ABSTRACT: The International Liaison Committee on Resuscitation has initiated a near-continuous review of cardiopulmonary resuscitation (CPR) science that replaces the previous 5-year cyclic batch-and-queue approach process. This is the first of an annual series of International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations summary articles that will include the cardiopulmonary resuscitation science reviewed by the International Liaison Committee on Resuscitation in the previous year. The review this year includes 5 basic life support and 1 pediatric Consensuses on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Each of these includes a summary of the science and its quality based on Grading of Recommendations, Assessment, Development, and Evaluation criteria and treatment recommendations. Insights into the deliberations of the International Liaison Committee on Resuscitation task force members are provided in Values and Preferences sections. Finally, the task force members have prioritized and listed the top 3 knowledge gaps for each population, intervention, comparator, and outcome question.

Until recently, the International Liaison Committee on Resuscitation (ILCOR) cardiopulmonary resuscitation (CPR) science review process has been undertaken in 5-year cycles, the last being published in 2015.1,2 This batch-and-queue approach has the advantage of enabling a well-planned and systematic update of guidelines and training materials, but it could potentially delay the implementation of new effective treatments. In 2016, ILCOR adopted a new process that would enable a near-continuous review of resuscitation science by using task force–prioritized population, intervention, comparator, and outcome (PICO) questions. There will be 2 distinct pathways for evidence evaluation. Knowledge synthesis units (KSUs), organizations with expertise in searching scientific databases and performing systematic reviews and meta-analyses, will address PICOs that are large and complicated or topics for which several PICOs can be grouped together and addressed through sensitivity or subgroup analyses. Contracted systematic reviewers will undertake simple systematic reviews involving typically single PICO questions. Both pathways involve content experts, and critical steps during evidence evaluation are discussed with relevant task forces when needed.

The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) process that was adopted for the ILCOR “2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations” (CoSTR) will also be used for the continuous review of resuscitation science.
review of CPR science. In the GRADE approach, the quality of evidence supporting intervention effects (defined by the PICO question) is rated as high, moderate, low, or very low. Randomized controlled trials (RCTs) start as high-quality evidence, and observational studies start as low-quality evidence. Five factors may lead to downgrading of the quality of evidence, and 3 factors may enable an upgrade of the quality of evidence (Table). The quality assessments for each outcome are summarized in GRADE evidence profile tables, which also include a summary of findings in the form of the numbers of patients, the relative risk (RR), and an indication of the absolute risk (described as the risk difference [RD]).

This is the first of a series of annual ILCOR CoSTR summary articles that will include the CPR science reviewed by ILCOR in the previous year. The review this year includes 5 basic life support (BLS) CoSTRs and 1 pediatric CoSTR. The CoSTRs were produced after a systematic review by the KSU at St. Michael’s Hospital, Toronto, ON, Canada, in collaboration with ILCOR content experts and members of the ILCOR BLS and Pediatric Task Forces. All the evidence profile tables and meta-analyses were produced by the KSU and reviewed by ILCOR BLS and Pediatric Task Forces. The CoSTRs have been subjected to rigorous evaluation, peer review, and public comment. We anticipate that by 2018, ~20 PICO questions will be addressed per year, and each question will generate a draft CoSTR that will be published on the ILCOR website. The draft CoSTRs will be published online to provide the data for the annual CoSTR summary article that will be published each year. The summary article differs in several respects from the draft CoSTRs published on the ILCOR website: The language used to describe the science is not restricted to standard GRADE terminology, which makes it more accessible to a wider audience; the values and preferences have been expanded to provide greater insight into the rationale for treatment recommendations, particularly when high-quality evidence is lacking; and the top 3 knowledge gaps for each topic have been prioritized and ranked by the task force members.

The CoSTRs are based on the data summarized in the GRADE evidence profile tables for each of the key outcomes for each of the clinical scenarios. The pertinent outcome data are listed for each statement as RR (with 95% confidence interval [CI]) and RD (with 95% CI). The RD is the absolute difference between the risks and is calculated by subtracting the risk in the control group from the risk in the intervention group. This absolute effect enables a more clinically useful assessment of the magnitude of the effect of an intervention and enables calculation of the number needed to treat (=1/RD).

CPR STRATEGIES: BACKGROUND

One of the primary measures taken to improve survival after cardiac arrest has been focused efforts to improve the quality of CPR. Although the impact of high-quality chest compressions has been studied extensively, the role of ventilation and oxygenation is less clear. Efforts to simplify resuscitation by delaying ventilation or by providing passive oxygenation have been implemented for both lay and professional rescuers. These strategies have been consistently associated with increased bystander CPR rates and fewer pauses in chest compressions, but effects on survival have been less clear. During the development of the 2015 CoSTR, several PICO questions were dedicated to reviewing evidence of continuous chest compression strategies for both lay and professional rescuers in various populations (adult, pediatric) and for various settings (in hospital, out of hospital). Shortly after these reviews were completed, a 23,711-patient RCT evaluating the effectiveness of continuous chest compressions in the emergency medical services (EMS) setting was published. In parallel, developments of large national and regional registries are continually providing new insights into the epidemiology of cardiac arrest and bystander CPR. These emerging publications generated an urgent need to review all available evidence on continuous compression strategies to provide updated evidence evaluations that included the latest science available. The systematic review and meta-analysis of this topic undertaken by St. Michael’s Hospital KSU and ILCOR has been published separately.

