International Expert Consensus on Switching Platelet P2Y_{12} Receptor–Inhibiting Therapies

ABSTRACT: Dual antiplatelet therapy with aspirin and a P2Y_{12} inhibitor is the treatment of choice for the prevention of atherothrombotic events in patients with acute coronary syndromes and for those undergoing percutaneous coronary interventions. The availability of different oral P2Y_{12} inhibitors (clopidogrel, prasugrel, ticagrelor) has enabled physicians to contemplate switching among therapies because of specific clinical scenarios. The recent introduction of an intravenous P2Y_{12} inhibitor (cangrelor) further adds to the multitude of modalities and settings in which switching therapies may occur. In clinical practice, it is not uncommon to switch P2Y_{12} inhibitor, and switching may be attributed to a variety of factors. However, concerns about the safety of switching between these agents have emerged. Practice guidelines have not fully elaborated on how to switch therapies, leaving clinicians with limited guidance on when and how to switch therapies when needed. This prompted the development of this expert consensus document by key leaders from North America and Europe with expertise in basic, translational, and clinical sciences in the field of antiplatelet therapy. This expert consensus provides an overview of the pharmacology of P2Y_{12} inhibitors, different modalities and definitions of switching, and available literature and recommendations for switching between P2Y_{12} inhibitors.

Dual antiplatelet therapy with aspirin and a platelet P2Y_{12} receptor antagonist (P2Y_{12} inhibitor) is the treatment of choice for the prevention of atherothrombotic events in patients with acute coronary syndromes (ACS) and for those undergoing percutaneous coronary intervention (PCI). Clopidogrel, prasugrel, and ticagrelor are the most commonly used oral platelet P2Y_{12} inhibitors; the use of ticlopidine, the first available P2Y_{12} inhibitor, has been largely abandoned. Clopidogrel is the only oral P2Y_{12} inhibitor indicated for the treatment of patients with stable coronary artery disease. Although all 3 agents have an indication for use in ACS, current guidelines support the preferential use of prasugrel and ticagrelor over clopidogrel because of their superior net clinical benefits. Nevertheless, clopidogrel remains widely prescribed.

The availability of different oral P2Y_{12} inhibitors has enabled physicians to contemplate switching among therapies because of specific clinical scenarios. The recent introduction of an intravenous P2Y_{12} inhibitor (ie, cangrelor) further adds to the multitude of modalities and settings in which switching therapies may occur. A variety of factors may contribute to the decision to switch, including the clinical setting, patient characteristics, concomitant therapies, costs, social issues, development of side effects, medication adherence, and patient/physician preference.

Dominick J. Angiolillo, MD, PhD et al

November 14, 2017 1955
Therefore, it is not uncommon to change P2Y12 inhibitor. However, concerns about the safety of switching between these agents have emerged.

At present, data from large-scale clinical studies to guide the optimal approach to switching P2Y12 inhibitors are limited, and most data are derived from pharmacodynamic studies. In turn, practice guidelines have not fully elaborated on how to switch therapies, leaving clinicians with limited guidance on when and how to switch therapies when needed, which prompted the development of this expert consensus document. Key leaders from North America and Europe with expertise in basic, translational, and clinical sciences in the field of antiplatelet therapy who have contributed to the scientific literature of switching antiplatelet therapies were identified by the document chairs (D.J.A. and M.J.P.). All invited experts agreed to partake in the development of this document and endorse the recommendations provided. This was an academic collaboration between the identified experts and was free from any type of industry support. This expert consensus provides an overview of the pharmacology of P2Y12 inhibitors, different modalities and definitions of switching, available literature, and recommendations for switching between P2Y12 inhibitors.

PHARMACOLOGICAL PROPERTIES

Concerns surrounding the safety of switching between P2Y12 inhibitors have emerged because of the potential for drug-drug interactions (DDIs). A DDI is defined as a modification of the effect of a drug when administered with another drug. In particular, because of a DDI, the effects of a P2Y12 inhibitor can be decreased, leading to inadequate platelet inhibition and increasing the risk for thrombotic complications; alternatively, there may be a potential for overdosing as a result of an overlap in drug therapy that could lead to excessive platelet inhibition and predispose to bleeding complications. Although to date no studies have shown a clinical impact of DDIs occurring as a result of switching, there is robust evidence associating different levels of platelet reactivity with adverse clinical outcomes.10,11 The potential for DDIs when switching P2Y12 inhibitors rests on differences in their pharmacological properties. Key pharmacological properties to consider include drug half-life, the site and mechanism of P2Y12 receptor binding, and the speeds of onset and offset of pharmacodynamic effects (Table 1).3,6,9

Table 1. Pharmacological Properties of P2Y12 Receptor Inhibitors

<table>
<thead>
<tr>
<th></th>
<th>Clopidogrel</th>
<th>Prasugrel</th>
<th>Ticagrelor</th>
<th>Cangrelor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receptor blockade</td>
<td>Irreversible</td>
<td>Irreversible</td>
<td>Reversible</td>
<td>Reversible</td>
</tr>
<tr>
<td>Prodrug</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Half-life of parent drug</td>
<td>≈6 h</td>
<td><5 min</td>
<td>6–12 h</td>
<td>3–6 min</td>
</tr>
<tr>
<td>Half-life of active metabolite</td>
<td>30 mins</td>
<td>Distribution half-life, 30–60 mins</td>
<td>8–12 h</td>
<td>NA</td>
</tr>
<tr>
<td>Binding site</td>
<td>ADP-binding site</td>
<td>ADP-binding site</td>
<td>Allosteric binding site</td>
<td>Undetermined*</td>
</tr>
<tr>
<td>Administration route</td>
<td>Oral</td>
<td>Oral</td>
<td>Oral</td>
<td>Intravenous</td>
</tr>
<tr>
<td>Frequency</td>
<td>Once daily</td>
<td>Once daily</td>
<td>Twice daily</td>
<td>Bolus plus infusion</td>
</tr>
<tr>
<td>Onset of action</td>
<td>2–8 h</td>
<td>30 min–4 h</td>
<td>30 min–4 h</td>
<td>≈2 min</td>
</tr>
<tr>
<td>Offset of action</td>
<td>5–10 d</td>
<td>7–10 d</td>
<td>3–5 d</td>
<td>60 min</td>
</tr>
<tr>
<td>CYP drug interaction</td>
<td>CYP2C19</td>
<td>No</td>
<td>CYP3A</td>
<td>No</td>
</tr>
<tr>
<td>Approved settings</td>
<td>ACS (invasive and noninvasively managed), stable CAD, PCI, PAD, and ischemic stroke</td>
<td>ACS undergoing PCI</td>
<td>ACS (invasive or noninvasively managed) or history of MI</td>
<td>PCI in patients with or without ACS</td>
</tr>
</tbody>
</table>

ACS indicates acute coronary syndrome; CAD, coronary artery disease; CYP, cytochrome P450; MI, myocardial infarction; PAD, peripheral arterial disease; and PCI, percutaneous coronary intervention.

*The binding site of cangrelor at the P2Y12 receptor level is not clearly defined; nevertheless, cangrelor is associated with high levels of receptor occupancy, preventing ADP signaling.

†Indicates times after loading dose and bolus administration for oral and intravenous agents, respectively. Times for oral agents refer to clinically stable subjects and may be prolonged in patients with ST-segment–elevation myocardial infarction or treated with opioids.

‡Indicates clinically significant drug interactions.
carboxylesterase-2 forms an intermediate metabolite, which subsequently requires only a single-step hepatic CYP oxidation to generate its active metabolite. The active metabolite of prasugrel also irreversibly blocks the ADP-binding site on the P2Y12 receptor. Although the active metabolite of prasugrel is equipotent to that derived from clopidogrel, its plasma concentration is higher, which translates into more prompt, potent, and predictable platelet inhibitory effects compared with clopidogrel. The active metabolite of clopidogrel is unstable, has a very short half-life (≈30 minutes), and is rapidly eliminated from the circulation if it does not bind to the P2Y12 receptor. The active metabolite of prasugrel is more stable, but plasma levels fall rapidly as a result of distribution to extravascular compartments (distribution half-life, 30–60 minutes), after which levels may be insufficient to achieve effective levels of P2Y12 blockade. These low levels of active metabolite are detectable in the circulation for an extended time compared with clopidogrel as a result of the much longer elimination half-life (2–15 hours). Given the irreversible binding of the active metabolites, recovery time after treatment discontinuation approximates the life span of platelets. Although subject to variability, this is longer after prasugrel (7–10 days) compared with clopidogrel (5–7 days) discontinuation because of the enhanced level of platelet inhibition achieved (Figure 2A). Ticagrelor is an oral cyclopentyl-triazolopyrimidine that reversibly binds the P2Y12 receptor. It is a direct-acting agent and does not require hepatic metabolism.
to exert its effect. However, ≈30% of the antiplatelet effect of ticagrelor derives from an active metabolite (AR-C124910XX) generated through CYP3A4/5 enzymes. This active metabolite has pharmacological properties similar to those of the parent compound.15 Ticagrelor requires twice-daily dosing because of its reversible receptor binding and half-life of 6 to 12 hours. Ticagrelor reversibly binds to a distinct site on the P2Y12 receptor and acts through a noncompetitive, allosteric mechanism to prevent G-protein–mediated signal transduction after ADP binding.15 The pharmacodynamic effects of ticagrelor are more prompt, potent, and predictable compared with those of clopidogrel. However, because of its reversible binding and relatively short half-life, ticagrelor has a faster offset of antiplatelet effect (3–5 days) compared with thienopyridines16 (Figure 2B).

Cangrelor is an intravenous ATP analog that directly and reversibly inhibits ADP binding to the P2Y12 receptor in a dose-dependent manner, achieving immediate potent platelet inhibition after a bolus dose.6,17 Although its binding site at the P2Y12 receptor level is not clearly defined, cangrelor is associated with high levels of receptor occupancy and prevents ADP binding. Cangrelor is promptly inactivated through dephosphorylation by ectonucleotidase and has a very short plasma half-life (3–6 minutes). Therefore, recovery of platelet function is rapid (≈60 minutes) after discontinuation of cangrelor infusion.6,17

SWITCHING MODALITIES AND DEFINITIONS

This expert consensus provides uniform definitions to describe the various modalities of switching of P2Y12 inhibitors. In particular, switching can occur between the oral agents and between the oral agents and an intravenous agent. Moreover, the timing of switching with respect to the index event that led to the initiation of P2Y12 inhibitor therapy may also vary. Ultimately, switching may occur between different classes of P2Y12 inhibitors, which may have potential implications for the occurrence of DDI between the 2 overlapped...
agents. Switching modalities between P2Y$_{12}$ inhibitors and their potential for DDI are summarized in Table 2.

