The Significance of Vertebrate Metamorphosis

By George Wald, Ph.D.

It is generally recognized that the anatomical metamorphosis of the vertebrates seems to recapitulate their evolutionary history. However, little attention has been paid to the biochemical changes which preceed or accompany the anatomical changes. In the present paper, the author uses the biochemistry of vision as the point of departure for considering the parallel changes in biochemistry, anatomy and ecology which are involved in vertebrate metamorphosis.

"Nicodemus saith unto him, How can a man be born when he is old? can he enter the second time into his mother's womb and be born?

"Jesus answered, Verily, verily, I say unto thee, Except a man be born of water . . . "— John, 3:4, 5.

ONE OF Thomas Mann's novels begins with the words, "Very deep is the well of the past." This is the well from which all biology is drawn. Physics and chemistry deal with what is; biology with what has become. In biology one is never far from history; and each living organism carries fragments of this history with it, as vestiges and recapitulations, anatomical and, as we shall see, biochemical.

I was led into this subject through the study of visual systems. I shall begin with them since they still provide the main thread of the argument, though by now it branches widely.

What we are concerned with here is an aspect of biology at the molecular level. Like all such developments, it runs closely parallel with earlier arguments based primarily upon anatomy. This is hardly surprising, for the anatomy of an organism is the greatly magnified expression of its chemistry; and the short- and long-term changes in anatomy that constitute the organism's embryogeny and evolution, by the same token, express chemical changes. The biochemist is a biologist whose dissections have reached the molecular level. Far from removing him from biology, this gives him new opportunities to pursue it.

For like reasons, some of the viewpoints and conclusions expressed here were reached long ago by other paths. They will bear this reiteration and the new support that biochemistry brings them.

Primacy of the Spawning Environment

Two kinds of visual system are found in the rods of vertebrate retinas. One is based upon the red visual pigment, rhodopsin, formed by the combination of the protein opsin with retinene, the aldehyde of vitamin A. The other is based upon the purple pigment, porphyropsin, formed from the same type of opsin combined with retinene, the aldehyde of vitamin A. Retinene and vitamin A only in possessing an added double bond in the ring (fig. 1).

The porphyropsin system was first discovered in fresh-water fishes. Marine fishes and land vertebrates characteristically possess the rhodopsin system (figs. 2 and 3).

What of the fishes that are neither fresh-water nor marine, but migrate between both environments? It would be well before discussing them to clarify somewhat their biological position.

Most fishes are restricted throughout their lives to narrow ranges of salinity. Such forms are called "stenohaline" and are of 2 kinds, fresh-water and marine. A much smaller group of fishes can live as adults in a wide

From the Biological Laboratories, Harvard University, Cambridge, Mass.

This paper is a revised version—in a sense a second edition—of one that appeared earlier in Science. The material from the earlier version is republished by permission of Science. The investigations from our own laboratory were supported in part with funds from the Rockefeller Foundation and the Office of Naval Research.
range of salinities. They are called "euryhaline," and, again, are of 2 kinds, anadromous and catadromous, meaning "upstream" and "downstream." These terms refer to the direction of the spawning migrations. Salmon, for example, are typically anadromous forms, coming upstream to spawn, whereas the "fresh-water" eels are catadromous, going downstream to the sea on their spawning migration.

It is probably true, however, that no euryhaline fish has to leave its spawning environment to complete a normal life cycle. Many instances are known in which anadromous fishes remain permanently in fresh water. The same is true of such an anadromous cyclostome as the sea lamprey, which has recently colonized the Great Lakes and virtually destroyed the fresh-water fisheries there.

So far as we know, the spawning environment is always fixed. The eggs, the sperms, or the embryos, perhaps sometimes all 3, are stenohaline. Euryhalinity develops later in life and permits, though does not compel, these animals to migrate to the other environment. Migration is only a potentiality, which some of these forms exploit regularly and others rarely. The salmons are essentially fresh-water fishes with the privilege of going to sea as adults; the fresh-water eels are marine fishes with the capacity of coming as adults into fresh water.
The vitamin A\textsubscript{1} of the retinas of marine fishes. Spectra of the antimony chloride tests with extracts of bleached retinas reveal the λ_{max} at 615 to 620 mp characteristic of vitamin A\textsubscript{1}. This result has been obtained with a great variety of bony, and a few elasmobranch, fishes and is characteristic also of land vertebrates. Two wrasse fishes (Labridae), however, the cunner and tautog, though wholly marine, are exceptional in having a predominance of vitamin A\textsubscript{2} in their retinas. (Reproduced by permission of the Journal of General Physiology.6)