THE POPULATION, INTERVENTION, COMPARATOR, OUTCOME, STUDY DESIGNS, AND TIME FRAME

The following was used by St. Michael’s Hospital KSU when undertaking the systematic review:

- **Population:** Patients of all ages (eg, neonates, children, adults) with cardiac arrest from any cause

Table. GRADE Quality Assessment Criteria

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Quality of Evidence</th>
<th>Lower if</th>
<th>Higher if</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized trial</td>
<td>High</td>
<td>Risk of bias</td>
<td>Large effect</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>Inconsistency</td>
<td>Dose response</td>
</tr>
<tr>
<td>Observational</td>
<td>Low</td>
<td>Indirectness</td>
<td>All plausible confounding:</td>
</tr>
<tr>
<td>study</td>
<td>Very low</td>
<td>Imprecision</td>
<td>would reduce a demonstrated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Publication bias</td>
<td>effect or would suggest a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>spurious effect when results</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>show no effect</td>
</tr>
</tbody>
</table>

GRADE indicates Grading of Recommendations, Assessment, Development, and Evaluation. Adapted from Guyatt et al with permission from Elsevier. Copyright © 2011, Elsevier Inc.
and across all settings (in hospital and out of hospital) were included. Studies that included animals were not eligible.

- Intervention: All manual CPR methods, including compression-only CPR, continuous compression CPR, and CPR with different compression-to-ventilation (CV) ratios, were used. Compression-only CPR included compressions with no ventilations; continuous compression CPR included compressions with asynchronous ventilations or minimally interrupted cardiac resuscitation. Studies that mentioned the use of a mechanical device during CPR were considered only if the same device was used across all relevant intervention arms and would therefore not confound the observed effect.

- Comparators: Studies had to compare at least 2 different CPR methods from the eligible interventions; studies without a comparator were excluded.

- Outcomes: The primary outcome was favorable neurological outcomes, measured by cerebral performance or a modified Rankin Scale. Secondary outcomes were survival, return of spontaneous circulation, and quality of life.

- Study designs: RCTs and nonrandomized studies (non-RCTs, interrupted time series, controlled before-and-after studies, cohort studies) were eligible for inclusion. Study designs without a comparator group (eg, case series, cross-sectional studies), reviews, and pooled analyses were excluded.

- Time frame: Published studies in English searched on January 15, 2016, were included.

DISPATCH-ASSISTED COMPRESSION-ONLY CPR COMPARED WITH DISPATCH-ASSISTED CONVENTIONAL CPR (ADULTS): CONSENSUS ON SCIENCE

Dispatch-assisted compression-only CPR was compared with dispatch-assisted conventional CPR (ratio of 15 compressions to 2 ventilations) in 1 RCT that generated low-quality evidence for favorable neurological function.16 The quality of evidence was downgraded for serious imprecision because only 2 of the 3 sites provided data on neurological outcome. In this study, instructions to give continuous chest compressions had no demonstrable benefit for favorable neurological function (RR, 1.25 [95% CI, 0.94–1.66]; RD, 2.86 percentage points [95% CI, −0.80 to 6.53]) compared with instructions to give compressions and ventilations at a ratio of 15:2.

Dispatch-assisted compression-only CPR compared with dispatch-assisted conventional CPR (ratio of 15 compressions to 2 ventilations) in 3 RCTs provided low-quality evidence for the critical outcome of survival to hospital discharge.15–17 The quality of evidence for these studies was downgraded because of serious risk of bias: All 3 studies excluded patients after randomization and included an intervention that could not be blinded, and in at least 1 study, many outcome data were missing.17 In a previously published meta-analysis of these studies, there appeared to be a small benefit in survival to hospital discharge in favor of the group instructed to give continuous chest compressions compared with the group instructed to give compressions and ventilations at a ratio of 15:2 (RR, 1.22 [95% CI, 1.01–1.46]; RD, 2.4 percentage points [95% CI, 0.1–4.9]; fixed-effect model; P=0.04).26 This meta-analysis used survival to hospital discharge for all 3 studies,15–17 although the Swenson study was missing 55% of these outcome data. In a meta-analysis using a random-effect model to combine survival to hospital discharge15,16 and 30-day survival17 outcomes to capture the maximum amount of data, survival was no longer significantly different between the 2 groups. Continuous chest compressions had an RR for survival of 1.20 (95% CI, 1.00–1.45; RD, 1.88 percentage points [95% CI, −0.05 to 3.82]) compared with conventional 15:2 CPR.

Treatment Recommendation

We recommend that dispatchers provide chest compression-only CPR instructions to callers for adults with suspected out-of-hospital cardiac arrest (OHCA) (strong recommendation, low-quality evidence).

Values and Preferences

In making these recommendations, we recognize that the evidence in support of these recommendations comes from randomized trials of variable quality performed at a time when the ratio of chest compressions to ventilations was 15:2, which leads to greater interruptions to chest compressions than the currently recommended ratio of 30:2. However, the signal from every trial is consistently in favor of telephone CPR protocols that use a compression-only CPR instruction set. Reviewing the totality of available evidence and considering current common practice, training, and quality assurance experiences, the BLS Task Force has kept the strong recommendation for compression-only CPR for dispatch-assisted CPR despite low-quality evidence. In making these recommendations, we placed a higher value on the initiation of bystander compressions and a lower value on possible harms of delayed ventilation. The task force recognizes that there are many unanswered questions when balancing possible benefits and harms from bystander ventilation. Most notably, although some cardiac arrest pathogeneses (eg, asphyxial cardiac arrest) might be dependent on early ventilation to increase survival, bystanders’ ability to learn how to
perform mouth-to-mouth ventilations over the phone is not known. Possible harmful effects of incorrectly performed ventilations (gastric inflation) and fewer compressions performed before ambulance arrival because of more complex instructions and pauses for ventilation were weighted more heavily than potential benefits from early ventilation.

This document refers to dispatch-assisted CPR. In adopting this terminology, we acknowledge that the dispatching of emergency medical resources is a limited description of the tasks performed by multiprofessional teams working in emergency medical dispatch centers, and perhaps more suitable options are being used worldwide. They include telecommunications, ambulance communication officers, emergency medical communicators, and call handlers, as well as other terms more closely related to their actual task description.