Table 2. Modalities of Switching Between P2Y$_{12}$ Receptor Inhibitors and Potential for DDI

<table>
<thead>
<tr>
<th>Type of Pharmacodynamic Switch</th>
<th>Type of Drug Class Switch</th>
<th>Potential for DDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escalation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clopidogrel to prasugrel</td>
<td>Intraclass</td>
<td>No</td>
</tr>
<tr>
<td>Clopidogrel to ticagrelor</td>
<td>Interclass</td>
<td>No</td>
</tr>
<tr>
<td>De-escalation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prasugrel to clopidogrel</td>
<td>Intraclass</td>
<td>No</td>
</tr>
<tr>
<td>Ticagrelor to clopidogrel</td>
<td>Interclass</td>
<td>Yes</td>
</tr>
<tr>
<td>Change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prasugrel to ticagrelor</td>
<td>Interclass</td>
<td>No</td>
</tr>
<tr>
<td>Ticagrelor to prasugrel</td>
<td>Interclass</td>
<td>Yes</td>
</tr>
<tr>
<td>Intravenous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clopidogrel to cangrelor</td>
<td>Interclass</td>
<td>No</td>
</tr>
<tr>
<td>Prasugrel to cangrelor</td>
<td>Interclass</td>
<td>No</td>
</tr>
<tr>
<td>Ticagrelor to cangrelor</td>
<td>Interclass</td>
<td>No</td>
</tr>
<tr>
<td>Transition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cangrelor to clopidogrel</td>
<td>Interclass</td>
<td>Yes</td>
</tr>
<tr>
<td>Cangrelor to prasugrel</td>
<td>Interclass</td>
<td>Yes</td>
</tr>
<tr>
<td>Cangrelor to ticagrelor</td>
<td>Interclass</td>
<td>No</td>
</tr>
</tbody>
</table>

DDI indicates drug-drug interaction.

*Switching between oral agents may be classified according to relationship from the index event a defined as acute (<24 hours), early (1–30 days), late (>30 days–1 year), and very late (>1 year).

Switching Between Oral P2Y$_{12}$ Inhibitors

Prasugrel and ticagrelor are characterized by enhanced pharmacodynamic effects compared with clopidogrel. Therefore, switching between oral P2Y$_{12}$ inhibitors may result in a variation from a less intensive to a more intensive agent (ie, clopidogrel to prasugrel or ticagrelor) or vice versa from a more intensive to a less intensive agent (ie, prasugrel or ticagrelor to clopidogrel). These modalities of switching are defined as escalation and de-escalation, respectively. Although studies comparing the pharmacodynamic effects of prasugrel versus ticagrelor have yielded some inconsistent findings, the overall levels of P2Y$_{12}$ inhibition are markedly reduced and not that dissimilar between these agents. Switiching between prasugrel and ticagrelor is referred to as change. Such terminology (escalation, de-escalation, and change) should be considered only when referring to the pharmacodynamic effects associated with switching and should not imply any clinical correlate (efficacy or safety).

Switching may be also classified according to the P2Y$_{12}$ inhibitor class. Two different classes of oral P2Y$_{12}$ inhibitors are available for clinical use: thienopyridine (ie, clopidogrel or prasugrel) and cyclopentyl-triazolopyrimidine (ie, ticagrelor). In some circumstances, an interclass switch (ie, between agents from 2 different classes) may lead to a DDI, which is unlikely to occur from an intraclass switch (ie, between 2 different agents of the same class). Overall, escalation of therapy has not been associated with DDI, regardless of class. However, there is a potential for a DDI with de-escalation therapy, particularly when switching from ticagrelor to clopidogrel. A DDI, with an increase in platelet reactivity, has been suggested when switching from ticagrelor to prasugrel but not from prasugrel to ticagrelor.

Switching may occur at different times from the index event that led to initiation of oral P2Y$_{12}$-inhibiting treatment. A main concern with switching oral P2Y$_{12}$-inhibiting therapy is that if this is associated with inadequate platelet inhibition, it may lead to stent thrombosis. Because thrombotic risk is highest in the early weeks after an ACS or PCI, the timing of switching from the index event may have therapeutic implications. Definitions from the Academic Research Consortium have been provided to define stent thrombosis according to timing of occurrence. In line with the therapeutic implications associated with switching according to the time from PCI, this expert consensus believes that incorporating well-known and established definitions would be practical. Accordingly, the timing of switching with respect to the duration since the initiating event may be defined as acute (<24 hours), early (1–30 days), late (>30 days–1 year), or very late (>1 year).

Switching to and From an Intravenous P2Y$_{12}$ Inhibitor

Cangrelor, the only available intravenous P2Y$_{12}$ inhibitor, provides more prompt and greater P2Y$_{12}$ inhibition than any of the oral agents. Switching may occur from an oral agent to cangrelor or vice versa. Patients are typically switched from an oral P2Y$_{12}$ inhibitor to cangrelor while awaiting cardiac or noncardiac surgery. This modality of switching is defined as bridging. Patients are typically switched from cangrelor to an oral P2Y$_{12}$ inhibitor in the setting of PCI when cangrelor is used to achieve immediate potent platelet inhibition during the peri-PCI period. Because of the need to continue P2Y$_{12}$ inhibition with an oral agent after discontinuation of cangrelor, this type of switching is defined as transition. Because cangrelor is of a different class from all oral P2Y$_{12}$ inhibitors, all switches involving cangrelor are by definition interclass. Bridging from oral to intravenous P2Y$_{12}$-inhibiting therapy with cangrelor is associated with sustained P2Y$_{12}$ inhibitory effects and does not lead to a DDI. However, transitioning from cangrelor to a thienopyridine (clopidogrel and prasugrel), but not ticagrelor, can be associated with a DDI.
SWITCHING BETWEEN ORAL P2Y₁₂ INHIBITORS

In this section, a summary of the available data from clinical trials, registries, and pharmacodynamic studies on escalation, de-escalation, and change in oral P2Y₁₂ inhibitors is provided.

Escalation (Switching From Clopidogrel to Prasugrel or Ticagrelor)

Escalating from clopidogrel to prasugrel or ticagrelor therapy commonly occurs in patients presenting with an ACS, above all those undergoing PCI, who may have been pretreated with clopidogrel at the time of clinical presentation. This is particularly frequent among patients who get transferred to a PCI-capable center. Occurrence of an ACS while on clopidogrel is also a reason for escalating therapy. To date, most data on escalation therapy derive from subgroup analyses of large clinical trials, registries, and pharmacodynamic studies.

The TRITON-TIMI 38 trial (Therapeutic Outcomes by Optimizing Platelet Inhibition With Prasugrel–Thrombolysis in Myocardial Infarction 38) demonstrated the superiority of prasugrel over clopidogrel in reducing ischemic events, albeit at the expense of increased bleeding, including fatal bleeding, in patients with ACS undergoing PCI. However, this trial cannot address the impact of switching from clopidogrel to prasugrel because patients with previous exposure to a P2Y₁₂ inhibitor were excluded.³ On the contrary, the ACCOAST trial (Comparison of Prasugrel at the Time of Percutaneous Coronary Intervention or as Pretreatment at the Time of Diagnosis in Patients With Non–ST Elevation Myocardial Infarction), which tested the effects of administering prasugrel 30 mg at the time of diagnosis plus 30 mg after coronary angiography versus administering 60 mg after coronary angiography if PCI was indicated in patients with non–ST-segment–elevation myocardial infarction, allowed patients receiving a 75-mg maintenance dose (MD) of clopidogrel at the time of randomization to be enrolled.² However, pretreatment with prasugrel increased major bleeding complications without any ischemic benefit, with consistent findings regardless of clopidogrel pretreatment. The TRILOGY-ACS trial (Targeted Platelet Inhibition to Clarify the Optimal Strategy to Medically Manage ACS) assessed the impact of long-term use of prasugrel compared with clopidogrel in patients with non–ST-segment–elevation myocardial infarction selected for medical management without revascularization. Prasugrel was initiated with an MD, without a loading dose (LD), in ≈95% of the population; ≈70% of patients randomized to prasugrel had received clopidogrel administered as an LD. Although there were no differences in major bleeding complications between treatment groups, these results need to be interpreted with caution because the trial did not reach its primary efficacy end point.²³ The PLATO trial (Study of Platelet Inhibition and Patient Outcomes) demonstrated the superiority of ticagrelor over clopidogrel in reducing ischemic events without an increase in the rate of overall major bleeding but with an increase in non–coronary artery bypass graft surgery–related bleeding across the spectrum of patients with ACS regardless of the planned management strategy (invasive or noninvasive).⁴ Approximately 50% of patients randomized to ticagrelor were previously treated with clopidogrel, and the efficacy and safety of ticagrelor 180-mg LD followed by a MD of 90 mg twice daily were consistent regardless of previous clopidogrel exposure.⁴ In the ATLANTIC trial (Administration of Ticagrelor in the Cath Laboratory or in the Ambulance for New ST Elevation Myocardial Infarction to Open the Coronary Artery), which showed that prehospital administration of ticagrelor in patients with acute ST-segment–elevation myocardial infarction appeared to be safe but did not improve pre-PCI coronary reperfusion, patients who were on clopidogrel at the time of presentation were excluded.²⁴ The PEGASUS trial (Prevention of Cardiovascular Events in Patients With Prior Heart Attack Using Ticagrelor Compared to Placebo on a Background of Aspirin) evaluated the safety and efficacy of a long-term MD of ticagrelor 60 or 90 mg twice daily, initiated without an LD, compared with placebo in patients with a myocardial infarction in the previous 1 to 3 years. Treatment with ticagrelor significantly reduced ischemic events, albeit at the expense of increased major bleeding.³⁵ Approximately one third of patients were on a P2Y₁₂ inhibitor (mostly clopidogrel) at the time of randomization.

A number of registries have evaluated escalating from clopidogrel to prasugrel or ticagrelor, showing a prevalence that varied from 5% to 50%, depending on the clinical setting and the period of observation (in-hospital versus after discharge; Table I in the online-only Data Supplement).²⁶–⁴⁷ The reasons for switching included primarily clinical factors such as ST-segment–elevation myocardial infarction presentation, in-hospital reinfarction, high-risk angiographic characteristics, younger age, higher body weight, sex, and socioeconomic factors. In the majority of cases, the switch occurred in the catheterization laboratory at the time of or immediately after PCI. Although registries did not identify any major safety concerns associated with switching, these findings should be interpreted with caution because the studies were not designed or powered to assess clinical outcomes.

Many studies have been specifically conducted to provide insights into levels of platelet reactivity associated with switching from clopidogrel to prasugrel or ticagrelor (Figure 3). In the SWAP study (Switching Antiplatelet), conducted in patients receiving mainte-
nance clopidogrel therapy after an ACS event, escalation from clopidogrel to prasugrel was associated with further reduction in platelet reactivity within 2 hours with the administration of a 60-mg prasugrel LD and by 1 week with 10-mg prasugrel as an MD (Figure 3A).48 In the RESPOND study (Response to Ticagrelor in Clopidogrel Nonresponders and Responders and the Effect of Switching Therapies), P2Y₁₂ reaction units in clopidogrel-nonresponsive patients before and after crossover. Patients treated with ticagrelor in period 1 received a 600-mg clopidogrel loading dose (LD) followed by 75-mg daily maintenance therapy in period 2; patients treated with clopidogrel in period 1 received a 180-mg ticagrelor LD followed by 90-mg twice-daily maintenance therapy in period 2. *P<0.0001. ‡P<0.05. Adapted from Rollini et al⁹ with permission. Copyright ©2016, Mcmillan Publishers Ltd.

