Left Atrial and Left Ventricular Pressures in Subjects without Cardiovascular Disease
Observations in Eighteen Patients Studied by Transseptal Left Heart Catheterization

By Eugene Braunwald, M.D., Edwin C. Brockenbrough, M.D., Charles J. Frahm, M.D., and John Ross, Jr., M.D.

The measurement of pressures in the left side of the heart now constitutes one of the basic technics in the clinical study of the circulation. Left heart catheterization is of importance not only in cardiovascular diagnosis but also as a tool in the physiologic investigation of the central circulation in normal and abnormal states. In spite of the widespread applications of left heart catheterization, the level of pressures in the left side of the heart in subjects without cardiovascular disease in a basal physiologic state has not been known. The lack of this information is understandable when the risk, patient discomfort, and technical complexity associated with the older methods of left heart catheterization are considered.1 These procedures were in general reserved for those patients in whom the establishment of a specific diagnosis or of a therapeutic plan required specific knowledge of the pressures in the left side of the heart.

With the development of left heart catheterization by the transseptal route 2-5 it has become possible to study the dynamics of the left side of the heart with relative safety and little discomfort to the patient. We have had the opportunity to measure left atrial and left ventricular pressures in 18 subjects without any apparent abnormalities of the cardiovascular system; the data obtained in these patients form the basis of this report.

Methods
The subjects studied ranged in age from 5 to 49 years, with an average age of 21 years; 11 of them were male and 7 were female. All were studied because of the presence of heart murmurs. On clinical examination these murmurs were considered to be functional in origin by several examining physicians, and the chest roentgenograms and electrocardiograms showed no abnormalities. Right heart catheterization was carried out through the right saphenous vein, and in each instance the pressures in the pulmonary artery, right ventricle, and right atrium were found to be within normal limits.6 There was no evidence of a circulatory shunt by application of indicator-dilution curves7 and of foreign gas technics.8 Following right heart catheterization transseptal left catheterization was carried out in a manner detailed previously.4, 6

Left atrial pressures were measured through a no. 17-gage thin-walled needle in 16 patients and through a no. 19-gage needle in the other patients. Left ventricular pressures were measured through a polyethylene catheter (PE no. 50), 100 cm. in length in 16 patients, and through a radiopaque polyethylene catheter, 70 cm. in length with an internal diameter of 1.15 mm. in the other two patients. Pressures were measured with P23D Statham pressure transducers and were recorded on a multi-channel photographic recorder. The baseline for all pressure measurements was 5 cm. below the sternal angle.

All patients were studied in the basal, post-absorptive state. Thirteen of them were given 100 mg. of pentobarbital orally while the five children, aged 5 to 14 years, received a mixture of meperidine, phenergan, and promazine intramuscularly prior to study.

Results
The results are presented in detail in figure 1. The mean left atrial pressures ranged between 2 and 12 mm. Hg, and the average value was 7.9 mm. Hg. The mean left atrial pressure exceeded the mean right atrial pressure in every subject; the difference between these mean pressures ranged from 1 to 7 mm. Hg, and the average difference was 3.9 mm.
Hg. The left atrial pressure at the onset of the atrial contraction (a) wave was, in general, almost identical to the mean left atrial pressure, ranging from 1 to 12 mm. Hg, with an average value of 7.1 mm. Hg. The left atrial a wave peak ranged from 4 to 16 mm. Hg and averaged 10.4 mm. Hg. Thus, the left atrial a wave pulse pressure, i.e., the difference between the pressure at the onset and at the peak of the a wave ranged from 1 to 7 mm. Hg and averaged 3.4 mm. Hg. The left atrial z point pressure,9 i.e., the atrial pressure at the onset of left ventricular contraction, ranged from 1 to 13 mm. Hg and averaged 7.6 mm. Hg. The tallest wave in the left atrial pressure pulse was generally the v peak, i.e., the pressure at the time of the opening of the mitral valve. This ranged from 6 to 21 mm. Hg and averaged 12.8 mm. Hg. The left ventricular end-diastolic pressure differed little from the mean left atrial and the left atrial z point pressures; it ranged from 5 to 12 mm. Hg, with an average value of 8.7 mm. Hg.

A typical left atrial pressure pulse in one of the subjects is reproduced in figure 2.

Discussion

It is well established, on the basis of experimental observations in the dog, that the mean pressure in the left atrium normally exceeds that in the right atrium.10 Although pressures from the left atrium have been recorded in patients with atrial septal defects at the time of cardiac catheterization for many years,11, 12 the presence of the interatrial communication in such patients lowers the left atrial pressure and reduces the normal interatrial pressure gradient. Thus, the left atrial pressure in these patients cannot be considered to be representative of that existing in normal subjects. Left heart pressure measurements in patients without cardiovascular disease have, up to now, been limited to observations carried out at the time of thoracotomy.13-17 In patients with an open chest the mean left atrial pressure averaged 7.5 mm. Hg in one series15 and 9.0 mm. Hg in another;16 the left ventricular end-diastolic pressures ranged from 5 to 14 mm. Hg in one group15 and 5 to 17 mm. Hg (mean 9 mm. Hg) in the others.16 The mean left atrial pressure exceeded the mean right atrial pressure by an average of 2 mm. Hg, whereas the left ventricular end-diastolic pressure exceeded the right ventricular end-diastolic pressure by an average of 3 mm. Hg.16 The close correspondence between these values, obtained at the time of operation, and the pressure values obtained at catheterization and reported herein is of interest.