The significant biological statement concerning such fishes is not that they migrate but that, being fixed in spawning environment, they are euryhaline as adults. I should like on this basis to redefine the terms applied to them. An anadromous fish is a euryhaline form which spawns in fresh water; a catadromous fish, one which spawns in the sea.6

On examining the visual systems of several genera of salmonids, I found that all of them possess mixtures of the rhodopsin and porphyropsin systems, yet primarily the latter, characteristic of the spawning environment. Conversely, the American fresh-water eel possesses a mixture of both visual pigments, in which rhodopsin—again the spawning type—predominates (fig. 4).7 Certain other anadromous fishes—alewife, white perch—possess porphyropsin almost alone (fig. 5). All the euryhaline fishes examined follow a simple rule: all of them possess, either predominantly...
or exclusively, the type of visual system characteristically associated with the spawning environment.6,8

To a first approximation these patterns are genetic and independent of the immediate environment. The salmonids which were found to possess mixtures of both visual systems had spent their entire lives in fresh water. Alewives just in from the sea on their spawning migration possess porphyropsin almost exclusively. Most striking of all, the cunner and tautog, members of the wholly marine family of Labridae, the wrasse fishes, possess porphyropsin; this is the only type of marine fish yet known to do so.6,8

Since the distribution of visual systems among fishes is genetic, one may ask whether it fits into some evolutionary pattern. Many paleontologists are convinced that the vertebrate stock originated in fresh water. It is from such fresh-water ancestors that our fresh-water fishes were ultimately derived.*

The observation that these animals characteristically possess rhodopsin or porphyropsin appears to fit into a pattern of genetic inheritance. The distribution of visual systems among fishes is genetic, and it is from such genetic changes that new species have been created.

*The "ultimately" here conceals a thorny problem. Fish evolution has probably involved numerous interchanges between fresh-water and marine existence, and many present-day fresh-water fishes may have had marine forms in their ancestry. In that case one should have to assume that the complex of genetic changes that has brought stocks into fresh water has regularly carried with it the property of using vitamin A\textsubscript{2} and porphyropsin in vision. I cannot suggest a genetic mechanism for this association; the association itself is a fact to which as yet no exceptions are known.

\textit{Circulation, Volume XXI, May 1960}
Figure 6

Distribution of vitamins A₁ and A₂ in vertebrate retinas. The observations, all made on contemporary animals, are here correlated with the present ecology. They may also, however, represent evolutionary sequences, and in that case they convey the suggestion that primitive vertebrate vision was based upon vitamin A₂.

In this sense one might speak of almost all amphibia as "anadromous," meaning that they spawn in fresh water and are free, as adults, to go back and forth between fresh water and the land. [One would like to commit further etymological atrocities. The essence of the euryhaline condition is the capacity to migrate, not so much between low and high salt concentrations as between hydrating (fresh-water) and dehydrating (sea and land) conditions. In this sense the amphibia are "euryhaline." Obviously one needs new terms, firmly grounded in ecological essentials rather than in trivialities.] A few amphibia (red-backed and tree salamanders) have developed special devices for living permanently ashore. I know of no "catadromous" amphibian—that is, one that spawns on land and goes through its growth phase in the water. A number of aquatic reptiles, however (alligators, fresh-water snakes, and turtles), fulfill this description nicely.

If these are substantial parallels, and if the spawning environment decides the pattern of visual pigments, then one should expect such an "anadromous" amphian as the common frog to possess mainly porphyropsin, like a salmon. Yet rhodopsin was originally discovered in the rods of frogs, and for a long period all that we knew of this pigment was learned with frogs.

In this dilemma I turned to a tailed amphibian with the thought that it might display more primitive properties than the tailless types. Adults of the common New Eng-
land spotted newt, Diemyctylus (formerly Triturus) viridescens, were found to possess porphyropsin exclusively. This brought a first amphibian into the same fold with certain anadromous fishes but left the frog in a more aberrant position than ever.

On examining bullfrogs in metamorphosis, however, I found that tadpoles just entering the metamorphic climax possess porphyropsin almost entirely, whereas newly emerged frogs have changed almost entirely to rhodopsin. The anatomical metamorphosis, which in this species takes about 3 weeks, is accompanied by this biochemical metamorphosis of visual systems. The bullfrog enters metamorphosis with porphyropsin, like a fresh-water fish, and emerges with rhodopsin, like a land vertebrate (fig. 7).