Figure 3. Escalating P2Y₁₂ inhibiting therapy (switching from clopidogrel to prasugrel or ticagrelor).

A, Pharmacodynamic profile of switching from clopidogrel to prasugrel therapy: the SWAP study (Switching Antiplatelet). Time course of platelet inhibition as measured with maximum platelet aggregation in response to 20 μmol/L ADP in patients with an acute coronary syndrome whose therapy was switched from clopidogrel to prasugrel. Patients were randomly assigned to 1 of the 3 study groups. *P<0.0001 vs results with 75-mg maintenance dose (MD) of clopidogrel. ‡P<0.0001 vs results with 10-mg MD of prasugrel.

B, Pharmacodynamic profile of switching between clopidogrel and ticagrelor therapy: results from the RESPOND study (Response to Ticagrelor in Clopidogrel Nonresponders and Responders and the Effect of Switching Therapies). P2Y₁₂ reaction units in clopidogrel-nonresponsive patients before and after crossover. Patients treated with ticagrelor in period 1 received 600 mg clopidogrel loading dose (LD) followed by 75 mg daily maintenance therapy in period 2; patients treated with clopidogrel in period 1 received a 180 mg ticagrelor LD followed by 90 mg twice daily maintenance therapy in period 2. *P<0.0001. ‡P<0.05. Adapted from Rollini et al⁹ with permission. Copyright ©2016, Mcmillan Publishers Ltd.

All studies have consistently shown enhanced platelet inhibition when escalating from clopidogrel to prasugrel or ticagrelor, regardless of clinical setting, as well as a reduction in rates of high on-treatment platelet reactivity (HPR),¹⁸,⁴⁸–⁷⁰ a well-defined marker of risk of ischemic recurrences, including stent thrombosis.¹⁰,¹¹ These effects are achieved more promptly after administration of an LD compared with an MD regimen. These pharmacodynamic studies did not suggest any type of DDI or concerns of overdosing. This may be attributed to the fact that in patients treated with clopidogrel, even after an LD, a substantial number of P2Y₁₂ receptors remain uninhibited, allowing additional blockade by the administration of an LD of prasugrel or ticagrelor. The degree of P2Y₁₂ receptor blockade after prasugrel or ticagrelor administration is similar regardless of previous exposure to clopidogrel.
De-escalation (Switching From Prasugrel or Ticagrelor to Clopidogrel)

Despite the evidence for the sustained efficacy and safety of prasugrel and ticagrelor with long-term treatment, many physicians limit treatment duration with these agents to the early weeks or months after the index event. Reduced costs associated with a generic formulation of clopidogrel and concerns about increased risk of bleeding with prasugrel and ticagrelor remain the most important reasons for de-escalation. Nonbleeding side effects such as dyspnea also represent a potential reason for interrupting ticagrelor therapy.

Overall, registry data indicate that the prevalence of in-hospital de-escalation ranges from 5% to 14% (Table I in the online-only Data Supplement). These patients are less likely to be privately insured and have risk factors associated with increased bleeding risk such as older age, lower body weight, previous transient ischemic attack/stroke, in-hospital treatment with coronary artery bypass graft surgery, atrial fibrillation/flutter, and use of oral anticoagulants (OACs). Switching between P2Y₁₂ inhibitors after hospital discharge occurs in 5% to 8% of patients, with most cases represented by de-escalation. The SCOPE registry (Switching From Clopidogrel to New Oral Antiplatelet Agents During Percutaneous Coronary Intervention) showed that de-escalation of P2Y₁₂ inhibitors early after the index event in patients with ACS was associated with an increased risk of recurrent ischemic events with no differences in bleeding. These findings are likely attributed to the in-hospital de-escalation ranges from 5% to 14% (Table I in the online-only Data Supplement). The randomized TOPIC trial (Timing of Optimal Platelet Inhibition After Acute Coronary Syndrome) showed that in-hospital de-escalation ranges from 5% to 14% (Table I in the online-only Data Supplement). The trial showed that a strategy of guided de-escalation of antiplatelet treatment was noninferior to standard treatment with prasugrel at 1 year in terms of net clinical benefit. The strategy did not show any increase in ischemic events, although there was a numeric but not statistically significant reduction in bleeding. The moderate impact on bleeding risk reduction could be explained by the considerably high percentage of patients (40%) who required escalation back to prasugrel therapy because of developing HPR after de-escalation. Thus far, TROPICAL-ACS is the only randomized trial using results of platelet function testing to adjust antiplatelet therapy (escalation or de-escalation) to meet its primary end point. There are limited data assessing the clinical impact of escalation and de-escalation of antiplatelet therapy on the basis of the results of genetic testing, which is currently being evaluated in several randomized trials, including the use of rapid genetic testing.

Overall, there is a paucity of studies assessing the pharmacodynamic effects associated with de-escalation to clopidogrel therapy that have consistently shown an increase in platelet reactivity and HPR rates, with some reporting lower bleeding events (Table IV in the online-only Data Supplement). However, these findings, as well as the absence of increased thrombotic events despite a higher rate of patients developing HPR, should be interpreted with caution because none of these studies were powered for clinical outcomes.

Recent randomized trials of de-escalation have been reported (Table I in the online-only Data Supplement). The randomized TOPIC trial (Timing of Optimal Platelet Inhibition After Acute Coronary Syndrome) showed that in patients who have been event free for the first month after an ACS on a combination of aspirin plus a new-generation P2Y₁₂ inhibitor, de-escalation to aspirin plus clopidogrel was associated with reduced bleeding complications, mostly minor. Although this study did not show any differences in ischemic events between groups, play of chance cannot be ruled out given the limited sample size of the trial. The TROPICAL-ACS trial (Testing Responsiveness to Platelet Inhibition on Chronic Antiplatelet Treatment for ACS) randomized patients with ACS undergoing PCI to either standard treatment with prasugrel for 12 months or a de-escalation regimen (1 week of prasugrel followed by 1 week of clopidogrel and platelet function testing–guided maintenance therapy with clopidogrel or prasugrel from day 14 after hospital discharge). The trial showed that a strategy of guided de-escalation...
indication but are candidates for ticagrelor therapy and may therefore switch treatment. These include patients with ACS who are pretreated with prasugrel before their coronary anatomy is defined but do not undergo PCI and those who have a previous cerebrovascular event.26,39,41

There are limited studies on the pharmacodynamic effects associated with change between newer P2Y₁₂ inhibitors.20,21 The SWAP-2 study investigated the pharmacodynamic effects of switching from ticagrelor to prasugrel. In this study, patients were switched to prasugrel (with or without a 60-mg LD) 12 hours after the last MD of ticagrelor.20 Platelet reactivity was higher in patients treated with prasugrel compared with patients treated with ticagrelor at 7 days, not meeting the noninferiority primary end point. Moreover, at 24 hours and even more so at 48 hours, platelet reactivity increased in patients switched to prasugrel compared with preswitch levels, and the use of an LD of prasugrel appeared to be essential to mitigate the increase in platelet reactivity after switching (Figure 4A).20 The mechanisms for these observations remain unknown but might be the result of prolonged binding of ticagrelor and its major metabolite to the P2Y₁₂ receptor after plasma levels have fallen, which may potentially impede the active metabolites of thienopyridines to access their binding site. These changes may also explain why, despite being a reversible agent with an 8- to 12 hour half-life, ticagrelor has effects that may persist for several days after drug discontinuation.16 For these reasons, it has been suggested that switching at a later time after MD (eg, after 24 hours) should limit increases in platelet reactivity by providing more time for P2Y₁₂ receptor blockade by ticagrelor to decline.

The SWAP-3 study investigated the pharmacodynamic effects of switching from prasugrel to ticagrelor.21 The study showed that in patients who were on maintenance prasugrel therapy, changing to ticagrelor was associated with a transient reduction in platelet reactivity. These pharmacodynamic findings were observed as early as 2 hours after switching therapy, without any signs of DDI during the entire study time course and with no increase in HPR rates. Of note, these findings were observed when switching to ticagrelor with the 90-mg (not 60-mg) dosing regimen and occurred regardless of the use of an LD (Figure 4B).21

SWITCHING BETWEEN INTRAVENOUS AND ORAL P2Y₁₂ INHIBITORS

Bridging From Oral P2Y₁₂ Inhibitors to Cangrelor

Although cangrelor is being used in real-world clinical practice as a bridging strategy, there are limited data to support the safety and efficacy of this approach.81 The BRIDGE trial (Maintenance of Platelet Inhibition With Cangrelor After Discontinuation of Thienopyridines in Patients Undergoing Surgery) showed that among patients who discontinue thienopyridine therapy before cardiac surgery, the use of cangrelor compared with placebo resulted in a higher rate of maintenance of platelet inhibition.28 The dose of cangrelor used for bridging (0.75–μg-kg⁻¹·min⁻¹ infusion without a bolus) derives from a dose-finding study that identified levels of platelet inhibition similar to those achieved in patients with a good response to clopidogrel and is substantially lower than that used in PCI (30–μg/kg bolus and 4–μg-kg⁻¹·min⁻¹ infusion). The pharmacodynamic results from the BRIDGE study do not suggest any type of DDI, likely because there are still unoccupied receptors in patients treated with oral P2Y₁₂ inhibitors that can be bound and inhibited by cangrelor. This is in line with in vitro and ex vivo investigations showing no interaction when cangrelor is administered on top of thienopyridines or ticagrelor and is associated with enhanced antiplatelet effects.24–27,30,82

Transition From Cangrelor to Oral P2Y₁₂ Inhibitors

Cangrelor was approved for clinical use on the basis of the results of the CHAMPION PHOENIX trial (Cangrelor versus Standard Therapy to Achieve Optimal Management of Platelet Inhibition), which showed that cangrelor significantly reduced the rate of ischemic events, driven by a reduction in stent thrombosis and myocardial infarction, with no significant increase in severe bleeding in patients undergoing PCI.83 In patients treated with cangrelor, a clopidogrel LD was administered immediately after discontinuation of cangrelor infusion. This approach was used because pharmacodynamic studies with cangrelor demonstrated a rapid platelet inhibitory effect during cangrelor infusion and a rapid offset of action after treatment discontinuation.23 The approach of administering clopidogrel after cangrelor was stopped was used across the cangrelor trial development program to avoid a potential DDI between cangrelor and clopidogrel, as described later. To date, no clinical outcomes study has investigated the safety and efficacy of cangrelor in patients subsequently treated with prasugrel or ticagrelor, although single-center observational data have been published.84,85

