Effects of Acute Hypoxia on the Volume of Blood in the Thorax

By H. W. Fritts, Jr., M.D., J. E. Odell, M.D., P. Harris, M.D., E. W. Braunwald, M.D., and A. P. Fishman, M.D.

The results presented in the first paper of this series confirm the observations of others that acute hypoxia frequently raises the pulmonary arterial pressure in normal man. This pressor effect cannot be solely attributed to an augmented cardiac output, nor can it be ascribed to an elevated left atrial pressure. It seems, therefore, to arise from a change in the dimensions of some portion or portions of the pulmonary vascular bed.

Whether this change involves an alteration in the pulmonary blood volume has not been settled, since experiments in man and in animals have yielded conflicting results.1-8 The present study was designed to investigate the relation between volume and pressure by using two dissimilar methods. The first entailed measuring the central blood volume before and during hypoxia; the second involved recording the change in the relative weights of the two ends of the body when hypoxia was induced.

Methods
Measurement of Central Blood Volume

The central blood volume was measured by using the dye-dilution method of Hamilton.9 For this purpose, a no.-8 cardiac catheter was advanced until its tip lay in the main pulmonary artery and a Courmand needle was inserted into the right brachial artery. The patient was then allowed to rest for 15 minutes before observations were begun.

The experimental protocol comprised 2 20-minute breathing periods, separated by a 10-minute interval of rest. Eight of the 25 patients breathed 21 per cent oxygen during both periods; the remaining 17 breathed 21 per cent oxygen during the first and either 14 per cent or 12 per cent oxygen during the second period.

Pressures were recorded at 2-minute intervals from the pulmonary and brachial arteries. At the eighteenth minute, 4 ml. of Evans blue dye were rapidly injected through the catheter into the pulmonary artery. A dilution curve was inscribed from the brachial artery by withdrawing blood at a constant rate of 0.5 ml. per second through a Colson densitometer. The concentration of dye in plasma was read in a Beckman Model DU spectrophotometer. This value was used to calibrate the dye curve according to the pooled-sample method of McNeely and Gravellese.10 The calibrated curve, used in conjunction with the formulas of Hamilton,9 and after allowance was made for the amount of dye retained in the catheter, provided estimates of the cardiac output, the mean circulation time, and the central blood volume.

Determination of Distribution of Weight

For these studies, each subject lay supine on a teeter-board constructed of light-weight pine and plywood.11, 12 The board was balanced on a fulcrum which could be adjusted to the approximate horizontal level of the center of gravity of the combined mass of the board and the subject (fig. 1). A spring held the board in position; it had a linear coefficient of elasticity over the range of motion involved in the experiments. A dashpot filled with mineral oil damped the rapid oscillations caused by the respiratory movements of the chest and abdomen, and by the beating of the heart. The balance of the board was such that a 50-Gm. weight placed 10 cm. from the fulcrum deflected the kymograph pen approximately 1 cm.

Each subject lay on the board for approximately 2 hours. During the first hour no observations were recorded because experience indicated that this was a minimal period for the 2 ends of the body to attain stable weights.11, 13 To ensure that stability had been achieved by the end of the hour, 3 records were obtained at 10-minute intervals. The subject then breathed 21 per cent

From the Department of Medicine, Columbia University, College of Physicians and Surgeons, and the Cardio-Pulmonary Laboratory of the First Medical and Chest Services (Columbia University Division), Bellevue Hospital, New York, N.Y.

Supported in part by a research grant (H-833 (C)) from the National Institutes of Health, U.S. Public Health Service, with additional support from the American Heart Association.
HYPOXIA AND THORACIC BLOOD VOLUME

Figure 1
Schematic drawing of a teeter-board.

Figure 2
Effect of (A) hypoxia and (B) norepinephrine on the relative weights of the 2 ends of the body. Response marked CAL indicates effect of placing a 50-Gm. weight 10 cm. from fulcrum on head-end of the board.

Figure 3
Effect of hypoxia on central blood volume.

erable variation between the 2 measurements in individual patients. When the difference between the volumes measured in each patient was divided by the first volume, the range extended from −11 to +12.6 per cent, with an average difference of −1.9 per cent. With the assumption that these differences had a Gaussian distribution, their standard deviation was 7.33 per cent. Hence, 2.58 standard deviations, the number necessary to include 99 per cent of the observations, was ±18.91 per cent.