Knowledge Gaps
Several knowledge gaps were identified in the review of this topic. A more comprehensive list has been posted on the ILCOR website. The BLS Task Force ranked the knowledge gaps in priority order, and the top 3 are the following:
1. What is the optimal instruction sequence for coaching callers in dispatch-assisted CPR?
2. What are the identifying key words used by callers that are associated with cardiac arrest?
3. What is the impact of dispatch-assisted CPR instructions on cardiac arrests from noncardiac causes such as drowning, trauma, or asphyxia in adult and pediatric patients?

Bystander Compressions-Only CPR Compared with Bystander CPR Using Compressions and Ventilations (Adults): Consensus on Science
Bystander CPR using chest compressions only was compared with bystander CPR using a CV ratio of 15:2 or 30:2 in 6 cohort studies that generated very-low-quality evidence for the critical outcome of favorable neurological function. In a meta-analysis of 2 studies, there was no significant difference in survival when patients who received compression-only CPR were compared with patients who received CPR with chest compressions and ventilations during a period when the CV ratio changed from 15:2 to 30:2 (RR, 1.12 [95% CI, 0.71–1.77]; RD, 0.28 percentage points [95% CI, −2.33 to 2.89]). The quality of evidence was downgraded for serious indirectness and imprecision because the control group had a different CV ratio from the intervention group, and because there was variable postarrest care. In a meta-analysis of 3 observational studies, there was no significant difference in favorable neurological function in patients who received compression-only CPR compared with patients who received compressions and ventilations during a period when the CV ratio changed from 15:2 to 30:2 (RR, 0.75 [95% CI, 0.73–0.76]; RD, −0.74 percentage points [95% CI, −0.85 to 0.63]). The quality of evidence was downgraded for serious indirectness because the study did not directly compare compression-only CPR with CPR with chest compressions and ventilations but rather compared compression-only and CPR with chest compressions and ventilations with no CPR. The evidence was also considered indirect because multiple aspects of resuscitation were likely to have changed over time in this before-and-after study.

Bystander CPR using compression-only CPR was compared with bystander CPR using a CV ratio of 15:2 or 30:2 in 7 cohort studies that generated very-low-quality evidence for the critical outcome of survival. In a meta-analysis of 6 studies, there was no significant difference in survival in patients who received compression-only CPR compared with patients who received CPR at a CV ratio of 15:2 (RR, 0.88 [95% CI, 0.74–1.04]; RD, −0.83 percentage points [95% CI, −1.85 to 0.19]). The quality of evidence was downgraded for serious risk of bias and indirectness. Risk of bias was related to the comparability of the cohorts because the majority did not adjust for potential confounders. The studies were also downgraded for indirectness because they either were investigating CPR guideline changes or did not explicitly report the CV ratio among included cases. In 1 study, patients receiving compression-only CPR had worse survival compared with patients who received CPR at a CV ratio of 30:2 (RR, 0.75 [95% CI, 0.73–0.78]; RD, −1.42 percentage points [95% CI, −1.58 to −1.25]). The quality of evidence was downgraded for serious indirectness as described earlier. In a meta-analysis of 3 observational studies, there was no significant difference in survival when patients who received compression-only CPR were compared with patients who received CPR during a period when the CV ratio changed from 15:2 to 30:2 (RR, 1.16 [95% CI, 0.71–1.77]; RD, 0.28 percentage points [95% CI, −2.33 to 2.89]).
The quality of evidence was downgraded for serious inconsistency, indirectness, and imprecision as described earlier.

Treatment Recommendations

We continue to recommend that bystanders perform chest compressions for all patients in cardiac arrest (good practice statement). In the 2015 CoSTR, this was cited as a strong recommendation but based on very-low-quality evidence. We suggest that bystanders who are trained, able, and willing to give rescue breaths and chest compressions do so for all adult patients in cardiac arrest (weak recommendation, very-low-quality evidence).

Values and Preferences

In making these recommendations, the task force placed high value on the 2010 and 2015 CoSTRs that showed that rescuers should perform chest compressions for all patients in cardiac arrest. Given that the 2017 systematic review did not seek data comparing any CPR with no CPR and in keeping with GRADE recommendations, our recommendation for performing chest compressions for all patients in cardiac arrest has been cited as a good practice statement (see Appendices 1 and 2). We also placed high value on the advantage derived from the simplicity of teaching or providing instructions for compression-only CPR. This recommendation reflects the value placed on the data that indicate no apparent downside in patients with true arrest with similar survival rates from adult cardiac arrests of cardiac origin both with and without ventilations. We also acknowledged the potential additional benefits of CPR with compressions and ventilations when delivered by trained laypeople, particularly in settings where EMS response intervals are long or when the cause of cardiac arrest is asphyxia.

Knowledge Gaps

Several knowledge gaps were identified in the review of this topic. A more comprehensive list has been posted on the ILCOR website. The BLS Task Force ranked the knowledge gaps in priority order, and the top 3 are listed here:

1. The effect of delayed ventilation versus 30:2 high-quality CPR.
2. The impact of continuous chest compressions on outcomes for cardiac arrests from noncardiac causes such as drowning, trauma, or asphyxia in adult and pediatric patients.
3. The ability of bystanders to perform correct mouth-to-mouth ventilations.

EMS-DELIVERED CPR: CONSENSUS ON SCIENCE

High-quality CPR includes minimal interruptions to chest compressions. Three distinct techniques are used by EMS to deliver continuous chest compression CPR during OHCA: (1) continuous chest compressions with positive-pressure ventilation (PPV) of the lungs with a bag-mask device typically at a rate of 10 breaths per minute, (2) continuous chest compressions and PPV of the lungs via a tracheal tube or supraglottic airway, and (3) continuous chest compressions with passive oxygenation typically with an oropharyngeal airway and simple oxygen mask (a strategy sometimes referred to as minimally interrupted cardiac resuscitation). Studies involving these techniques have typically delayed insertion of an advanced airway until after return of spontaneous circulation or 3 cycles of CPR.