These observations have recently been confirmed; and Wilt has shown that the metamorphosis of visual pigments in the bullfrog can be stimulated to occur prematurely by treatment with thyroxine. A similar metamorphosis has also been observed in the Pacific tree frog, Hyla regilla. On the other hand, several instances have been recorded in which the visual pigment does not appear to change at anatomical metamorphosis: the frogs, Rana esculenta and temporaria, and the toad, Bufo boreas halophilus.

Certain amphibia, therefore, like euryhaline fishes, may display both the rhodopsin and porphyropsin systems. It seemed for a time that one difference between both groups might be that in euryhaline fishes the patterns of visual system are fixed, whereas in amphibia they change abruptly with metamorphosis. I shall have more to say of this later.

Biochemistry of Metamorphosis

At the time the metamorphosis of visual systems was discovered in the bullfrog, another such change in the same species had already been described. McCutcheon had found that the properties of hemoglobin in this animal change markedly at metamorphosis. The oxygen equilibrium curve of hemoglobin, measured at one temperature and pH, goes through a remarkable transition between tadpoles and adults. The hemoglobin of tadpoles has a high affinity for oxygen, and it seemed from McCutcheon’s measurements that the shape of its oxygen equilibrium curve might be hyperbolic, whereas the hemoglobin of young adults has a relatively low affinity for oxygen, and its equilibrium curve is distinctly S-shaped.

Riggs re-examined this situation in our laboratory. He confirmed McCutcheon’s finding of a striking loss of oxygen affinity at metamorphosis. He found, however, that the shape of the oxygen equilibrium curve does not alter at metamorphosis; it is equally sigmoid throughout development. He found another important change: tadpole hemoglobin exhibits almost no loss of oxygen.
affinity on acidification (that is, no Bohr effect), whereas frog hemoglobin has a very large Bohr effect (fig. 8).

It is clear therefore that hemoglobin, like the pigment of rod vision, metamorphoses in the bullfrog at the time of anatomical metamorphosis. Both substances are conjugated proteins. In the rod pigment, it is the prosthetic group, retinene, which changes; the protein opsin, so far as known, remains unaltered. In hemoglobin it is the protein, globin, which changes; the prosthetic group, heme, is the same always.*

*Such changes in hemoglobin seem to represent a fundamental property of vertebrates, for they penetrate to the most primitive forms. Adinolfi, Chieffi and Siniscalco7 have recently reported that larvae of the lamprey, Petromyzon planeri, possess 2 hemoglobins, and on metamorphosis change to 2 others. Sometimes they found all 4 hemoglobins together in

Recently Frieden et al.20 have described a third change in the proteins of this species at metamorphosis (fig. 9). In the bullfrog tadpole the predominant proteins of the blood plasma are globulins. At metamorphosis, the protein concentration of the plasma doubles, and albumins become predominant. These changes can be induced prematurely, just as can anatomical metamorphosis, by administering triiodothyronine.

Still another type of biochemical change has been shown to accompany metamorphosis in frogs and salamanders. Fishes excrete most of their nitrogen as ammonia, whereas land vertebrates excrete their nitrogen primarily as urea or uric acid. Munro21 showed some years ago that whereas the tadpoles of the frog, Rana temporaria, excrete the great bulk of their nitrogen as ammonia, at the metamorphic climax this animal goes over to excreting its nitrogen primarily as urea. At this time, also, arginase, the last in the chain of enzymes that forms urea, makes its first appearance in the liver (fig. 10).* Recently Munro23 has demonstrated similar changes accompanying metamorphosis in the toad Bufo bufo, the salamanders Triturus vulgaris and T. cristatus, and the axolotl Siredon mexicanum.

These observations make a beginning with the biochemical of metamorphosis. They show that just as animals in metamorphosis undergo radical alterations in anatomy, so their biochemistry is fundamentally revised at the same time. Indeed both kinds of change,
anatomical and biochemical, herald an ecological transition, for they are followed by radical changes of habitat. They mark also an evolutionary transition, for these changes offer the most striking instances we know of recapitulation. The amphibian in metamorphosis seems to repeat in rapid summary the changes which accompanied the emergence of vertebrates from fresh water onto land. The transformations of visual systems and of the patterns of nitrogen excretion seem to provide clear instances of biochemical recapitulation. The changes in hemoglobin also seem to involve aspects of recapitulation. Whether the changes in serum proteins have this character, it is too early to say. In any case, in metamorphosis the anatomy, the biochemistry, and, shortly afterward, the ecology all are transformed, and frequently in some degree of accord with the animal's evolutionary history.

