiogram might be most helpful.

Summary

Congenital saccular aneurysms arising in the area of the aortic ring are not common. They may be located deep in the aortic sinus, at the commissure of two adjacent cusps, or in the area involving the membranous portion of the interventricular septum. They may be found at any age. This report concerns a child 2 years of age with a relatively large saccular aneurysm of the aortic ring just at the site of the commissure between the right and noncoronary cusps of the aortic valve. Terminally, this anomaly was complicated by infection leading to vegetative and ulcerative endocarditis. Death was sudden and was apparently directly related to the complications of the deformity.

References

Darwinian fitness is compounded of a mutual relationship between the organism and the environment. Of this, fitness of environment is quite as essential a component as the fitness which arises in the process of organic evolution; and in fundamental characteristics the actual environment is the fittest possible abode of life.—**LAWRENCE J. HENDERSON. The Fitness of the Environment.** New York, The Maemillan Co., 1924, p. V.

Yet in his (Harvey's) need of a motor for his machine he was not able to divest himself of the language nor even of the philosophy of his day; he referred the cause of the motion of the blood, and therefore of the heart, to innate heat.—THOMAS CLIFFORD ALLBUTT, M.A., M.D. Science and Medieval Thought. London, C. J. Clay & Sons, 1901, p. 43.