Given the different pharmacological properties of cangrelor and the oral P2Y₁₂ inhibitors, several studies have investigated the potential for DDI when these agents are concomitantly administered (Supplemental Table V in the online-only Data Supplement).23–31 These potential DDIs are concerning because they can result in reduced platelet inhibition and subsequent lack of protection from thrombotic complications in the peri-
PCI period. In a study conducted in healthy volunteers, clopidogrel administration during cangrelor infusion was associated with an impaired antiplatelet effect of clopidogrel after cangrelor discontinuation. This reflects the fact that the clopidogrel active metabolite, like the prasugrel active metabolite, cannot bind to the P2Y$_{12}$ receptors if already largely occupied by cangrelor. In turn, the plasma concentrations of the unbound thienopyridine active metabolites fall rapidly to subtherapeutic levels as a result of distribution to other
compartmental and systemic clearance. Therefore, after cangrelor infusion is stopped, when receptors become available for binding, most of the active metabolite of thienopyridines has already been eliminated from the circulation. In contradistinction, the antiplatelet effects of clopidogrel are not diminished when it is administered after cangrelor infusion because of the very fast offset of action of cangrelor and subsequent availability of P2Y_{12} receptors for binding by clopidogrel active metabolite.23,30,31 The transition from cangrelor to prasugrel is associated with transient recovery of platelet reactivity, in particular within 1 hour after cangrelor discontinuation.27 However, it was observed that recovery of platelet function was attenuated when prasugrel was administered 30 minutes before the cangrelor infusion was stopped.27 Conversely, administration of clopidogrel 30 minutes or 1 hour before cangrelor infusion discontinuation did not prevent recovery of platelet reactivity more effectively than administration at the end of the infusion.31 Similar findings were observed when platelets were incubated with cangrelor before the addition of the active metabolites of either prasugrel or clopidogrel, when the ability of thienopyridines to inhibit platelet aggregation was strongly reduced.32 However, the ExcelsiorLOAD2 study (Impact of Extent of Clopidogrel-Induced Platelet Inhibition During Elective Stent Implantation on Clinical Event Rate—Advanced Loading Strategies) showed that a 60-mg LD of prasugrel given at the start of a 2-hour infusion of cangrelor was associated with sufficient platelet inhibition after cangrelor, with only rare cases of HPR.87 These observations may be attributed to the relatively higher concentration and longer half-life of the active metabolite of prasugrel compared with that of clopidogrel.12 However, whether similar findings would be observed with longer infusions of cangrelor (eg, up to 4 hours) is unknown.

Unlike that observed with thienopyridines, no interaction was shown for the transition from cangrelor to ticagrelor, allowing more versatile use of ticagrelor with respect to timing of administration in relation to the start of cangrelor therapy.26 The presence of an interaction between thienopyridines, in particular clopidogrel, and cangrelor, but not between ticagrelor and cangrelor, is probably the result of the different half-lives of these drugs, as well as the different sites and types of binding to the P2Y_{12} receptor.6,12,15,17 Ticagrelor reversibly binds the P2Y_{12} receptor at a site distinct from the ADP-binding site and has a half-life of 6 to 12 hours. Although it is unknown whether ticagrelor can bind with the P2Y_{12} receptor during cangrelor infusion, its half-life (which exceeds that of the duration of cangrelor infusion) is such that drug is still systemically available to bind with the P2Y_{12} receptor after discontinuation of cangrelor infusion. On the basis of these observations, ticagrelor can be administered before, during, or after cangrelor infusion.26

P2Y_{12} INHIBITORS: EXPERT CONSENSUS RECOMMENDATIONS ON SWITCHING

This expert consensus group developed recommendations on when and how to switch between P2Y_{12} inhibitors, taking into consideration the pharmacological profiles of oral and intravenous P2Y_{12} inhibitors; data from clinical trials, registries, and pharmacodynamic studies; and the potential for thrombotic complications based on the time elapsed from the index event leading to initiation of P2Y_{12}-inhibiting therapy. In line with the limited safety and efficacy data in this field, these recommendations are to be considered mostly consensus based rather than evidence based. In general, switching approaches that have shown to be associated with DDI should be avoided or minimized unless clinically necessary. The provided recommendations are to be considered as guidance for the practicing clinician, who may consider alternative approaches based on the clinical context of the patient. The considerations made here are proposed under the assumption that these patients are also, for the most part, treated with concomitant low-dose aspirin in line with guideline recommendations. The expert consensus recommendations on switching P2Y_{12} inhibitors are described in detail in the following sections and summarized in Figures 5 and 6.

Switching Between Oral P2Y_{12} Inhibitors

Escalation (Switching From Clopidogrel to Prasugrel or Ticagrelor)

Escalation from clopidogrel to prasugrel or ticagrelor in the early, particularly acute, phase of treatment should occur with the use of a 60- or 180-mg LD, respectively. Administration of an LD regimen may occur regardless of the timing of the last dose of clopidogrel. This should be followed by standard MD regimens (prasugrel 10 mg daily or ticagrelor 90 mg twice-daily). Beyond the early phase, it is reasonable to escalate with a 10-mg daily or 90-mg twice-daily MD regimen of prasugrel or ticagrelor, respectively, without an LD. It is also reasonable and practical for the patient to start the new MD regimen at the time of the next scheduled dose of P2Y_{12}-inhibiting therapy (eg, 24 hours from last dose of clopidogrel). Similar considerations on timing of switching should apply for elderly or low-body-weight patients in whom a 5-mg MD of prasugrel is being used.

De-Escalation (Switching From Prasugrel or Ticagrelor to Clopidogrel)

There was a lack of group consensus on the appropriate approach to de-escalate from prasugrel to clopidogrel in the acute/early phase (ie, with an MD or an LD) given the limited data on therapy de-escalation. The pro-
Angiolillo et al

Figure 5. Consensus recommendations on switching between oral P2Y₁₂ inhibitors.

A, Switching between oral agents in the acute/early phase. In the acute/early phase (≤30 days from the index event), switching should occur with the administration of a loading dose (LD) in most cases, with the exception of patients who are de-escalating therapy because of bleeding or bleeding concerns, in whom a maintenance dose (MD) of clopidogrel (C) should be considered. Timing of switching should be 24 hours after the last dose of a given drug, with the exception of when escalating to prasugrel (P) or ticagrelor (T), when the LD can be given regardless of the timing and dosing of the previous clopidogrel regimen. *Consider de-escalation with clopidogrel 75-mg MD (24 hours after last prasugrel or ticagrelor dose) in patients with bleeding or bleeding concerns.

B, Switching between oral agents in the late/very late phase. In the late/very late phase (>30 days from the index event), switching should occur with the administration of an MD 24 hours after the last dose of a given drug, with the exception of patients changing from ticagrelor to prasugrel therapy, for whom an LD should be considered. De-escalation from ticagrelor to clopidogrel should occur with administration of an LD 24 hours after the last dose of ticagrelor (but in patients in whom de-escalation occurs because of bleeding or bleeding concerns, an MD of clopidogrel should be considered). *Consider de-escalation with clopidogrel 75-mg MD (24 hours after last prasugrel or ticagrelor dose) in patients with bleeding or bleeding concerns.

longed offset of prasugrel (7–10 days) has the advantage of allowing clopidogrel to reach its full antiplatelet effects during this time even if initiated with a 75-mg MD regimen. Moreover, because of the high receptor occupancy rates induced by prasugrel, it may be argued that administration of an LD of clopidogrel would not provide further pharmacodynamic effects. These pharmacological considerations suggest that de-escalation with an MD might be appropriate. Switching from prasugrel to clopidogrel with a 75-mg MD is also a reasonable option in patients in whom switching occurs as a result of a bleeding event or concerns about bleeding. Therefore, defining the reason for de-escalation may have an impact on the strategy (LD versus MD) used.
However, it may also be argued that in the acute phase of treatment of patients with ACS, recovery of platelet function after discontinuation of prasugrel therapy may be shortened given their high platelet turnover rates, which may potentially not allow clopidogrel to reach its full platelet inhibitory effects before washout of prasugrel-mediated inhibition has been completed. Recovery of 37% and 63% of platelet function has been shown after 5 and 6 days, respectively, in patients with stable coronary artery disease.\(^{14}\) Moreover, the onset of clopidogrel effect is variable, unpredictable, and often delayed. Therefore, in the early and, in particular, the acute phases of de-escalation, it may be also reasonable to administer a 600-mg LD of clopidogrel. This clopidogrel LD should be given at the time of the next scheduled dose of \(P_{2Y_{12}}\)-inhibiting therapy (eg, \(\approx 24\) hours from last dose of prasugrel) for practical reasons and because this would allow some offset of the effects of prasugrel and allow new uninhibited platelets to be released into circulation. Beyond the early phase or in more stabilized patients, the use of a 75-mg MD of clopidogrel (without an LD) at the time of the next scheduled dose (eg, \(\approx 24\) hours from last dose of prasugrel) should be considered.

Because ticagrelor has a relatively fast offset of action, the use of a clopidogrel 600-mg LD should be considered when de-escalating from ticagrelor to avoid any significant gap in platelet inhibition, regardless of the timing of switching (ie, acute, early, or late). However, de-escalation to clopidogrel with an MD is a reasonable option, particularly in patients in whom switching occurs as a result of bleeding. Although the optimal timing of switching after the last dose of ticagrelor is unknown, waiting 24 hours after the last dose of ti-
cangrelor should be considered because this not only exceeds the half-life of ticagrelor but also allows new platelets to be released into circulation and exposed to the active metabolite of clopidogrel, thus preventing a potential DDI. Furthermore, the level of platelet inhibition 24 hours after discontinuation of ticagrelor therapy is similar to the average level of inhibition provided by MD clopidogrel, so a significant window of under-treatment is unlikely with this approach.

Change (Switching Between Prasugrel and Ticagrelor)

On the basis of pharmacodynamic data suggesting a potential DDI, a 60-mg LD of prasugrel should always be used when changing from ticagrelor to prasugrel, regardless of timing (early or late), and switching with a 10-mg MD should be avoided. Waiting 24 hours after the last MD of ticagrelor to administer the 60-mg LD of prasugrel should be considered because this allows more time for ticagrelor and its metabolite to be eliminated and new platelets to enter into systemic circulation. Pharmacodynamic studies do not suggest DDI when changing from prasugrel to ticagrelor therapy.

Therefore, this change can be performed with a standard 90-mg twice-daily MD dose regimen, without the need for an LD, which should be started at the time of the next scheduled dose (eg, 24 hours from last dose of prasugrel), particularly in stabilized patients. However, the use of an LD administered 24 hours after the last dose of prasugrel can be considered when the change occurs in the acute phase of patients with ACS.