It is interesting to realize how closely these patterns hold together. An aberration in one of them seems to call forth appropriate aberrations in the others. The mud puppy, Necturus maculosus, for example, remains to some degree a permanent larva, never losing its external gills and never emerging from the water. Some years ago I found that adult mud puppies have porphyropsin alone, like a freshwater fish.

The clawed toad, Xenopus laevis, a member of the peculiar family Aglossa, which possesses neither tongue nor teeth, is a purely aquatic form, which, though it metamorphoses, ordinarily never emerges from the water. Adults of this species possess in their retinas vitamin A₂ and porphyropsin almost exclusively. Underhay and Baldwin have recently shown that this species also exhibits peculiar changes in the pattern of its nitrogen excretion. As a tadpole it excretes nitrogen primarily as ammonia. At metamorphosis, like other amphibia, it begins to change over toward urea excretion, so that at the height of metamorphosis it excretes a little more nitrogen as urea than as ammonia. Toward the end of metamorphosis, however, it swings back again, so that the adult excretes about 3 times as much ammonia as urea nitrogen. It is as though this animal, having got ready to leave the water, changed its mind; and both the getting ready and the change of mind are reflected in the nitrogen excretion.
Indeed, *Xenopus* can change its mind again; for if kept moist while yet out of water it accumulates huge amounts of urea, perhaps as a device for conserving water such as is practiced by the elasmobranch fishes. Its return to water is attended by a massive excretion of urea accompanied by very little ammonia.28

We see, therefore, that even the aberrations of amphibian metamorphosis, anatomical and ecological, are paralleled closely by the biochemistry. It is probably true that in all cases in which the anatomy or the ecology changes, the biochemistry also changes. Indeed the biochemistry may have a primary status; the visible alterations in anatomy and ecology may only reflect prior biochemical changes.

Second Metamorphosis

The first requirement of a life cycle is that it be *circular*. Any organism that leaves its natal environment to explore, or grow up in, another must return at maturity to reproduce its kind. The spawning environment is fixed, whatever excursions animals may make as adults, and it is a truism that all animals must return to their natal environment to spawn.
VERTEBRATE METAMORPHOSIS

For this reason, any animal that undergoes profound changes preparatory to migrating from its natal environment is likely to undergo a second series of changes in the reverse direction before returning. Every metamorphosis invites a second metamorphosis.

Let us begin with the common spotted newt mentioned above. This animal begins its life as an olive-green, gilled larva, living wholly in the water. After several months it metamorphoses to a lung-breathing, land-dwelling eft. The color changes to a brilliant orange-red, the skin becomes rough and dry, the lateral-line organs recede. The newt now lives 2 to 3 years wholly on land, growing meanwhile almost to full size. Then it undergoes a second metamorphosis: the color returns approximately to that of the larva, and the newt regains the wet, shiny, mucus-covered skin, the keeled tail, the functional lateral-line organs, though not, of course, gills. In this mature state it re-enters the water to spawn and live out the remainder of its life.29, 30

Many anatomical and behavioral aspects of the second metamorphosis can be induced prematurely in red efts by injection or implantation of anterior pituitary preparations;30, 31 and a significant part of this complex of changes—the drive to re-enter the water, and the moulting to a smooth, wet skin—is stimulated in hypophysectomized red efts by injections of prolactin, the lactogenic hormone of the anterior pituitary.32

I have already said that the mature animal possesses porphyropsin, like a fresh-water fish. These animals, however, had already undergone the second metamorphosis. Red efts on examination were found to possess mixtures of rhodopsin and porphyropsin, predominantly rhodopsin (fig. 11). The second metamorphosis in this species is accompanied therefore by the biochemical metamorphosis of its visual system from a predominantly land type to that characteristic of fresh-water types.10

Recently, in extension of the present argument, Nash and Fankhauser33 have examined the nitrogen excretion of this animal. Like other amphibia already mentioned, the larval newt excretes about 90 per cent of its total nitrogen as ammonia. At the first metamorphosis, it goes over to excreting urea, and the red eft excretes almost 90 per cent of its nitrogen in this form. Then, at the second metamorphosis, it turns back again, so that in the adults about one-fourth of the total nitrogen is excreted again as ammonia.

