Observations on Aberrant Renal Arteries Curving Around and Compressing the Renal Vein
Possible Relationship to Orthostatic Proteinuria
and to Orthostatic Hypertension

By Hilel Nathan, M.D.*

Some conditions, considered idiopathic or of only partially known etiology, may have an anatomic basis. Among such conditions are possibly certain postural or orthostatic syndromes related to the kidney such as orthostatic proteinuria and orthostatic hypertension. In the present work some anatomic observations on the renal pedicle are presented that seem to give support to this concept.

DETAILED descriptions of frequent and multiform variations of the vascular elements of the renal pedicle are to be found in the literature.1-9 The subject has recently been well reviewed by Merklin and Michaels.10 Embryologic interpretations of such variations have been given by Broman,11 Jeidel,12 Felix,13 and Bremer.14

It is the purpose of the present work to describe a type of aberrant renal artery, curving around the renal vein, which by its particular course may have some importance in the causation of certain pathologic conditions. The only reference found in the literature to an artery having such a course is that of Rupert,5 who recorded its presence in 2 of 50 dissected bodies.

Material

The present report is based on the dissection of 400 renal pedicles in 200 dissecting-room cadavers.

Observations

In 7 cases (3.5 per cent) an aberrant inferior polar renal artery, curving around the renal vein, was present in addition to the normal renal artery. Six of these were on the left side and 1 on the right. The vessel originated from the aorta (figs. 1 and 2) below the level of the corresponding renal vein, and proceeded upward and laterally behind the vein. At the upper border of the vein, the artery curved downward and descended in front of the vein, to reach the kidney near its lower pole. The artery thus described an arch over the renal vein. In all the left-sided cases the arch was lateral to the entrance of the suprarenal and testicular (or ovarian) veins into the renal veins. In 3 of these left-sided cases a testicular artery took origin from the aberrant arched renal artery.

In the single right-sided case the artery first passed posterior to the vena cava.

In all instances the artery was intimately related to the renal vein, which appeared constricted and angulated under the arch of the artery.

No cases were observed of superior polar arteries having a similar course.

Discussion

It is likely that an artery with the course just described is in a position to exert pressure on the renal vein, particularly in the erect posture. The deformations, constriction, and angulation of the renal vein appear to be the result of compression of the arch of the aberrant renal artery. The possibility also exists that the aberrant artery itself is compressed by the renal vein to some extent.

Instances of arteries acting as pathologic agents by compression have been described in various conditions. Thus aberrant renal arteries compressing the ureter have been considered to be etiologic agents in the production of hydronephrosis.7, 8, 15-21

*Formerly Hilel Notkovich.
From the Department of Anatomy, The Hebrew University, Hadassah Medical School, Jerusalem, Israel.
†From the dissecting rooms of the Daniel Bough Institute of Anatomy of the Jefferson Medical College, Philadelphia, the Department of Anatomy of the Pennsylvania University, Philadelphia, and from our own Department of Anatomy.

Circulation, Volume XVIII, December 1958
Testicular or ovarian arteries, compressing the renal vein and acting as possible agents in the production of varicocele and orthostatic proteinuria, have been described by the author. In these cases the gonadal arteries followed an arched course around the renal vein, very similar to that of the renal artery here described. The fact that so frequently in the present study (in 3 cases out of 6 of the left side) a testicular artery took origin from the arched renal artery may point to a common embryologic origin of the 2 arteries.

A case in which an aberrant renal artery simultaneously produced hydronephrosis and varicocele, by compressing the testicular vein and the ureter, has been described by Campbell.

A probable consequence of the compression of the renal vein by the aberrant renal artery described in the present study is the appearance of orthostatic proteinuria. It is generally accepted that increased venous pressure in the renal circulation is the cause of this condition. Among the etiologic factors considered as producing this increased venous pressure are compression of the vena cava by the liver (Bull), and compression of the left renal vein by the “aortic-superior mesenteric arterial pinceaux” by the arched testicular artery, or by the ligament of Treitz.

If the aberrant renal artery here described is capable of compressing the renal vein, it is likely that the pressure in the vein would rise only in cases in which no collateral veins are present to drain the blood adequately from the renal vein. The presence of such collateral veins connecting the renal vein with the parietal lumbar veins spinal venousplexuses, and azygos systems was described by Lejars and later by Faragasanu, Anson et al., and others. They are absent in a variable percentage of cases.