For the critical outcome of favorable neurological function, we identified high-quality evidence from 1 RCT and very-low-quality evidence from 2 cohort studies. In the RCT, patients who were randomized to PPV delivered with a bag-mask device without pausing chest compressions had no demonstrable benefit for favorable neurological function (RR, 0.92 [95% CI, 0.84–1.00]; RD, −0.65 percentage points [95% CI, −1.31 to 0.02]) compared with patients randomized to conventional CPR with a CV ratio of 30:2. In 1 cohort study, patients who received continuous chest compressions and passive ventilation for 3 cycles had improved favorable neurological function (RR, 2.58 [95% CI, 1.5–4.47]; RD, 24.11 percentage points [95% CI, 11.58–36.63]) compared with those who received compressions and ventilations at a time when the CV ratio changed from 15:2 to 30:2. The quality of evidence was downgraded for serious risk of bias and indirectness. Risk of bias included moderate risk that the continuous chest compression cohort was not representative and unclear risk that there were confounding factors between the cohorts for which there was no adjustment. The study was considered indirect because of its before-and-after design including a period with changing guidelines. In the other cohort study, minimally interrupted cardiac resuscitation (initial series of 3 cycles of 200 uninterrupted chest compressions, passive ventilation, before-and-after rhythm analysis with shock if appropriate) in patients with witnessed shockable cardiac arrest had no demonstrable benefit for favorable neurological function (RR, 0.81 [95% CI, 0.57–1.13]; RD, −11.30 percentage points [95% CI, −28.48 to 5.87]) compared with conventional CPR (mixture of CV ratios of 15:2 and 30:2). The quality of evidence was downgraded for serious risk of bias, indirectness, and imprecision. Risk of bias included moderate risk that the continuous chest compression cohort was not representative and unclear risk of inadequate follow-up. The study was considered...
indirect because of its before-and-after design including a period with changing guidelines and imprecise because the CIs for RD crossed from appreciable harm (0.75) to appreciable benefit (1.25).

For the critical outcome of survival, we identified high-quality evidence from 1 RCT23 and very-low-quality evidence from 1 cohort study.18 In the RCT, there was no significant difference in survival to discharge of patients randomized to continuous chest compressions compared with patients randomized to conventional CPR with a CV ratio of 30:2 (RR, 0.92 [95% CI, 0.85–1.00]; RD, −0.76 percentage points [95% CI, −1.51 to 0.02]).23 In the cohort study,18 patients with witnessed shockable cardiac arrest who received minimally interrupted cardiac resuscitation had improved survival (RR, 2.37 [95% CI, 1.69–3.31]; RD, 5.24 percentage points [95% CI, 2.88–7.60]) compared with conventional CPR using a mixture of 30:2 and 15:2 CV ratios. The quality of evidence was downgraded for serious indirectness and imprecision as described earlier.

Treatment Recommendations

We recommend that EMS providers perform CPR with 30 compressions to 2 ventilations or continuous chest compressions with PPV delivered without pausing chest compressions until a tracheal tube or supraglottic device has been placed (strong recommendation, high-quality evidence).

We suggest that when EMS systems have adopted minimally interrupted cardiac resuscitation, this strategy is a reasonable alternative to conventional CPR for witnessed shockable OHCA (weak recommendation, very-low-quality evidence).

Values and Preferences

In making these recommendations, the task force took into consideration that although there was relative homogeneity in the body of evidence around EMS continuous chest compressions and adjunctive therapies (eg, bundles of care in the community such as improved bystander CPR strategies and hospital systems of care such as transfers to resuscitation centers), there was heterogeneity in the continuous CPR ventilation strategies (ie, passive versus PPV strategies) and in the comparator groups. The recommendations reflect high-quality evidence for the safety of CPR with compressions and ventilations (CV ratio, 30:2) by EMS providers while acknowledging the lack of data supporting superior functional or survival outcomes. The task force also placed a relatively high value on the importance of providing high-quality chest compressions and simplifying resuscitation logistics for EMS systems and noted the support for the clinical benefit of bundles of care involving minimally interrupted cardiac resuscitation. In making a weak recommendation in support of systems that have implemented minimally interrupted cardiac resuscitation, the task force also acknowledges the lack of RCTs evaluating passive oxygenation strategies such as those described in minimally interrupted cardiac resuscitation.

Knowledge Gaps

Several knowledge gaps were identified in the review of this topic. A more comprehensive list has been posted on the ILCOR website.10 The BLS Task Force ranked the knowledge gaps in priority order, and the top 3 follow:

1. What is the effect of delayed ventilation versus 30:2 high-quality CPR?
2. Which elements of the bundled care (compressions, ventilations, delayed defibrillation) are most important?
3. How effective is passive oxygen insufflation (applying a flow of oxygen via a face mask or a supraglottic airway but without PPV)?

IN-HOSPITAL CPR: CONSENSUS ON SCIENCE

Only 1 cohort study evaluating the effect of continuous chest compressions in the in-hospital setting was identified.42 In this study, PPV without interruption of chest compressions after tracheal intubation was compared with interruption of chest compressions for 1 ventilation after every fifth chest compression (a CV ratio of 5:1) among patients admitted to a hospital emergency department after OHCA. Chest compressions were delivered by a mechanical device known as the Thumper Mechanical CPR Machine (Michigan Instruments, Grand Rapids, MI) in all patients, a device that is not commonly used clinically and that delivered different average compression rates (70 versus 100 per minute) between the study periods. The study compared continuous chest compressions and ventilations delivered after every 10th compression (without pausing compressions) with a 5:1 CV ratio (with pauses for ventilation) that resulted in more frequent pauses in compressions and higher overall ventilation rates than the conventional 30:2 CV ratio recommended by the 2015 CoSTR.19,20 It was conducted with a before-and-after design that, although adjusted for demographic and cardiac arrest characteristics, did not account for potential temporal differences in resuscitation efficiencies between study periods.