This, in turn, brings us back to the sea lamprey. This animal has a life cycle much like that of a salmon (fig. 12). After passing 4 to 5 years as a blind ammocoete larva, living buried in the sand or mud of its natal stream, it undergoes, while still in that position, a profound metamorphosis, preparatory to mi-
Development of the sea lamprey, Petromyzon marinus. This animal begins its life in streams as a blind larva, buried in mud or sand (stages 1 to 7). Then it undergoes a first metamorphosis while still in this position (stages 8 to 10), preparatory to migrating downstream. Several years later it undergoes a second metamorphosis, to the sexually mature adult, and migrates upstream again to spawn and die. (A, B) Transformation of the mouth at first metamorphosis from the larval, hooded form (L) to the contracted circular form (T). (n c) Notochords of decayed adults found in streams after spawning. (Reproduced by permission of the New York State Conservation Department.)

I took this observation to support the view that porphyropsin is the ancestral type of visual pigment in vertebrates.

Recently, however, Crescitelli reported that he had extracted rhodopsin from the retinas of this species and pointed out that this goes better with the opposed view, that rhodopsin is the primitive vertebrate pigment.

The specimens of sea lamprey examined by Crescitelli had just metamorphosed from the larval condition and had begun to migrate downstream, whereas the ones I had examined were at the other end of their life cycle, migrating upstream to spawn. On obtaining downstream migrants like Crescitelli’s, I confirmed his observations exactly (fig. 13). The retinas of such animals contain vitamin A and
 rhodopsin alone. The upstream migrants, however, possess vitamin A₃ and porphyropsin virtually alone. We find therefore in this most primitive group of vertebrates another biochemical example of second metamorphosis, like that previously observed in the newt.

Such second metamorphoses expose fundamental characteristics of the metamorphic process:

1. Both the first and second metamorphoses anticipate changes in environment. Ordinarily they occur in the old environment and are completed there. They are preparations for the new environment, not responses to it.

2. Striking hormonal relationships are associated with these events. It has been known for many years that the first metamorphosis is stimulated in many instances by the thyroid hormone. A number of instances are now known in which phenomena associated with the second metamorphosis are stimulated by hormones of the anterior pituitary, including specifically the lactogenic hormone, prolactin.

3. Just as the first metamorphosis prepares the animal to leave its natal environment, so the second metamorphosis prepares it to return, completing the life cycle. It is of the
essence of a second metamorphosis to reverse in part the changes which accompanied the first metamorphosis. The 2 metamorphoses tend to be opposed in direction, anatomically and biochemically.

4. Just as the changes in the first metamorphosis tend to have the character of recapitulations—that is, to coincide somewhat with the animal’s evolutionary history—so the changes which occur in a second metamorphosis are likely to be antirecapitulatory, to reverse in direction the sequence of changes that accompanied the animal’s evolution.

The last consideration involves a potential source of confusion. As I have already said, a life cycle is circular. If one section of it runs parallel with the course of evolution, another section is likely to run counter to that course. Just as every metamorphosis invites a second metamorphosis, so every associated recapitulation invites a subsequent antirecapitulation. This is only proper, provided it occurs at the point in the animal’s history when it is being prepared for the return to the natal environment.

Deep-Sea Fishes: Eels

Heresofore I have discussed only changes in the visual pigments that involve their prothetic groups. I should like now to discuss another type of change, involving the other component of a visual pigment, the protein opsin.

A short time ago Denton and Warren reported that the visual pigments of deep-sea fishes, instead of having absorption maxima (λmax) near 500 mμ, as do the rhodopsins of surface forms, have λmax near 480 mμ. In consequence, they are orange in color rather than red, and Denton and Warren proposed that they be called chryosins, or visual gold. For reasons which appear below, I prefer to call them deep-sea rhodopsins.

This observation has since been confirmed by Munz and by Wald, Brown, and Brown. It makes good ecological sense; for the surface light that penetrates most deeply into clear sea water is blue, and made up of wavelengths near 480 mμ, and the rhodopsins of deep-sea fishes are more effective through having their maximal absorption in this region of the spectrum.

As might be expected, the transition from surface to deep-sea rhodopsin is not sudden. A preliminary exploration shows that the absorption spectra of the rhodopsins shift more or less systematically with depth from the surface to about 200 fathoms (fig. 14). We find that throughout such a series the prosthetic group—the retinene—remains the same. It is the opsin which alters. We have here a relationship comparable with that familiar in the hemoglobins, all of which possess the same heme joined with a variety of globins, different in every species.