Summary

Transeptal left heart catheterizations were carried out in 18 patients without apparent evidence of organic cardiovascular disease.
These studies have permitted delineation of
the pressures that exist in the left side of the
heart in normal subjects studied in a basal
physiologic state.

References
1. MORROW, A. G., BRAUNWALD, E., AND ROSS,
 J., JR.: Left heart catheterization: An
 appraisal of techniques and their applications
2. ROSS, J., JR., BRAUNWALD, E., AND MORROW,
 A. G.: Transseptal left atrial puncture: New
 technique for the measurement of left atrial
3. ROSS, J., JR., BRAUNWALD, E., AND MORROW,
 A. G.: Transseptal left heart catheterization:
4. ROSS, J., JR., BRAUNWALD, E., AND MORROW,
 A. G.: Left heart catheterization by the
 transseptal route: A description of the technic
5. BROCKENBROUGH, E. C., AND BRAUNWALD, E.:
 A new technic for left ventricular angiocardiography
 and transseptal left heart catheterization.
6. FOWLER, N., WESTCOTT, R. N., AND SCOTT, R. C.:
 Normal pressures in the right heart and pul-
7. BRAUNWALD, E., TANENBAUM, H. L., AND
 MORROW, A. G.: Localization of left-to-right
 shunts by dye-dilution curves following injec-
 tion into the left side of the heart and into
8. BRAUNWALD, E., MORROW, A. G., SANDERS, R. J.,
 AND LONG, R. T. L.: Characterization of
 circulatory shunts by foreign gas technics.
 In Congenital Heart Disease. American
 Association of Advanced Science, Washington, D.C.,
 1960, p. 241. (Publication 63, edited by Bass,
 A. D. and Moe, G. K.)
9. WELE, J. M., COSBY, R. S., AND WIEGERS, C. J.:
 Observations on hemorrhagic hypotension and
 hemorrhagic shock. Am. J. Physiol. 163: 401,
 1942.
10. ODPYKE, D. F., DUOMARCO, J., DILLON, W. H.,
 SCHREIBER, H., LITTLE, R. C., AND SEELEY, R. D.:
 Study of simultaneous right and left atrial
 pressure pulses under normal and experiment-
 ally altered conditions. Am. J. Physiol. 154:
 238, 1948.
11. COURNAND, A., MOTLEY, H. L., HIMMELSTEIN,
 A., DRESDALE, D., AND BALDWIN, J.: Recording
 of blood pressure from the left auricle and
 the pulmonary veins in human subjects with
 interauricular septal defects. Am. J. Physiol.
 150: 267, 1947.
12. CALAKEL, P., GERARD, R., DALEY, R., DRAPER, A.,
 FOSTER, J., AND BING, R. J.: Physiological
 studies in congenital heart disease: A com-
 parison of the right and left auricular, capil-
 lary and pulmonary artery pressures in nine
 patients with auricular septal defect. Bull.
13. MUNNELL, E. R., AND LAM, C. R.: Cardio-
 dynamic effects of mitral commissurotomy.
 R., AND DALEY, R.: The left auricular pres-
 sure pulse in normals and in mitral valve
15. BRAUNWALD, E., MOCOVITZ, H. L., AMRAM, S. S.,
 LASSER, R. P., SAPIN, S. O., HIMMELSTEIN,
 A., RAVITCH, M. M., AND GORDON, A. J.: The
 hemodynamics of the left side of the heart
 as studied by simultaneous left atrial, left
 ventricular, and aortic pressures; particular
 reference to mitral stenosis. Circulation 12:
 69, 1955.
16. BRAUNWALD, E., FISHMAN, A. P., AND COURNAND,
 A.: Time relationships of dynamic events in
 the cardiac chambers, pulmonary artery and
 aorta in man. Circulation Research 4: 100,
 1956.
17. LUISADA, A. A., AND LIU, C. K.: Intracardiac
 Phenomena in Right and Left Heart Catheteri-
 zation. New York, Grune & Stratton, Inc.,
 1958.

There is no disease more conducive to clinical humility than aneurysm of the aorta—
SIR WILLIAM OSLER. Aphorisms From His Bedside Teachings and Writings. Edited.
Left Atrial and Left Ventricular Pressures in Subjects without Cardiovascular Disease: Observations in Eighteen Patients Studied by Transseptal Left Heart Catheterization

EUGENE BRAUNWALD, EDWIN C. BROCKENBROUGH, CHARLES J. Frahm and JOHN ROSS, JR.

Circulation. 1961;24:267-269
doi: 10.1161/01.CIR.24.2.267
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1961 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/24/2/267

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/