Very-low-quality evidence was identified for the critical outcome of favorable neurological function.42 There was no difference in favorable neurological outcome between the uninterrupted 10:1 CPR and interrupted 5:1 CPR cohorts (RR, 1.18 [95% CI, 0.32–4.35]; RD, 0.29 percentage points [95% CI, −2.05 to 2.64]). The
quality of evidence was downgraded to very serious imprecision because the CIs for RD crossed from appreciable harm (0.75) to appreciable benefit (1.25).

Low-quality evidence was identified for the critical outcome of survival. The uninterrupted 10:1 CPR cohort had a higher survival rate to hospital discharge compared with the interrupted 5:1 CPR cohort (RR, 2.38 [95% CI, 1.22–4.65]; RD, 5.86 percentage points [95% CI, 1.19–10.53]).

Treatment Recommendation
Whenever tracheal intubation or a supraglottic airway is achieved during in-hospital CPR, we suggest that providers perform continuous compressions with PPV delivered without pausing chest compressions (weak recommendation, very-low-quality evidence).

Values and Preferences
In making this recommendation, the task force noted that there is no prospective study of in-hospital CPR that compares delivery of ventilations during continuous manual chest compressions with ventilations delivered during pauses in manual chest compressions. The task force placed value in that delivering continuous chest compressions is a common practice in many settings after tracheal intubation or placement of a supraglottic airway. The only study to have addressed this specific question in an in-hospital setting has limited applicability in that it was performed after OHCA and in the context of mechanical chest compressions, along with other limitations. However, the findings of this study support the treatment recommendation.

Knowledge Gaps
Several knowledge gaps were identified in the review of this topic. A more comprehensive list has been posted on the ILCOR website. The BLS Task Force ranked the knowledge gaps in priority order, and the top 3 are as follows:
2. What is the effect of delayed ventilation versus 30:2 high-quality CPR?
3. What is the optimal method for ensuring a patent airway?

CHEST CV RATIO (ADULTS): CONSENSUS ON SCIENCE

The 30:2 CV ratio was compared with a different CV ratio in 2 observational cohort studies that generated very-low-quality evidence for the critical outcome of favorable neurological function. In a meta-analysis of these studies, the 30:2 CV ratio demonstrated benefit for favorable neurological function (RR, 1.34 [95% CI, 1.02–1.76]; RD, 1.72 percentage points [95% CI, 0.52–2.91]) compared with the CV ratio of 15:2. The quality of evidence was downgraded for serious indirectness because these studies were before-and-after investigations that evaluated the bundle-of-care interventions implemented after the “2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations,” in which the change in CV ratio was just 1 aspect.

Seven observational cohort studies provided very-low-quality evidence for the critical outcome of survival. The 30:2 CV ratio compared with any other CV ratio in patients with cardiac arrest (weak recommendation, very-low-quality evidence).

Treatment Recommendation
We suggest a CV ratio of 30:2 compared with any other CV ratio in patients with cardiac arrest (weak recommendation, very-low-quality evidence).

Values and Preferences
In making this recommendation, the task force acknowledged that there would likely be substantial resource implications (eg, reprogramming, retraining) associated with a change in recommendation related to the CV ratio. In the absence of any data addressing the critical outcomes, the task force placed a high value on maintaining consistency with the 2005, 2010, and 2015 CoSTRs. We also placed high value on findings that suggest that a bundle of care (which included a CV ratio of 30:2) resulted in more lives being saved.

Knowledge Gaps
Several knowledge gaps were identified in the review of this topic. A more comprehensive list has been
BYSTANDER CPR FOR PEDIATRIC OHCA: CONSENSUS ON SCIENCE

A recent systematic review compared outcomes associated with bystander compression-only CPR with those of bystander CPR that included chest compressions plus ventilation for pediatric OHCA. The review identified 2 large observational cohort studies, both using data from Japan’s nationwide All-Japan Utstein OHCA registry. This large mandatory registry includes all cardiac arrests in people of all ages in Japan and both cardiac and noncardiac (eg, trauma, hanging, drowning, drug overdose, asphyxia, respiratory diseases, cerebrovascular diseases, malignant tumors) causes of arrest. As of 2017, it contains data from >1 million cardiac arrests.

The Kitamura et al study includes 5,170 events in children ≤17 years of age, including 2,439 events in which bystander CPR was performed, captured from 2005 through 2007. At the time of the study, resuscitation guidelines in Japan were transitioning from a CV ratio of 15:2 to 30:2 for pediatric OHCA. The Goto et al study includes 5,056 events in children <18 years of age, including 2,722 events in which bystander CPR was performed, captured from 2008 through 2010. At the time of the study, pediatric CPR guidelines in Japan recommended CPR that included ventilation with a CV ratio of 30:2. In addition, national implementation of a dispatch-assisted CPR program was occurring.

The quality of evidence was downgraded to very low for the critical outcome of favorable neurological function (Pediatric Cerebral Performance Category [PCPC] 1 or 2) at 1 month. The quality of evidence for these studies was downgraded because of serious risk of bias, serious indirectness, and serious imprecision (see reasons for downgrading given previously). In the Kitamura et al study, outcomes were worse for all children who received bystander chest compression-only CPR compared with those who received CPR with ventilation (RR, 0.76 [95% CI, 0.60–0.97]; RD, 2.98 percentage points [95% CI, 0.45–5.51]). After further subgroup analysis by age, patients 1 to 17 years of age who received chest compression-only CPR compared with those who received CPR with ventilation (RR, 0.70 [95% CI, 0.53–0.93]; RD, 4.74 percentage points [95% CI, 1.17–8.31]). In infants, there was no demonstrable difference in survival to 1 month (RR, 0.90 [95% CI, 0.56–1.45]; RD, 0.74 percentage points [95% CI, ~2.61 to 4.09]). In the Goto et al study, survival was worse among children who received chest compression-only CPR compared with those who received CPR with ventilation (RR, 0.56 [95% CI, 0.45–0.69]; RD, 7.04 percentage points [95% CI, 4.50–9.58]). There was no subgroup analysis for different ages in this study.