Disregarding the relatively few rhodopsins and porphyropsins which lie in exceptional positions, one sees, therefore, a major transition from λmax 480 to λmax 500 mμ in the rhodopsins of marine fishes, correlated with depth, and depending on a systematic change of opsin; this connects with a further major transition from rhodopsin to porphyropsin (from λmax 500 to λmax 522 mμ) correlated with the transfer to fresh water, and depending on the change of chromophore from retinene1 to retinene2.

With this we can return to the “fresh-water” eel (Anguilla). Carlisle and Denton have recently confirmed our observation that this animal, when taken in fresh water, ordinarily possesses the mixture of rhodopsin and porphyropsin described earlier; but they find that toward the beginning of its spawning migration it goes over to deep-sea rhodopsin (fig. 15). Whereas the absorption peak of its usual mixture of visual pigments, when the eel is in fresh water, lies at about 505 mμ, that of the animal about to migrate lies close to 485 mμ. Indeed, the rhodopsin of such a “fresh-water” eel preparatory to migration is virtually identical in spectrum with that of the permanently deep-sea conger eel.

This is another instance of a second metamorphosis (fig. 16). The eel, having been spawned in the depths of the Sargasso Sea, journeys as a larva (leptocephalus) to the
The rhodopsins of fishes taken at various depths in the sea. That of the lancet fish, found ordinarily below 200 fathoms, has λ_{max} about 480 μm; those of surface forms (scup, butterfish, barracuda, flounder) have λ_{max} 498 to 503 μm. The cusk and cod (from summer depths of 40 to 50 fathoms) have λ_{max} 494 to 496 μm, and the redfish (from a depth of about 100 fathoms) has λ_{max} 488 μm. (Republished by permission of Nature.)

shores of America or Europe. There it metamorphoses to the adult form and usually, though probably not always, migrates into fresh water for its growth phase. Eventually it metamorphoses again: its color changes, the eyes approximately double in diameter, the digestive system deteriorates. As though getting ready for its return to the Sargasso Sea, it changes also to deep-sea rhodopsin.

My co-workers, Paul and Patricia Brown, have recently examined such animals at the Stazione Zoologica in Naples.* The European

*Recent experiments in our laboratory and at the Stazione Zoologica in Naples by P. K. Brown and P. S. Brown have demonstrated considerable variation in the proportions of vitamins A$_1$ and A$_2$ in the retinas of individual eels of both the American and the European species. These proportions vary between 65:35 and 25:75, with a mean value of approximate equality. The visual pigments, rhodopsin and porphyropsin, are present in approximately the same molar ratios; but since rhodopsin possesses a higher specific extinction than porphyropsin, extinctionwise rhodopsin tends to predominate.
Concerning the larval condition. To my knowledge, no one has yet examined the visual pigment of the leptocephalus larva, but the foregoing discussion suggests strongly that the pigment is deep-sea rhodopsin. Similarly, though no one seems as yet to have examined the retinal pigment of the larval New England newt, our observation that the adult at maturity metamorphoses to porphyropsin implies that this is also the larval pigment. Again, since the blind ammocoete larva of the sea lamprey metamorphoses to an eyed adult possessing rhodopsin, this is the first visual pigment to appear in this species. Yet the fact that in the second metamorphosis the pigment changes to porphyropsin implies that the latter represents the true, albeit missing, larval type. That is, since the second metamorphosis involves some measure of return to the larval condition, it can tell us something of the larval state, even of larval properties which have been lost in the course of evolution.

Land Vertebrates

Land vertebrates still pursue their embryony in water, but they have brought the water ashore. In a sense they are erstwhile amphibia which have carried water ashore in which their embryos go through the larval stages and first metamorphosis. They have developed 2 special devices for this: the boxed-in or cleidoic egg, and viviparity. Amphibia still experiment with both. Certain of them—for example, the American red-backed, slimy, and worm salamanders—lay eggs on land within which the larvae complete their entire development. Others—such as the European black salamander, Salamandra atra—retain the eggs in the body until the young are fully formed. The European spotted salamander,
S. maculosa, ordinarily lays its eggs in streams, but if it cannot reach water, permits them to develop internally.