Switching Between Intravenous and Oral P2Y12 Inhibitors

Bridging From Oral P2Y12 Inhibitors to Cangrelor

Because the effects of the oral agents persist with regard to the management of antithrombotic therapy but the modality to do this has not been studied. This expert consensus recognizes that there are some settings that may be unique and require specific recommendations.

Transition From Cangrelor to Oral P2Y12 Inhibitors

In patients undergoing PCI, cangrelor (30–μg/kg bolus and 4–μg·kg−1·min−1 infusion) should be initiated before PCI and continued for ≥2 hours or for the duration of the procedure, whichever is longer; the infusion can be continued for up to 4 hours at the discretion of the physician. Infusions up to 4 hours might be considered particularly in patients treated with opiates such as morphine (terminal half-life varies from 1.5–4.5 hours) and possibly in patients undergoing primary PCI, which is settings known to reduce the pharmacodynamic onset of oral antiplatelet agents. These observations are likely attributed to impaired gastrointestinal motility and drug absorption, which can be accentuated in patients undergoing primary PCI.

In the transition from cangrelor to a thienopyridine, the thienopyridine should be administered immediately after discontinuation of cangrelor with an LD (clopidogrel 600 mg or prasugrel 60 mg) to avoid a potential DDI. According to the package insert of the European Medical Agency, but not that of the US Food and Drug Administration, prasugrel may also be administered 30 minutes before the infusion is stopped. Although preliminary studies have shown that prasugrel given at the time a 2-hour infusion of cangrelor is started results in sufficient platelet inhibition, this strategy cannot be routinely recommended until more data are available. Although cangrelor is approved for use in patients who have not received an oral P2Y12 inhibitor before the PCI procedure, for those patients who have been pretreated with a thienopyridine, if the pretreatment was shortly before the initiation of cangrelor or unknown, an LD at the end of the infusion should be considered.

The US Food and Drug Administration indicates that ticagrelor can be administered before, during, or immediately after cangrelor infusion, whereas the European Medical Agency indicates that ticagrelor should be administered immediately after discontinuation of cangrelor infusion or up to 30 minutes before the end of the infusion. Ticagrelor should be administered as a 180-mg LD. This expert consensus recommends that earlier administration of ticagrelor (eg, at the time of PCI) should be considered over administration at the end of cangrelor infusion because it would minimize the potential gap in platelet inhibition during the transition phase.

SPECIAL CONSIDERATIONS

A number of settings represent clinical conundrums with regard to the management of antithrombotic therapy. Accordingly, there are a number of scenarios in which there may be a need to switch antiplatelet therapy but the modality to do this has not been studied. This expert consensus recognizes that there are some settings that may be unique and require specific recommendations.

- Patients undergoing cardiac and noncardiac surgery. Preoperative and postoperative management of antiplatelet therapy is described in detail
elsewhere. The decision to withdraw P2Y12-inhibiting therapy should take into account the thrombotic and bleeding risks of the individual patient according to the specific surgery being performed and timing from PCI. Similarly, the need for bridging should be individualized as described previously. For patients with ACS requiring coronary artery bypass surgery, unless recent PCI was conducted, P2Y12-inhibiting therapy should be withdrawn before surgery but restarted postoperatively if the bleeding risk is low. For both cardiac and noncardiac surgery, if withdrawal of P2Y12-inhibiting therapy is warranted, clopidogrel and ticagrelor should be discontinued for 5 days and prasugrel for 7 days. If bridging with cangrelor, it is reasonable to wait up to 3 to 4 days after prasugrel discontinuation and 2 to 3 days after clopidogrel and ticagrelor discontinuation to minimize duration of cangrelor infusion. After noncardiac surgery, regardless of bridging strategy, clopidogrel should be resumed with an LD as soon as oral administration is possible and the risk of severe bleeding is acceptable. Prasugrel and ticagrelor administration should be discouraged in the early period after major noncardiac surgery when there is an ongoing risk of serious bleeding. If oral administration of clopidogrel is not possible, postsurgery bridging with an intravenous agent should be considered.

- Patients with bleeding or at high risk for bleeding complications. Management of bleeding complications in patients on dual antiplatelet therapy goes beyond the scope of this document and is described elsewhere. In dual antiplatelet therapy–treated patients who develop a bleeding complication, there is commonly a desire for de-escalation therapy. This should start with an MD regimen (ie, clopidogrel 75 mg), unless there has been a gap of therapy for ≥5 days, in which case a 300-mg LD might be used. Similar approaches should be considered for patients at high risk for bleeding complications such as those who have or develop thrombocytopenia, patients who develop a cerebrovascular event, and elderly patients, among others.

- Switching after thrombolysis. Clopidogrel therapy is the standard of care in patients treated with thrombolytics who require P2Y12-inhibitor therapy. Escalation of P2Y12 inhibitors is discouraged within 24 hours of thrombolysis because the combination of lytics with potent platelet inhibitors (ie, glycoprotein IIb/IIIa inhibitors) increases bleeding; after this duration, any escalation to a more potent regimen should occur with an LD regimen (prasugrel 60 mg or ticagrelor 180 mg).

- Patients requiring OAC. In patients requiring OAC who also undergo PCI requiring dual antiplatelet therapy, clopidogrel should be the P2Y12 inhibitor of choice. If patients are already on a newer-generation P2Y12 inhibitor (eg, patients who already had PCI and develop atrial fibrillation requiring OAC), de-escalation therapy is recommended, and clopidogrel should be started with a 75-mg MD regimen. If patients are P2Y12 inhibitor naïve, clopidogrel should be initiated with a 600-mg LD regimen (eg, patients with atrial fibrillation already on OAC who undergo PCI). Details of the management of PCI patients requiring OAC are given elsewhere.

- Patients undergoing very late (>1 year) switch. De-escalation should occur with an MD regimen (no LD). Recently, a ticagrelor 60-mg twice-daily dosing regimen has been approved for post–myocardial infarction patients >1 year from their index event. When ticagrelor therapy is initiated for post–myocardial infarction patients >1 year from their index event, a switch should be made directly to 60-mg twice-daily MD (no LD) regardless of the prior P2Y12 inhibitor used.

- Patients on unknown therapy. It is not uncommon that patients are referred with unknown medication status. These patients should be treated as naïve, and an LD should be used.

CONCLUSIONS

The current availability of a variety of P2Y12 inhibitors provides clinicians with flexibility to optimize antiplatelet therapy for the individual patient. Although clinical data support the initiation and treatment of antiplatelet therapy with specific P2Y12 inhibitors, clinical circumstances often arise that require the clinician to switch among the available therapies. Robust clinical outcomes data for specific switching strategies are lacking, but strategies can be guided by the different pharmacological profiles of these inhibitors, which may lead to DDIs that have potential implications for safety and efficacy. Therefore, this expert consensus document provides recommendations derived largely from pharmacodynamic and registry data, integrated with an understanding of the pharmacological principles of the agents involved. Ongoing dedicated studies will provide important insights into this topic.

AUTHORS

Dominick J. Angiolillo, MD, PhD; Fabiana Rollini, MD; Robert F. Storey, MD; Deepak L. Bhatt, MD, MPH; Stefan James, MD, PhD; David J. Schneider, MD; Dirk Sibbing, MD; Derek Y.F. So, MD; Dietmar Trenk, PhD; Dimitrios Alexopoulos, MD; Paul A. Gurbel, MD; Willibald Hochholzer, MD; Leonardo De Luca,
DISCLOSURES