Treatment Recommendations

We suggest that bystanders provide CPR with ventilation for infants and children <18 years of age with OHCA (weak recommendation, very-low-quality evidence).

We continue to recommend that if bystanders cannot provide rescue breaths as part of CPR for infants and chil-
Children <18 years of age with OHCA, they should at least provide chest compressions (good practice statement). In the 2015 CoSTR, this was cited as a strong recommendation but based on very-low-quality evidence.21,22

ADDITIONAL SCIENCE PUBLISHED SINCE THE SYSTEMATIC REVIEW WAS COMPLETED

After the systematic review was completed, 2 additional relevant observational studies were published,54,55 and they have informed the task force decision in its treatment recommendation.

Very-low-quality evidence was identified for the critical outcome of favorable neurological function (PCPC 1 or 2) at hospital discharge.54 The GRADE quality for this study was downgraded for serious risk of bias (observational study with possible variability between comparison groups) and serious indirectness (specific CPR CV ratio not listed) from 1 cohort study. This study is from a voluntary American OHCA registry of nontraumatic cardiac arrest that represents a catchment area of >90 million people in 37 states. This study included 3900 events captured from 2013 through 2015 and compared the outcomes of children receiving either bystander chest compression-only CPR or bystander CPR with ventilation for the 1411 children for whom data were available on the type of CPR provided. Data from eFigure 4 of this study indicate that there was no difference in favorable neurological function when infants who received chest compression-only CPR were compared with those who received CPR with ventilation (P=0.083), as well as no difference among children (1–17 years of age) who received chest compression-only CPR compared with those who received CPR with ventilation (P=0.117).54

Very-low-quality evidence has been identified for the critical outcome of favorable neurological function (PCPC 1 or 2) at 1 month.55 This study was another observational study from the all-Japan registry. The level of evidence for this study was downgraded for serious risk of bias (observational study with possible variability between comparison groups), serious indirectness (specific CPR CV ratio not listed), and very serious imprecision (very wide CI). This Japanese OHCA registry study (including traumatic cardiac arrest) reported 2157 events in children >1 year (ie, no infants) and <18 years of age, captured from 2011 through 2012, and compared the outcomes of children receiving either bystander chest compression-only CPR or bystander CPR with ventilation for the 1150 children for whom data were available on the type of CPR provided. The study was performed at a time when Japan CPR guidelines recommended a CV ratio of 30:2, and an established national dispatch-assisted CPR protocol existed. Favorable neurological function was no different among children who received chest compression-only CPR and those who received CPR with ventilation (adjusted odds ratio, 1.52 [95% CI, 0.93–2.49]).

Very-low-quality evidence has been identified for the critical outcome of survival to 1 month.55 The quality of evidence for this cohort study was downgraded for serious risk of bias, serious indirectness, and very serious imprecision (see explanations given previously). In this study, 1-month survival in children (age, 1–18 years) was no different whether they received chest compression-only CPR or CPR with ventilation (adjusted odds ratio, 1.38 [95% CI, 0.98–1.96]).

Very-low-quality evidence has been identified for the critical outcome of survival to hospital discharge.54 The quality of evidence for this cohort study was downgraded for serious risk of bias (observational study with possible variability between comparison groups). In infants with OHCA, survival to hospital discharge was worse in those receiving chest compression-only CPR compared with those receiving CPR with ventilation (P=0.002). Conversely, for children ≥1 year of age, there was no difference in survival to hospital discharge in a comparison of those who received bystander chest compression-only CPR and those who received CPR with ventilation (P=0.258).

Values and Preferences

Bystander CPR improves survival, and CPR treatment recommendations should strive to enhance ease of CPR implementation and CPR effectiveness. Most pediatric cardiac arrests are asphyxial in origin, so effective CPR is likely to require ventilation in addition to chest compressions. In making these recommendations, the task force placed a higher value on the importance of rescue breaths as part of pediatric CPR over a strategy that deemphasizes ventilation to simplify CPR instructions and skills. The 2 (observational) articles published since the completion of the systematic review suggest that survival and neurological outcome may not differ among children (ie, ≥1 year of age) who receive bystander compression-only CPR or CPR with ventilation.54,55 This conclusion differs from previous evidence that suggested the superiority of CPR with ventilation for pediatric patients of all ages with OHCA.21,22,56 Available data are now inconsistent and somewhat contradictory for the comparison of bystander compression-only CPR and CPR with ventilation for infant (<1 year of age) OHCA. These discrepancies in findings, especially those coming from the more recent publications, helped inform task force decisions with respect to the bystander CPR with ventilation versus compression-only CPR treatment recommendations and explain the rationale behind the task force’s decision to downgrade the strength of the treatment recommendation to the weaker terminology of suggests instead of the stronger term recommends. This relative
clinical equipoise should stimulate the development of prospective clinical trials to definitively determine the optimal bystander CPR technique for infants (<1 year of age) and children (≥1 year of age).