One might hope, therefore, to find residues of metamorphosis in the embryogeny of land vertebrates, and in this one is not disappointed. Anatomical residues abound; they were the original source of the idea of recapitulation and were principally responsible for its early overexuberance. The embryo of a land vertebrate undergoes an anatomical metamorphosis approaching that of an amphibian. Unlike a larval amphibian, it never has functional gills; but, for a time, it does of course have gill slits, as well as other evidences of earlier aquatic life.

One finds biochemical metamorphosis also in the embryos of land vertebrates, and it includes some of the same changes with which metamorphosis in amphibia has already made us familiar.

So, for example, the chick embryo developing in the egg displays a changing pattern of nitrogen excretion which seems at first glance to mimic the evolutionary sequence (fig. 17). Joseph Needham's measurements,44, 45 embodied in this famous figure, seem to show that the embryo begins by excreting about 90 per cent of its nitrogen as ammonia, like a fish; then about 90 per cent as urea, like most amphibia; and ends by excreting about 90 per cent as uric acid, as do adult birds.

This view by now needs reappraisal. Much of the impression conveyed by figure 17 comes from the fact that the data are plotted in terms of unit dry weight of the rapidly growing embryo. The recent measurements by Fisher and Eakin46 of the amounts of these substances in the whole egg (fig. 18) show that the ammonia content remains almost constant, perhaps even falling slightly, throughout incubation. Ammonia seems never to be
Measurements of ammonia, urea and uric acid in the developing chick, plotted in terms of unit dry weight of the embryo. (After Needham.) These measurements were originally interpreted to mean that the chick embryo first excretes about 90 per cent of its nitrogen as ammonia, then 90 per cent as urea, and finally 90 per cent as uric acid. When the data are plotted as here, the growth of the embryo is largely responsible for this appearance. Actually as figure 18 shows, in the whole egg ammonia remains almost constant in amount, urea steadily increases, and uric acid rises precipitately and continuously after the fifth to seventh day.

Figure 17

“excreted”; and its decline in concentration in figure 17 reflects only its dilution by the growing embryo. Urea increases regularly in amount, being not only formed, but excreted selectively into the allantois after the fifth to seventh day. It declines in figure 17 only because its increase is overbalanced after a time by the still more rapid growth of the embryo. Needham, Brachet and Brown showed that the sole source of urea is the hydrolysis by arginase of the arginine of the yolk. Urea is not formed from added ammonia, ornithine or uric acid; and this seems to be true also of the adult chicken. That is, the chicken seems at no time to possess the enzymatic apparatus for synthesizing urea from ammonia and carbon dioxide. Of the enzymes of the ornithine cycle, it possesses only the terminal member, arginase.

What remains of biochemical metamorphosis in this account? I think 2 things:

1. A vestige of urea formation and excretion, connected with the presence of arginase in the early embryo. The arginase activity per unit weight of tissue declines rapidly, reaching very low values in the fifth to seventh day of incubation, owing in part to decrease in the concentration of the enzyme, in part to the formation of an arginase-inhibitor.

2. The sudden institution, at about the same time, of uric acid synthesis and excretion, maintained throughout the further life of the organism.

A second example: In general, vertebrates hold the osmotic pressures of their body fluids
Ammonia, urea and uric acid content of the incubating chick egg. The ammonia content of the whole egg remains almost constant, perhaps declining slightly. The urea content slowly rises, and after a time (days 9 to 11) about half of it is excreted into the allantois. Uric acid appears in the allantois on about the fifth day, and thereafter accumulates rapidly. (Drawn from measurements by Fisher and Eakin.)

Figure 18
Biochemical metamorphosis of fluid osmotic pressure in the developing chick. Ordinates: freezing-point depression, a measure of osmotic pressure. Abscissae: days of incubation, to hatching on the 21st day (arrow), and days thereafter; (=) unincubated egg yolk, (x) subgerminal fluids, (——) amniotic fluids, (o) bloods. The embryo begins with osmotic pressures characteristic of fresh-water fishes and amphibia and ends with the much higher osmotic pressure characteristic of mature birds and mammals. The duration of functional activity of the mesonephros (M) is also indicated. (Reprinted by permission of the Journal of Cellular and Comparative Physiology,56)

A third example: Hall54 has shown that during the embryonic development of the chick its hemoglobin changes radically, continuously losing affinity for oxygen, so that in an adult chicken more than twice as much oxygen pressure is needed for half-saturation as is needed in a ten-day-old chick (fig. 20). These changes persist for some time after hatching. They are similar in direction to the change in hemoglobin that accompanies metamorphosis in the bullfrog.