Dr Alexopoulos discloses the following relationships: lecturing honoraria: AstraZeneca, Bayer; advisory board fees: AstraZeneca, Bayer, Boehhringer Ingelheim, The Medicines Company, and Medtronic. Dr Angiolillo reports receiving payments as an individual for consulting fee or honorarium from Amgen, Aralez, AstraZeneca, Bayer, Biosensors, Bristol-Myers Squibb, Chiesi, Daiichi-Sankyo, Eli Lilly, Janssen, Merck, PLx Pharma, Pfizer, Sanofi, and The Medicines Company; fees for participation in review activities from CeloNova and St. Jude Medical; as well as institutional payments for grants from Amgen, AstraZeneca, Bayer, Biosensors, Celovana, CSL Behring, Daiichi-Sankyo, Eisai, Eli-Lilly, Gilead, Janssen, Matsutani Chemical Industry Co, Merck, Novartis, Osprey Medical, and Renal Guard Solutions. In addition, Dr Angiolillo is the recipient of a funding from the Scott R. MacKenzie Foundation, National Institutes of Health/National Center for Advancing Translational Sciences Clinical and Translational Science Award to the University of Florida (UL1 TR000064), and National Institutes of Health/NHGRI U01 HG007269. Dr Aradi has received lecture fees from DSV/Lilly, Roche Diagnostics, AstraZeneca, Bayer AG, Pfizer, and MSD Pharma. Dr Bhatt discloses the following relationships: Advisory Board: Cardax, Elsevier Practice Update Cardiology, Medscape Cardiology, and Regado Biosciences; Board of Directors: Boston VA Research Institute, Society of Cardiovascular Patient Care; chair: American Heart Association Quality Oversight Committee; Data Monitoring committees: Cleveland Clinic, Duke Clinical Research Institute, Harvard Clinical Research Institute, Mayo Clinic, Mount Sinai School of Medicine, and Population Health Research Institute; honoraria: American College of Cardiology (senior associate editor, Clinical Trials and News, ACC.org), Belvoir Publications (editor-in-chief, Harvard Heart Letter), Duke Clinical Research Institute (clinical trial steering committees), Harvard Clinical Research Institute (clinical trial steering committee), HMP Communications (editor-in-chief, Journal of Invasive Cardiology), Journal of the American College of Cardiology (guest editor; associate editor), Population Health Research Institute (clinical trial steering committee), Slack Publications (chief medical editor, Cardiology Today’s Intervention), Society of Cardiovascular Patient Care (secretary/treasurer), WebMD (CME steering committees); other: Clinical Cardiology (deputy editor), NCDR-ACTION Registry Steering Committee (chair), VA CART Research and Publications Committee (chair); research funding: Amarin, Amgen, AstraZeneca, Bristol-Myers Squibb, Chiesi, Eisai, Ethicon, Forest Laboratories, Ironwood, Ischemix, Lilly, Medtronic, Pfizer, Roche, Sanofi Aventis, and The Medicines Company; royalties: Elsevier (editor, Cardiovascular Intervention: A Companion to Braunwald’s Heart Disease); site coinvestigator: Biotronik, Boston Scientific, and St. Jude Medical (now Abbott); trustee: American College of Cardiology; and unfunded research: FlowCo, Merck, PLx Pharma, and Takeda. Dr Bonello reports the following relationships: research grants from AstraZeneca, Boston, Abbott, and Biosensors; and lecture fees from AstraZeneca, Medtronic, and Abbott. Dr Cusset reports the following relationships: personal fees from AstraZeneca, Boston Scientific, Biotronik, Eli Lilly, Medtronic, Sanofi-Aventis, and Terumo. Dr De Luca discloses the following relationships: personal fees from Abbott Vascular, Amgen, Aspen, AstraZeneca, Bayer, Boehhringer-Ingelheim, Chiesi, Eli Lilly, Daiichi Sankyo, Pharmevo, Menarini, and The Medicines Company. Dr Gurbel discloses the following relationships: grants from Haemonetics, DCRI, Medicure, Merck, National Institutes of Health, Bayer, Abbott, Medimmune, and Coramed, and personal fees from AstraZeneca, Boehhringer, Merck, Janssen, Bayer, Medicure, Haemonetics, and UptoDate; in addition, Dr Gurbel has a patent platelet function testing issued. Dr Hochholzer reports receiving consulting and lecture fees from AstraZeneca, Boehhringer Ingelheim, Daiichi Sankyo, and The Medicines Company. Dr James discloses the following relationships: institutional research grants from AstraZeneca, Eli Lilly, The Medicines Company, and Janssen, and honoraria from AstraZeneca, The Medicines Company, and Bayer. Dr Mehran reports the following relationships: grant/research support (institutional) from The Medicines Company, BMS, AstraZeneca, Lilly/Daiichi Sankyo. She has sat on the advisory board for Janssen (J+J) and has received consulting fees/honoraria from Abbott Vascular, AstraZeneca, Boston Scientific, Coviden, CSL Behring, Janssen (J+J), and Merck. Dr Montalescot discloses the following relationships: research grants to the institution or consulting/lecture fees from Actelion, Amgen, AstraZeneca, Bayer, Boehhringer Ingelheim, Bristol-Myers Squibb, Beth Israel Deaconess Medical, Brigham Women’s Hospital, Cardiovascular Research Foundation, CCC, Celladon, CME Resources, Daiichi-Sankyo, Eli-Lilly, Europa, Elsevier, Fédération Française de Cardiologie, Gilead, ICAN, INSERM, Lead-Up, Menarini, Medtronic, MSD, Pfizer, Sanofi-Aventis, Servier, The Medicines Company, TIMI Study Group, and WebMD. Dr Price reports the following relationships: grants from Daiichi-Sankyo (to institution); consulting and speaking honoraria from AstraZeneca, Medtronic, The Medicines Company, St. Jude Medical, and Boston Scientific; and speaking honoraria from Chiesi USA and Abbott Vascular. Dr Schneider reports the following relationships: grants and honoraria from The Medicines Company, AstraZeneca, and Janssen Pharmaceuticals. Dr Sibbing reports the following relationships: speaker fees and honoraria for consulting from Eli Lilly, MSD, Pfizer, Daiichi Sankyo, Bayer Vital, AstraZeneca, and Roche Diagnostics, and research grants from Roche Diagnostics and Daiichi Sankyo. Dr So discloses the following relationships: Eli Lilly Canada, unrestricted grant support (physician-initiated grant); Astra Zeneca Canada, Advisory Board/honoraria; and Spartan Biosciences, unrestricted grant support (physician-initiated grant). Dr Storey discloses the following relationships: research grants, consultancy fees, and honoraria from AstraZeneca; research grants and consultancy fees from PlaqueTec; and consultancy fees from Actelion, Avacta, Bayer, Bristol Myers Squibb/Pfizer, Novartis, The Medicines Company, and ThermoFisher Scientific. Dr Tantry discloses the following relationships: honoraria from AstraZeneca, UptoDate, and Medicare. Dr Trenk discloses the following rela-
tionships: fees or paid advisory board fees and lecture fees from Amgen, AstraZeneca, Bayer, Berlin Chemie, Boehringer Ingelheim KG, Bristol Myers Squibb, Daichi Sankyo, Pfizer, and Sanofi. Dr Valgimigl disclosed the following relationships: grants from Terumo Medical, AstraZeneca, and Medicure, and lecture fees from AstraZeneca, Terumo Medical, Cordis, and Biosensors. Dr Waksman reports the following relationships: consulting fees and research grants from Biotronik AG, Boston Scientific, Medtronic Vascular, and Abbott Vascular; consulting fees from Biosensors, Med Alliance, Volcano Philips, Abbott Vascular, and Amgen; and Speakers’ Bureau for AstraZeneca and Chiesi. Dr Wang reports the following disclosures: research grants to the Duke Clinical Research Institute from AstraZeneca, Boston Scientific, Bristol Myers Squibb, Daichi Sankyo, Eli Lilly, Gilead Sciences, Novartis, Pfizer, and Regeneron, as well as consulting or honoraria from Merck, Gilead, and Pfizer. Drs Franchi and Rollini report no conflicts.

AFFILIATIONS

Division of Cardiology, University of Florida College of Medicine, Jacksonville (D.J.A., F.R., F.F.). Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, United Kingdom (R.F.S.). Brigham and Women’s Hospital Heart & Vascular Center, Harvard Medical School, Boston, MA (D.L.B.). Department of Medical Sciences, Cardiology and Uppsala Clinical Research Center, Uppsala University, Sweden (S.J.). Department of Medicine, Cardiology Unit, Cardiovascular Research Institute, University of Vermont, Burlington (D.J.S.). Department of Cardiology, Ludwig-Maximilians-Universität München, Germany (D.S.). DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (D.S.). Division of Cardiology, University of Ottawa Heart Institute, Ontario, Canada (D.Y.S.F.). Department of Cardiology & Angiology II, University Heart Center Freiburg-Bad Krozingen, Germany (D.T., W.H.). Second Department of Cardiology, National and Capodistrian University of Athens, Attikon University Hospital, Greece (D. Alexopoulos). Inova Center for Thrombosis Research and Drug Development, Inova Heart and Vascular Institute, Falls Church, VA (P.A.G., U.S.T.). Division of Interventional Cardiology, Laboratory of Interventional Cardiology, San Giovanni Evangelista Hospital, Tivoli-Rome, Italy (L.D.L.). Assistance Publique-Hôpitaux de Marseille, Department of Cardiology, Hôpital Nord, Marseille, France (L.B.). Mediterranean Academic Association for Research and Studies in Cardiology, Marseille, France (L.D.L.). Aix-Marseille University, INSERM UMRS 1076, Marseille, France (L.D.L.). Heart Center Balatonföld and Semmelweis University Budapest, Hungary (D. Aradi). Department of Cardiology, CHU Timone, and Aix-Marseille Université, Faculté de Médecine, Marseille, France (T.C.). Duke Clinical Research Institute, Duke University Medical Center, Durham, NC (T.Y.W.). Swiss Cardiovascular Center Bern, Bern University Hospital, Switzerland (M.V.). Section of Interventional Cardiology, MedStar Washington Hospital Center, DC (R.W.). Icahn School of Medicine at Mount Sinai, New York City, NY (R.M.). Sorbonne Université Paris 6, ACTION Study Group, Hôpital Pitié-Salpêtrière, France (G.M.). Division of Cardiovascular Diseases, Scripps Clinic, La Jolla, CA (M.J.P.).

FOOTNOTES

The online-only Data Supplement is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIRCULATIONAHA.117.031164/-/DC1.

Circulation is available at http://circ.ahajournals.org.

REFERENCES

SEPTEMBER 20, 2017

1971

Switching Antiplatelet Therapy

Switching Antiplatelet Therapy

International Expert Consensus on Switching Platelet P2Y₁₂ Receptor–Inhibiting Therapies

Circulation. 2017;136:1955-1975; originally published online October 30, 2017; doi: 10.1161/CIRCULATIONAHA.117.031164

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/136/20/1955

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2017/11/10/CIRCULATIONAHA.117.031164.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/
Supplemental Table 1. Switching Oral P2Y12 Receptor Inhibitors: Findings from Registries and Randomized Clinical Trials

<table>
<thead>
<tr>
<th>Name (Acronym)</th>
<th>Study Population (N)</th>
<th>Switch from Clopidogrel to new P2Y12 receptor inhibitors (Prevalence)</th>
<th>Switch from new P2Y12 receptor inhibitors to clopidogrel</th>
<th>Switch between new P2Y12 receptor inhibitors</th>
<th>Clinical outcomes (exploratory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexopoulos et al(^1) (GRAPE)</td>
<td>ACS undergoing PCI (N=1794)</td>
<td>C → P: 40.1% C → T: 50.3%</td>
<td>P → C: 1% T → C: 4.3%</td>
<td>Between P and T: 4.3%*</td>
<td>Outcomes at 1 month: higher risk of bleeding and less MACE in patients switched from C to P or T compared with those treated with C only. No differences in MACE and bleeding when compared with those initially treated with P or T.</td>
</tr>
<tr>
<td>Clemmensen et al(^2) (MULTIPRAC)</td>
<td>STEMI (N=2053)</td>
<td>C → P: 48.7% C → T: 11.6%</td>
<td>P → C: 8.3% T → C: n/a</td>
<td>P → T: 2.8% T → P: n/a</td>
<td>In-hospital outcomes: no differences in MACE and non-CABG related bleeding in patients switched from C to P vs patients on P only.</td>
</tr>
<tr>
<td>Bagai et al(^3) (TRANSLATE-ACS)</td>
<td>NSTEMI, STEMI (N=11999)</td>
<td>C → P: 10.4% C → T: 1%</td>
<td>P → C: 11.5% T → C: 2.1%</td>
<td>P → T: 0.3% T → P: 3.4%</td>
<td>Outcomes at 6 months: no significant differences in MACE and bleeding in switched (any switching) vs non switched patients.</td>
</tr>
<tr>
<td>Study</td>
<td>Acronym/Description</td>
<td>NSTEMI, STEMI (N=45040)</td>
<td>C → P: %</td>
<td>P → C: %</td>
<td>T →: %</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Schiele et al 4</td>
<td>FAST-MI</td>
<td>N=4101</td>
<td>16.5%</td>
<td>4.6%</td>
<td>n/a</td>
</tr>
<tr>
<td>De Luca et al 5</td>
<td>EYESHOT</td>
<td>N=2585</td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>Bagai et al 6</td>
<td>ACTION Registry-GWTG and CathPCI</td>
<td>N=47040</td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>De Luca et al 7</td>
<td>NSTEMI, STEMI, UA</td>
<td>N=450</td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>Loh et al 8</td>
<td>ACS undergoing PCI</td>
<td>N=606</td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>In-hospital outcomes: no difference in bleeding and MACCE between patients who switched to P compared with those on C only.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Almendro-Delia et al 9 | ACS (N=468) | \(C \rightarrow P: 25\% \)
\(C \rightarrow T: n/a \)
\(P \rightarrow T: 0.3\% \)
\(T \rightarrow P: n/a \) |

| Zettler et al 10
(TRANSLATE-ACS) | NSTEMI, STEMI undergoing PCI (N= 8672) | \(C \rightarrow P: 91.7\% \)
\(C \rightarrow T: 8.3\% \)
\(P \rightarrow C: 97.4\% \)
\(T \rightarrow C: 87.5\% \)
\(P \rightarrow T: 2.6\% \)
\(T \rightarrow P: 12.5\% \) |