Patients in Whom the Central Blood Volume Was Measured before and during Hypoxia

The volumes measured in the 17 patients who were made hypoxic are recorded in Table 1. The values obtained while they breathed 21 per cent oxygen gave an average volume of 0.79 L./M.², and a standard deviation of 0.119 L./M.². The volumes measured during hypoxia gave an average value of 0.81, and a standard deviation of 0.566 L./M.². When analyzed by the “t” test of Fisher, the difference between the averages was not significant (p>.10).

The changes in volume are depicted graphically in Figure 3. Each bar represents a single patient. The length of the bar represents the percentage change in volume calculated as the difference between the ambient air and hypoxic values divided by the ambient air value. In only 2 patients (J.O’C. and J.H.) did the percentage change exceed the limits
of ±18.91 per cent calculated for all 8 subjects.

Despite the lack of change in the central blood volume, hypoxia exhibited its usual pressor effect on the pulmonary arterial pressure. Thus, the average value during the control period was 13.7 mm. Hg and during the period of hypoxia it rose to 18.7 mm. Hg. This difference would have arisen by chance less frequently than 1 in 100 times (p. < .01).

Patients Studied on the Teeter-Board

None of the 9 patients studied on the teeter-board demonstrated any change in the position of the center of gravity during hypoxia, despite the fact that arterial saturations as low as 62 per cent were induced. A typical record is shown in figure 2A, and is contrasted with a tracing recorded during an infusion of norepinephrine (fig. 2B). In the latter instance, the center of gravity shifted toward the head-end of the body.

Discussion

In the studies reported in the preceding paper, the cardiac output was measured by the Fick principle and the importance of the steady-state was emphasized. In the present studies, the cardiac output was measured by the dilution principle and safeguards of the same sort were applied. The most frequent difficulty was imposed by an unstable densitometer baseline during the hypoxic period. This unsteadiness was caused by variations in the oxygen saturation of the blood in the systemic arteries, and in 12 patients the fluctuations were so large that the data were discarded. In the patients included in this report, baselines recorded over a period of 20 seconds showed variations that were less than 5 per cent of the maximum height of the curve.

The central blood volume as measured in these studies included not only the blood in
the pulmonary vessels, but that contained in the chambers of the left heart and that segment of the aorta and its branches that lay at points temporally equidistant from the aortic valve. In keeping with the observations of Doyle, Wilson, and Warren, our results indicated that hypoxia did not alter this volume of blood.

Furthermore, no shift in the center of gravity could be demonstrated when hypoxia was induced in patients lying on the teeter-board. These results confirm and extend earlier observations from this laboratory and agree with those published by Honig and Tenney. According to the calibration, the teeter-board would have disclosed a change in the pulmonary blood volume of 50 ml. or less, if the blood moved through a distance of 10 cm along the length of the body. These observations support the measurements of the central blood volume in indicating that the volume of blood in the thorax does not change appreciably during hypoxia.

Summary

Two different methods were used to study the effect of acute hypoxia on the volume of blood in the thorax. The first method entailed estimating the central blood volume by the Stewart-Hamilton dye-dilution technique; the second involved the use of a teeter-board. The 2 methods gave comparable results. Both indicated that the volume of blood in the thorax is not appreciably altered by hypoxia.

Summario in Interlingua

Duo differente methodos esseva usate pro studiar le effecto de hypoxia acute super le volumine del sanguine in le thorace. Le prime duo methodos consisteva in estimare le volumine de sanguine central per medio del technica a dilution de colorante secondo Stewart-Hamilton; le secunde utilisava un planca baselante. Le resultatos obtenite per le duo methodos esseva comparabile. Ambas indicava que le volumine de sanguine in le thorace non es alterate appreciabilemente per le effectos de hypoxia.

References

Effects of Acute Hypoxia on the Volume of Blood in the Thorax
H. W. FRITTS, JR., J. E. ODELL, P. HARRIS, E. W. BRAUNWALD and A. P. FISHMAN

doi: 10.1161/01.CIR.22.2.216

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1960 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/22/2/216

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/