Comparable changes in hemoglobin accompany the embryonic development of all mammals so far examined. It is now well recognized that in mammals generally, man included, fetal hemoglobin is a different species of molecule from maternal or adult hemoglobin (see 55) (fig. 21). Always—with the possible exception of man—the change in oxygen affinity is in the same direction, a loss of affinity as development progresses. The fetal and adult hemoglobins of mammals differ also in many other ways: in electrophoretic mobility, sedimentation rate, resistance to alkali, immunological specificity, solubility, crystal shape, and amino acid composition (for references see 10). All these changes involve the globin moiety of hemoglobin; the heme is the same always.

The phenomenon of metamorphosis, biochemical as well as anatomical, extends therefore beyond the amphibia and fishes to include the land vertebrates, both egg-laying and placental.

Do land vertebrates exhibit also vestiges of a second metamorphosis? I suppose that puberty is so to be regarded. To be sure, this does not prepare a land vertebrate to

*This may be one example of a much more general phenomenon. In the frog Rana temporaria, the ovarian eggs have an osmotic pressure like that of adult blood (AF.P. = 0.41 C.). Within a few hours after fertilization this has fallen to about 0.33 C., and

in the gastrula stage reaches the extraordinarily low minimum of 0.275 C. Then it rises again, so that toward the end of the first week of development it again approaches the adult level (Krogh, Schmidt-Nielsen and Zeuthen;42 Backman and Runnström;59 Bialasiewicz). I hardly know whether these changes in frogs and chicks are properly to be described as "metamorphoses," They may come too early in development and may be too continuous for that. I include them tentatively in this discussion in the hope that further examination will clarify their status.
migrate, for the natal environment is now segregated, and puberty prepares the animal only to mate. Here only one representative cell—the spermatozoon—completes the return to the natal environment; and this, of course, undergoes a profound metamorphosis before being launched upon a migration as formidable, relative to its size, as that of any salmon.

*Biochemical metamorphosis of hemoglobin during the development of the chick. Measurements on dilute solutions of hemoglobin, buffered at pH 6.80, and equilibrated with oxygen at 37 C. The affinity for oxygen decreases regularly from the tenth day of incubation, and this change continues for some time after hatching. (Republished by permission of the *Journal of Physiology*.)

Circulation, Volume XXI, May 1960
Figure 21
Biochemical metamorphosis of hemoglobin in a placental mammal. Oxygen equilibrium curves of hemoglobin from a goat fetus (F) and from the mother (M). Both hemoglobins were obtained at 15 to 18 weeks' gestation, and measured in solution at 37 C. and pH 6.8. The fetal hemoglobin has almost twice as high an affinity for oxygen as the maternal hemoglobin. (Republished by permission of the Journal of Physiology.)
VERTEBRATE METAMORPHOSIS

Conclusion

Metamorphosis is a basic and general phenomenon, common to the whole vertebrate stock. It includes anatomical, physiological, and—perhaps prior to these—biochemical components, all designed to prepare the animal to leave its natal environment. Necessarily, in order to reproduce, the animal must eventually return, so completing its life cycle; and its return may be prepared for by a second metamorphosis, in some aspects the reverse of the first.

Our history as vertebrates is not dust to dust but water to water. From this point of view Nicodemus’s great question can be given a broad and positive biological answer. Every animal can and must return to the “womb”—not, indeed, to be born again, but to bear the next generation. For a catadromous fish, the “womb” is the sea; for anadromous fishes and amphibia, a pond or stream; for land vertebrates, a uterus or egg. The question may raise additional problems only for man, and then only when the sense of return is toward the womb of the mother rather than that of the mate.

References

11. —: The chemical evolution of vision. Harvey Lectures 41: 117, 1945.

Circulation, Volume XXI, May 1960

42. Vladykov, V. D.: The eel. In Fishes of Quebec. Album no. 6, Department of Fisheries, Province of Quebec, 1955.

45. —: The biochemical aspect of the recapitulation theory. Biol. Rev. 5: 142, 1930.

55. —: A spectrographic comparison of fetal and maternal blood of the rabbit and goat. J. Physiol. 82: 33, 1934.
The Significance of Vertebrate Metamorphosis
GEORGE WALD

Circulation. 1960;21:916-938
doi: 10.1161/01.CIR.21.5.916
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1960 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/21/5/916

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/