- Before switching:
 MACE: 18.5% in the C group, 2.1% in the P group, 1.5% in the T group.
 GUSTO moderate/severe bleeding: 0.9% in the C group, 0.3% in the P group, 0% in the T group.
- After switching:
 MACE: 1.9% in the group who switched from C, 0.8% in the group who switched from P, 0 in the group who switched from T.
 No bleeding events were observed.
<table>
<thead>
<tr>
<th>Study</th>
<th>Patients & Methods</th>
<th>Outcomes at 1 year</th>
<th>In-hospital outcomes</th>
</tr>
</thead>
</table>
| **Bagai et al**¹¹ (TRANSLATE-ACS) | NSTEMI, STEMI undergoing PCI with HPR on clopidogrel (N=261) | C \rightarrow P: 30.7% (HPR)
C \rightarrow P: 4.4% (w/o HPR)
C \rightarrow T: n/a | MACE:
- HPR who switched: 10%,
- HPR who did not switch: 22.7%,
- no HPR who switched: 22.2%,
- no HPR who did not switch: 12.8%.
BARC type 2 or higher bleeding:
- HPR who switched: 23.8%,
- HPR who did not switch: 22.1%,
- no HPR who switched 22.2%,
- no HPR who did not switch: 19.4%. |
| **De Luca et al**¹² (SCOPE) | ACS undergoing PCI (N=1363) | In cath-lab switch:
C \rightarrow P: 2.1%
C \rightarrow T: 0.2%
At discharge switch:
C \rightarrow P: 0.4%
C \rightarrow T: 0.6% | NACE: 22.7% in patients who switched from P/T to C, 0% in patients who switched from C to P/T and between P and T.
MACE: 20.4% in patients who switched from P/T to C, 0% in patients who switched from C to P/T and between P and T. |
After discharge switch:
C \rightarrow P: 0.3%
C \rightarrow T: 0.3%

From admission to follow-up switch:
C \rightarrow P: 1.2%
C \rightarrow T: 1.4%

After discharge switch:
P \rightarrow C: 0.7%
T \rightarrow C: 0.8%

From admission to follow-up switch:
P \rightarrow C: 1.3%
T \rightarrow C: 1.8%

After discharge switch:
P \rightarrow T: 1.6%
T \rightarrow P: 1.4%

From admission to follow-up switch:
P \rightarrow T: 1.9%
T \rightarrow P: 1.6%

patients who switched from C to P/T and between P and T.
Bleeding: 3.8% in patients who switched from P/T to C, 0% in patients who switched from C to P/T and between P and T.
• Follow up outcomes (~45 days):
 NACE: 22.7% in patients who switched from P/T to C, 0% in patients who switched from C to P/T, 4.3% in patients who switched between P and T.
 MACE: 20.4% in patients who switched from P/T to C, 0% in patients who switched from C to P/T, 2.2% in patients who switched between P and T.
 Bleeding: 3.8% in patients who switched from P/T to C, 0% in patients who switched
<table>
<thead>
<tr>
<th>Study</th>
<th>Setting</th>
<th>Outcomes at 1 year:</th>
<th>Net clinical benefit:</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuisset et al 13 (TOPIC)</td>
<td>ACS undergoing PCI (N=646)</td>
<td>P/T → C: 50%‡</td>
<td>13.4% in patients who switched, 26.3% in patients who did not switch.</td>
<td>Outcomes at 1 year:</td>
</tr>
<tr>
<td>Sibbing et al 14 (TROPICAL-ACS)</td>
<td>Biomarker-positive ACS with a successful PCI (N=2610)</td>
<td>C → P: 39%‡$
C → T: n/a
P → C: 50%‡
T → C: n/a</td>
<td>7% in patients who switched (guided de-escalation group), 9% in patients who did not switch (control group, 12 months on P).</td>
<td></td>
</tr>
</tbody>
</table>

*: cumulative rate only available.
‡: mandated by the trial per randomization.
#: 19% of total trial population, 39% of patients de-escalated to clopidogrel.
$: mandated by the trial in patients with high platelet reactivity on clopidogrel.

ACS: acute coronary syndrome; C: clopidogrel; CABG: coronary artery bypass graft; MACE: major adverse cardiac events; MACCE: Major Adverse Cardiac and Cerebrovascular event; NACE: net adverse clinical events; NSTEMI: non-ST-elevation myocardial infarction; STEMI: ST-elevation myocardial infarction; P: prasugrel; PCI: percutaneous coronary intervention; T: ticagrelor; UA: unstable angina.

ACTION Registry-GWTG and CathPCI: National Cardiovascular Data Registry Acute Coronary Treatment and Intervention outcomes Network Registry-Get With the Guidelines and the National Cardiovascular Data Registry CathPCI Registry; EYESHOT: EmploYEd antithrombotic therapies in patients with acute coronary Syndromes HOspitalized in iTalian cardiac care units; GRAPE: GReek AntiPlatElet Registry; HPR: high on treatment platelet reactivity; MULTIPRAC: MULTInational non-interventional study of patients with ST-segment elevation myocardial infarction treated with PRimary Angioplasty and Concomitant use of upstream antiplatelet therapy with
prasugrel or clopidogrel; SCOPE: Incidence and Outcome of Switching of Oral Platelet P2Y12 Receptor Inhibitors in Patients with Acute Coronary Syndromes Undergoing Percutaneous Coronary Intervention: The SCOPE Registry; TOPIC: Benefit of switching dual antiplatelet therapy after acute coronary syndrome: the TOPIC (timing of platelet inhibition after acute coronary syndrome) randomized study; TRANSLATE-ACS: TReatment with ADP receptor iNhibitorS: Longitudinal Assessment of Treatment Patterns and Events after Acute Coronary Syndrome.
Modified with permission from Rollini F et al. Nat Rev Cardiol 2016;13:11-27 [ref 15].
<table>
<thead>
<tr>
<th>Study (Acronym)</th>
<th>Study Design</th>
<th>Study Population (N)</th>
<th>PD test</th>
<th>Key PD switching findings</th>
<th>Clinical outcomes (exploratory)</th>
</tr>
</thead>
</table>
| Payne et al \(^{16}\) | Open-label, randomized, fixed sequence | Healthy subjects (N=35) | LTA | MPA 37% on C → 5% 1 hr after P 60 mg
MPA 37% on C → 28% 1 hr after P 10 mg | Outcomes at 22 days: no differences in bleeding episodes or other adverse events. |
| Wiviott et al \(^{17}\) (PRINCIPLE-TIMI44) | Multicenter, randomized, double-blind, double-dummy, active comparator-controlled, crossover | Planned PCI (N=201) | LTA VASP VN P2Y12 | IPA 45.4% on C 150 mg → 60.8% after 15 days on P 10 mg.
PRI 39.7% on C 150 mg → 25.1% after 15 days on P 10 mg.
VN: consistent finding (data not reported) | Outcomes at 29 days: bleeding occurred in 4 subjects switching from C to P. |
| Montalescot et al \(^{18}\) (ACAPULCO) | Double-blind, randomized, crossover | UA/NSTEMI (N=56) | LTA VN P2Y12 VASP | MPA 38.6% after C 900 mg → 28.9% after 15 days on P 10 mg
MPA 38.6% after C 900 mg → 38.2% after 15 days on C 150 mg → 25% after 15 days on P 10 mg. | Outcomes at 60 days: there were no differences in any non-CABG-related TIMI major or GUSTO severe/life-threatening bleeding events. Five subjects (3 P and 2 C) experienced |
<table>
<thead>
<tr>
<th>Study</th>
<th>Design Details</th>
<th>Primary Measures</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiolillo et al (^{19}) (SWAP)</td>
<td>Multicenter, randomized, double-blind, double-dummy, active-control</td>
<td>PRU 96.3 ± 67.6 on C 150 mg → 47.1 ± 32.4 after 15 days on P 10 mg
 PRI 40.6 ± 22.5% on C 150 mg → 22.8 ± 15.7% after 15 days on P 10 mg</td>
<td>bleeding during MD treatment.</td>
</tr>
<tr>
<td></td>
<td>Prior ACS (30-330 days) (N=139)</td>
<td>LTA VN P2Y12 VASP
 MPA 60.2% on C 75 mg → 41.1% after 7 days on P 10 mg.
 MPA 55.5% on C 75 mg → 41% after a dose of P 60 mg + 7 days of P 10 mg.
 MPA 53.8% on C 75 mg → 55% after 7 days on C 75 mg.</td>
<td>Outcomes at 15 days: bleeding by TIMI criteria was reported in 12.5% of the C 75 mg MD group, 8.5% of the P 10 mg MD group, and 13.6% of the P LD+MD group.</td>
</tr>
<tr>
<td>Trenk et al (^{20}) (TRIGGER-PCI)</td>
<td>Randomized, parallel assignment, double blind</td>
<td>Observed a substantial decrease in PRU in the P arm compared to C. 176 (94.1%) patients of the P arm reached a PRU ≤ 208.</td>
<td>Outcomes at 6 months: TIMI major non-coronary artery bypass graft bleeding occurred in 3 patients on P and 1 patient on C.</td>
</tr>
<tr>
<td>Diodati et al (^{21}) (TRIPLET)</td>
<td>Randomized, double-blind, double-dummy,</td>
<td>PRU 57.9, 6 hours after placebo/P 60 mg.</td>
<td>Outcomes at 72 hours: treatment-emergent adverse events were 3 in the placebo LD/P 60 mg.</td>
</tr>
<tr>
<td>Rollini et al. 22</td>
<td>Prospective, randomized, parallel design, open-label</td>
<td>CAD (N=110)</td>
<td>LTA VN P2Y12 VASP</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Condition</td>
<td>Biomarker</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Sardella et al [23] (RESET GENE)</td>
<td>Open-label, crossover randomized</td>
<td>Stable CAD with HPR undergoing PCI (N=32)</td>
<td>MEA</td>
</tr>
<tr>
<td>Lhermusier et al [24]</td>
<td>Prospective, open-label, randomized</td>
<td>ACS (N=48)</td>
<td>VN P2Y12 VASP</td>
</tr>
<tr>
<td>Study</td>
<td>Study Design</td>
<td>Population</td>
<td>PRU</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>Alexopoulos et al 25</td>
<td>Randomized, single-center, single-blind, crossover</td>
<td>ACS with HPR (N=44)</td>
<td>VN P2Y12</td>
</tr>
<tr>
<td>Koul et al 26</td>
<td>Prospective, observational registry</td>
<td>STEMI undergoing PCI (N=223)</td>
<td>VASP</td>
</tr>
<tr>
<td>Cuisset et al 27</td>
<td>Prospective, observational registry</td>
<td>NSTE ACS with DM undergoing PCI (N=107)</td>
<td>VASP</td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>Condition</td>
<td>asonotherapy</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Nührenberg et al</td>
<td>Non-randomized,</td>
<td>STEMI undergoing PCI</td>
<td>VN P2Y12 LTA</td>
</tr>
<tr>
<td></td>
<td>observational</td>
<td>(N=47)</td>
<td>MEA</td>
</tr>
<tr>
<td>Parodi et al</td>
<td>Non-randomized,</td>
<td>CAD undergoing PCI</td>
<td>LTA</td>
</tr>
<tr>
<td></td>
<td>observational</td>
<td>(N=454)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aradi et al</td>
<td>Prospective,</td>
<td>ACS undergoing PCI</td>
<td>MEA</td>
</tr>
<tr>
<td></td>
<td>observational registry</td>
<td>(N=741)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACS: acute coronary syndrome; AU*min: aggregation unit * minutes; BARC: Bleeding Academic Research Consortium; bid: twice a day; C: clopidogrel; GP IIb/IIIa inhibitor: glycoprotein IIb/IIIa inhibitors; GUSTO: Global Use of Strategies to Open Occluded Arteries; HPR: high on-treatment platelet reactivity; LD: loading dose; LPR: low on-treatment platelet reactivity; LTA: light transmission aggregometry; MD: maintenance dose; MEA: multiple electrode platelet aggregometry; MPA: maximal platelet aggregation; NSTEMI: non-ST elevation myocardial infarction; P: prasugrel; PCI: percutaneous coronary intervention; PRU: P2Y12 reaction units; PRI: platelet reactivity index; T: ticagrelor; STEMI: ST-elevation myocardial infarction; TIMI: Thrombolysis in Myocardial Infarction; UA: unstable angina; VNP2Y12: VerifyNow P2Y12; VASP: Vasodilator-stimulated phosphoprotein.