Despite the availability of only very-low-quality evidence (analyzed as part of the 2015 ILCOR evidence evaluation process), the task force unanimously agreed to reiterate the 2015 strong treatment recommendation for providing any CPR (including compression-only CPR) over no CPR for pediatric OHCA because the potential benefit outweighs any potential harm. Given that the systematic review did not seek data comparing any CPR with no CPR and in keeping with GRADE recommendations, our recommendation has been cited as a good practice statement (see Appendices 1 and 2).38

Knowledge Gaps

In order of priority, the top knowledge gaps for this topic are as follows:

1. More high-quality studies are needed to compare compression-only CPR and CPR with ventilation for infants and children with OHCA.

2. Data are needed from other resuscitation registries that will enable comparison of the role of ventilation with CPR because this varies worldwide, largely on the basis of differences in local resuscitation council guidelines. This should also include subgroup analysis of different patient ages (eg, infancy, 1–8 years, >8 years) and causes of cardiac arrest.

3. Can telephone dispatchers coach bystanders to provide effective rescue breaths/CPR with ventilation for infants and children?

Appendix 1. Glossary of Terms Used in This Summary

<table>
<thead>
<tr>
<th>Advanced airway</th>
<th>Tracheal tube or supraglottic airway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression-only CPR</td>
<td>Chest compressions without active ventilation (eg, mouth-to-mouth ventilation, bag-mask ventilation, or ventilation via an advanced airway)</td>
</tr>
<tr>
<td>CPR with ventilation</td>
<td>Chest compressions with PPV; this includes a variety of chest CV ratios and continuous chest compressions with ventilations delivered without pausing chest compressions.</td>
</tr>
<tr>
<td>Continuous chest compression CPR</td>
<td>Chest compressions delivered without pausing for ventilation. PPV may (often at 10 breaths per minute) or may not be provided. Maintenance of airway patency may enable passive ventilation.</td>
</tr>
<tr>
<td>Dispatch-assisted CPR</td>
<td>A bystander provides CPR under telephone instruction by an EMS operator, most often compression-only CPR. Alternative terminology for these dispatchers includes telecommunicators, ambulance communication officers, emergency medical communicators, and call handlers.</td>
</tr>
</tbody>
</table>

CPR indicates cardiopulmonary resuscitation; CV, compression-ventilation; EMS, emergency medical services; and PPV, positive-pressure ventilation.

Appendix 2. GRADE Terminology

Risk of bias	Study limitations in randomized trials include lack of allocation concealment, lack of blinding, incomplete accounting of patients and outcomes, selective outcome reporting bias, and stopping early for benefit. Study limitations in observational studies include failure to apply appropriate eligibility criteria, flawed measurement of exposure and outcome, failure to adequately control confounding, and incomplete follow-up.
Inconsistency	Criteria for inconsistency in results include the following: point estimates vary widely across studies; CIs show minimal or no overlap; statistical test for heterogeneity shows a low P value; and the P is large (a measure of variation in point estimates resulting from among-study differences).
Indirectness	Sources of indirectness include differences in population (eg, OHCA instead of in-hospital cardiac arrest, adults instead of children), differences in the intervention (eg, different CV ratios), differences in outcome, and indirect comparison.
Imprecision	Low event rates or small sample sizes will generally result in wide CIs and therefore imprecision.
Publication bias	Several sources of publication bias include tendency not to publish negative studies and influence of industry-sponsored studies. An asymmetrical funnel plot increases suspicion of publication bias.
Good practice statements	Guideline panels often consider it necessary to issue guidance on specific topics that do not lend themselves to a formal review of research evidence. The reason might be that research into the topic is unlikely to be located or would be considered unethical or infeasible. Criteria for issuing a nongraded good practice statement include the following: overwhelming certainty that the benefits of the recommended guidance will outweigh harms and a specific rationale is provided; the statements should be clear and actionable to a specific target population; the guidance is deemed necessary and might be overlooked by some providers if not specifically communicated; and the recommendations should be readily implementable by the specific target audience to which the guidance is directed.

CI indicates confidence interval; CV, compression-ventilation; GRADE, Grading of Recommendations, Assessment, Development, and Evaluation; and OHCA, out-of-hospital cardiac arrest.

ACKNOWLEDGMENTS

The authors thank the ILCOR Collaborators for their contributions to this document: Karl B. Kern, MD, FAHA; Koenraad G. Monsieurs, MD, PhD, FERC, FAHA; Robert W. Neumar, MD, PhD, FAHA; Clifton W. Callaway, MD, PhD; and Tzong-Luen Wang, MD, PhD.

FOOTNOTES

The American Heart Association makes every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete and submit a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest.
This statement was approved by the American Heart Association Science Advisory and Coordinating Committee on September 15, 2017, and the American Heart Association Executive Committee on October 9, 2017. A copy of the document is available at http://professional.heart.org/statements by using either “Search for Guidelines & Statements” or the “Browse by Topic” area. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@wolterskluwer.com.

This statement has been copublished in Resuscitation.

Expert peer review of AHA Scientific Statements is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit http://professional.heart.org/statements. Select the “Guidelines & Statements” drop-down menu, then click “Publication Development.”

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the “Copyright Permissions Request Form” appears on the right side of the page. Circulation is available at http://circ.ahajournals.org.