Since the arched renal artery passed laterally to the entrance of the testicular or ovarian veins, no interference in the normal circulation of these veins could be expected; no cases of varicocele or dilatation, such as were described for the arched testicular arteries, were recorded. Should a case oc-
ABERRANT RENAL ARTERIES

cur in which the arch passes medially, then
the development of varicocele may be ex-
pected.

The possibility of some degree of compres-
sion of the renal artery by the renal vein has
been mentioned. Were this the case, a kind
of "postural, intermittent Goldblatt" mecha-
nism" would be established. This might offer
an explanation for some cases of orthostatic
or postural hypertension described in medical
literature. McCann and Romansky37 have de-
scribed cases of orthostatic hypertension and
attributed the causes to the effect of nep-
hoptosis on the renal blood flow. If both nep-
hoptosis and the arching of the renal artery
around the renal vein should occur together,
the possibility of twisting and compression of
the renal artery would be greater and the
probability of causing orthostatic hyperten-
sion would be increased.

Ruppert,9 in describing the 2 cases of renal
arteries arching around the renal veins men-
tioned previously, discussed the possibility of
such arteries’, when combined with atypical
floating kidneys, producing the symptoms of
Dietl’s crisis. He attributed these crises to
twisting of the nervous plexuses surrounding
the renal artery.

The importance of these variations of the
vascular elements of the renal pedicle in sur-
gery of this region as well as in the interpreta-
tion of renal angiograms requires no empha-
sis. The terminal character and segmental
distribution15,26,38 of the polar renal arteries
has to be borne in mind in any surgical in-
tervention.

SUMMARY

An aberrant inferior polar renal artery of
aortic origin, arching around the renal vein,
is described. This was found in 7 cases (3.5
per cent) of 200 cadavers (400 renal pedicles
dissected). Six cases were located on the left
side and 1 on the right.

This kind of artery could be the cause of
compression of the renal vein, particularly in
the erect posture. The possible consequences
of such compression are discussed with special
reference to orthostatic proteinuria.

The possibility is considered of the aberrant
artery described being partially compressed
by the renal vein, again particularly in the
erect posture. Should this occur, an "inter-
mittent Goldblatt mechanism" might be es-
stablished that would offer an explanation of
the etiology of some cases of orthostatic hyper-
tension.

ACKNOWLEDGMENT

I am deeply indebted to Professor J. L. Angel,
of the Daniel Bough Institute of Anatomy of the
Jefferson Medical College, and to Professor R. G.
Williams, of the Department of Anatomy of the
Pennsylvania University Medical School, for mak-
ing the material of their respective departments
available to me for study. I am also grateful to
the personnel of these departments for their tech-
nical help. To Dr. G. Gitlin I express my grati-
tude for his assistance in the revision of the
manuscript, and to Mrs. E. Salomon for the photo-
graphs and execution of the drawing.

SUMMARIO IN INTERLINGUA

Es describite un tipo de aberrante arteria
renal infero-polar de origine aortica que forma
un arco circa le vena renal. Illo esseva tro-
vate in 7 ex 200 cadaveres (3.5 pro cento) in
le curso del dissection de omne le 400 pedicu-
los renal. Sex del casos esseva trovate al
laterale sinistre, le septime al laterale dextere.

Iste typo de arteria pare capace de causar
le compression del vena renal, specialmente
in postura erecte. Le consequentias possibile
de un tal compression es discutite con refer-
entias special a proteinuria orthostatic.

Es etiam considerate le possibilitate que le
arteria aberrante del typo hic describite es
comprimitse illo mesme per le vena renal, de
novo specialmente in postura erecte. Si isto
occurre, il resultarea le establimento de un
"intermittente mechanismo de Goldblatt"
forniente un explicacion del etiologia de certe
casos de hypertension orthostatic.

REFERENCES

1. ANSON, B. J., CAULDWELL, E. W., PICK, J.
 W., LINDSAY, E., AND BEATON, L. E.: The
 blood supply of the kidney, suprarenal
 Gynee. & Obst. 84: 313, 1947.
2. GILLASPIE, C., MILLER, L. I., AND BASKIN, M.:
 Anomalous renal vessels and their surgical
17. —: Hydrenephrosis due to the obstruction of the renal pelvis by one of the two main renal arteries. J. Urol. 24: 173, 1930.
Observations on Aberrant Renal Arteries Curving Around and Compressing the Renal Vein: Possible Relationship to Orthostatic Proteinuria and to Orthostatic Hypertension
HILEL NATHAN

Circulation. 1958;18:1131-1134
doi: 10.1161/01.CIR.18.6.1131

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1958 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/18/6/1131

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/