DISCLOSURES
Writing Group Disclosures

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theresa M. Olasveengen</td>
<td>Oslo University Hospital (Norway)</td>
<td>Laerdal Foundation (unrestricted research grant)*; South-Eastern Regional Health Authority (unrestricted research grant)†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Richard Aickin</td>
<td>Starship Children’s Hospital (New Zealand)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dianne L. Atkins</td>
<td>University of Iowa</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert A. Berg</td>
<td>Children’s Hospital of Philadelphia</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert M. Bingham</td>
<td>Great Ormond Street Hospital NHS Foundation Trust (United Kingdom)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Steven C. Brooks</td>
<td>Queen’s University (Canada)</td>
<td>Heart and Stroke Foundation of Canada (research operating grant to study a mobile device application designed to increase bystander resuscitation for OHCA)†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Maaret Castrén</td>
<td>Helsinki University Hospital (Finland)</td>
<td>None</td>
<td>None</td>
<td>SMACC Berlin*; EMS2017*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sung Phil Chung</td>
<td>Yonsei University College of Medicine (Republic of Korea)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Julie Considine</td>
<td>Deakin University (Australia)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
Writing Group Disclosures Continued

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomaz Bittencourt Couto</td>
<td>Hospital Israelita Albert Einstein (HIAE), São Paulo, Brazil; department: Centro de Simulação Realística (CSR) AND Unidade de Pronto Atendimento (UPA); Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (IC/HCFMUSP), São Paulo, Brazil; department: Pronto Socorro</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Allan R. de Caen</td>
<td>University of Alberta, Stollery Children’s Hospital (Canada)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Raffo Escalante</td>
<td>Inter-American Heart Foundation (Peru)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Raúl J. Gazmuri</td>
<td>Rosalind Franklin University of Medicine and Science</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Anne-Marie Guerguerian</td>
<td>The Hospital for Sick Children (Canada)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Tetsuo Hatanaka</td>
<td>Kyoto Prefectural University of Medicine (Japan)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary Fran Hazinski</td>
<td>Vanderbilt University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Rudolph W. Koster</td>
<td>Academic Medical Center (the Netherlands)</td>
<td>Physio Control (funding for data management, researchers, equipment)†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
Writing Group Disclosures Continued

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter J. Kudenchuk</td>
<td>University of Washington Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eddy Lang</td>
<td>University of Calgary (Canada)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Swee Han Lim</td>
<td>Singapore General Hospital (Singapore)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bo Løfgren</td>
<td>Aarhus University Hospital (Denmark)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>European Resuscitation Council, International BLS/AED Course Committee*</td>
<td>None</td>
</tr>
<tr>
<td>Ian K. Maconochie</td>
<td>St. Mary’s Hospital (United Kingdom)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary E. Mancini</td>
<td>University of Texas at Arlington</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Physio Control*</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Peter A. Meaney</td>
<td>Children's Hospital of Philadelphia</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>2017, Defense witness, ICU care of graft vs host disease*</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>William H. Montgomery</td>
<td>Straub Clinic and Hospital</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>American Heart Association†</td>
<td>None</td>
</tr>
<tr>
<td>Peter T. Morley</td>
<td>University of Melbourne (Australia)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Laurie J. Morrison</td>
<td>St. Michael's Hospital (Canada)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Vinay M. Nadkarni</td>
<td>Children's Hospital of Philadelphia</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kevin J. Nation</td>
<td>New Zealand Resuscitation Council (New Zealand)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Kee-Chong Ng</td>
<td>KK Hospital (Singapore)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Chika Nishiyama</td>
<td>Kyoto University (Japan)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jerry P. Nolan</td>
<td>Royal United Hospital, Bath (United Kingdom)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Medicolegal reports relating to resuscitation†</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Gabrielle Nuthall</td>
<td>Starship Children's Hospital (New Zealand)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Gene Yong-Kwang Ong</td>
<td>KK Women's and Children's Hospital (Singapore)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Gavin D. Perkins</td>
<td>Warwick Medical School and Heart of England NHS Foundation Trust (United Kingdom)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
Writing Group Disclosures Continued

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amelia G. Reis</td>
<td>Inter-American Heart Foundation (Brazil)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Giuseppe Ristagno</td>
<td>Italian Resuscitation Council-Scientific Committee (Italy)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Tetsuya Sakamoto</td>
<td>Teikyo University (Japan)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michael R. Sayre</td>
<td>University of Washington</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Stephen M. Schexnayder</td>
<td>University of Arkansas/ Arkansas Children’s Hospital</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Naoki Shimizu</td>
<td>Tokyo Metropolitan Children’s Center (Japan)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Alfredo F. Sierra</td>
<td>Inter-American Heart Foundation (Mexico)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eunice M. Singletary</td>
<td>University of Virginia</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michael A. Smyth</td>
<td>University of Warwick (United Kingdom)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David Stanton</td>
<td>Resuscitation Council of Southern Africa (South Africa)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Janice A. Tijssen</td>
<td>London Health Services Center (Canada)</td>
<td>Heart and Stroke Foundation of Canada grant in aid (grant recipient for research)*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Andrew Travers</td>
<td>Emergency Health Services, Nova Scotia (Canada)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Christian Vaillancourt</td>
<td>University of Ottawa, Ottawa Hospital Research Institute (Canada)</td>
<td>CIHR (Grant for c-spine rule implementation); CIHR and HSFC (CanROC Steering Committee Chair)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Patrick Van de Voorde</td>
<td>Self-employed</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Significant.
†Modest.
Olasveengen et al

During any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns 10% or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

REFERENCES

On behalf of the ILCOR Collaborators

2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Summary

On behalf of the ILCOR Collaborators

Circulation. 2017;136:e424-e440; originally published online November 6, 2017;
doi: 10.1161/CIR.0000000000000541

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/136/23/e424

An erratum has been published regarding this article. Please see the attached page for:
/content/136/25/e468.full.pdf

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
CORRECTION

Correction to: 2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Summary

In the article by Olasveengen et al, “2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Summary,” which published ahead of print November 7, 2017, and appeared in the December 5, 2017, issue of the journal (Circulation. 2017;136:e424–e440. DOI: 10.1161/CIR.0000000000000541), several corrections were needed.

1. On page e424, in the author byline, “Tetsuyo Sakamoto, MD, PhD,” was updated to “Tetsuya Sakamoto, MD, PhD.”
2. On page e437, in the Writing Group Disclosures table, “Tetsuyo Sakamoto” was updated to “Tetsuya Sakamoto.”

These corrections have been made to the current online version of the article, which is available at http://circ.ahajournals.org/content/136/23/e424.