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Population</th>
<th>Method</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayer et al (ISAR-HPR)</td>
<td>Prospective observational registry</td>
<td>ACS with HPR undergoing PCI (N=428)</td>
<td>MEA</td>
<td>AU*min 651 (543-780) after C 600 mg → 156 (88-261) after P 60 mg</td>
</tr>
<tr>
<td>Lhermusier et al</td>
<td>Open-label, multicenter, nonrandomized observational</td>
<td>ACS with planned invasive strategy (N=75)</td>
<td>VN P2Y12 VASP</td>
<td>PRU 234 (164-267) after C 600 mg → 23 (5-71), 4 hours after P 60 mg → 9 (5-47) at discharge on P 10 mg. PRI 68.4 (31.53-79.61)% after C 600 mg → 8.67 (4.51-16.85)% after P 60 mg → 8.05 (5.12-13.38)% at discharge on P 10 mg.</td>
</tr>
</tbody>
</table>

Outcomes at 30 days: 2 (1.7%) combined death/stent thrombosis and 10 (8.7%) TIMI major bleeding.

Outcomes at discharge: no differences in bleeding between groups (3 in the C to P group and 3 in the P only group).
ACAPULCO: Prasugrel compared with high-dose clopidogrel in acute coronary syndrome; ISAR-HPR: A comparative cohort study on personalised antiplatelet therapy in PCI-treated patients with high on-clopidogrel platelet reactivity; PRINCIPLE-TIMI44: prasugrel in Comparison to Clopidogrel for Inhibition of Platelet Activation and Aggregation-Thrombolysis in Myocardial Infarction 44; RESET GENE: The pharmacodynamic effects of switching therapy in patients with high on-treatment platelet reactivity and GENotyped variation with high clopidogrel dose versus prasugrel; SWAP: SWitching Anti Platelet; TRIGGER-PCI: Testing platelet Reactivity In patients underGoing elective stent placement on clopidogrel to Guide alternative therapy with pRasugrel; TRIPLET: Transferring From Clopidogrel Loading Dose to Prasugrel Loading Dose in Acute Coronary Syndrome Patients. Modified from Rollini F et al. Nat Rev Cardiol 2016;13:11-27 [ref 15].
Supplemental Table 3. Pharmacodynamic studies of switching from clopidogrel to ticagrelor

<table>
<thead>
<tr>
<th>Study (Acronym)</th>
<th>Study Design</th>
<th>Study Population (N)</th>
<th>PD test</th>
<th>Key PD switching findings</th>
<th>Clinical outcomes (exploratory)</th>
</tr>
</thead>
</table>
| Gurbel et al \(^{33}\) (RESPOND) | Randomized, double-blind, double-dummy crossover | Stable CAD (N=98) | LTA VN P2Y12 VASP | Nonresponder cohort: MPA 59±9% on C → 35±11%, 4 hours after T 180 mg.
Responder cohort: MPA 47±15% on C → 32±8%, 4 hours after T 180 mg.
VN and VASP: consistent finding (data not reported) | Outcomes at 30 days: 4 patients (2 nonresponders and 2 responders) experienced the 5 serious adverse events, and all events occurred during or after T therapy. One major and 3 minor bleeding events occurred during T treatment, and no bleeding events occurred during C treatment. Dyspnea was reported in 13 and 4 patients receiving T and C, respectively. Two nonresponder patients had |
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Condition</th>
<th>Measure 1</th>
<th>Measure 2</th>
<th>Measure 3</th>
<th>Measure 4</th>
<th>Measure 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caiazzo et al 34 (SHIFT-OVER)</td>
<td>Randomized, single-blind ACS (N=50) MEA LTA</td>
<td>AU 34.4±1.3 on C→ 17.6±7.2, 2 hours after T 90 mg. AU 41.7±2 on C→ 18.1±6, 2 hours after T 180 mg. MPA 24±17% on C→ 9±4%, 2 hours after T 90 mg. MPA 25±14% on C→ 9±3%, 2 hours after T 180 mg.</td>
<td>Outcomes at 30 days: no deaths nor strokes were reported after switch. A total of 2 patients underwent a new hospitalization within the shift to T.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lhermusier et al 24</td>
<td>Prospective, open-label, randomized ACS (N=48) VN P2Y12 VASP</td>
<td>PRU 146 (97-236) after C 600 mg→ 12 (4-46), 4 hours after T 90 mg→ 9 (5-10), 24 hours after initial T dose. PRU 92 (33-143) after C 600 mg→ 4 (2-6) 4 hours after T 180 mg→ 4 (3-5), 24 hours after initial T dose. PRI 57 (18-80)%, after C 600 mg→ 3 (2-6)%, 4 hours after T 90 mg→ 4 (2-11)%, 24 hours after initial T dose. PRI 47 (10-65)% after C 600 mg→ 2 (0-5)%, 4 hours after T 180 mg→ 3 (0-4)%, 24 hours after initial T dose.</td>
<td>Outcomes at 24 hours: 1 bleeding event following switch to T 90mg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rollini et al 22</td>
<td>Prospective, randomized CAD (N=110) LTA VN P2Y12</td>
<td>MPA 50.2±6% on C→ 42±6% 30 min after T 180 mg, → 21.9±4% 2 hours</td>
<td>Outcomes at 1 week: 1 minor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parallel design, open-label</td>
<td>VASP</td>
<td>bleeding, 26 dyspnea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>after T 180 mg, (\rightarrow) 18.9±1.1% 24 hours after T 180 mg (12 hours after T 90 mg), (\rightarrow) 34±4% 1 week after T 180 mg (12 hours after T 90 mg).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRU 170±24 on C (\rightarrow) 125±25 30 min after T 180 mg, (\rightarrow) 28±15 2 hours after T 180 mg, (\rightarrow) 20±10 24 hours after T 180 mg (12 hours after T 90 mg), (\rightarrow) 58±15 1 week after T 180 mg (12 hours after T 90 mg).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRI 57.6±9% on C (\rightarrow) 41.1±8% 30 min after T 180 mg, (\rightarrow) 15.6±6% 2 hours after T 180 mg, (\rightarrow) 19.7±5% 24 hours after T 180 mg (12 hours after T 90 mg).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Setting</td>
<td>Intervention</td>
<td>Primary Endpoint</td>
<td>Outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>------------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexopoulos et al 25</td>
<td>Prospective, randomized, single-blind, crossover</td>
<td>ACS with HPR (N=44)</td>
<td>VN P2Y12</td>
<td>PRU 277.4 on C \rightarrow 34.1 after 15 days on T 90mg/b.i.d \rightarrow 111.4 after 15 days on P 10 mg.</td>
<td>Outcomes at 30 days: no patient exhibited a major adverse cardiovascular event or a major bleeding event; 4 patients (2 P and 2 T) reported minimal bleeding events. Allergic reactions (n=2), dyspepsia, (n=2), dyspnea (n=4) occurred with T.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hibbert et al 35 (CAPITAL RELOAD)</td>
<td>Prospective, observational</td>
<td>STEMI (N=52)</td>
<td>VN P2Y12</td>
<td>PRU 252 (233-280) naïve patients \rightarrow 220(82-269) 2 hours after T 180 mg. PRU 255 (233-304) after C 600 mg \rightarrow 90 (5-205) 2 hours after T 180 mg.</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koul et al 26</td>
<td>Prospective registry</td>
<td>STEMI undergoing PCI (N=223)</td>
<td>VASP</td>
<td>PRI 64% after C 600 (pre-PCI) mg \rightarrow 53% after P 60 mg (after PCI) \rightarrow 29% 1 day after PCI</td>
<td>In-hospital outcomes: the rate of major in-hospital...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
bleeding was 3.3% in this cohort.

ACS: acute coronary syndrome; AU: aggregation unit; C: clopidogrel; CAD: coronary artery disease; HPR: high on-treatment platelet reactivity; LTA: light transmission aggregometry; MEA: multiple electrode platelet aggregometry; MPA: maximal platelet aggregation; P: prasugrel; PCI: percutaneous coronary intervention; PRU: P2Y12 reaction units; PRI: platelet reactivity index; T: ticagrelor; STEMI: ST-elevation myocardial infarction; VNP2Y12: VerifyNow P2Y12; VASP: Vasodilator-stimulated phosphoprotein.

CAPITAL RELOAD: A Comparative Pharmacodynamic Study of Ticagrelor versus Clopidogrel and Ticagrelor in Patients Undergoing Primary Percutaneous Coronary Intervention; RESPOND: Response to Ticagrelor in Clopidogrel Nonresponders and Responders and Effect of Switching Therapies; SHIFT-OVER: The Administration of a Loading Dose Has No Additive Effect on Platelet Aggregation During the Switch From Ongoing Clopidogrel Treatment to Ticagrelor in Patients With Acute Coronary Syndrome.

Supplemental Table 4. Pharmacodynamic studies of switching from newer generation P2Y$_{12}$ inhibitors to clopidogrel

<table>
<thead>
<tr>
<th>Study (Acronym)</th>
<th>Study Design</th>
<th>Study Population (N)</th>
<th>PD test</th>
<th>Key PD switching findings</th>
<th>Clinical outcomes (exploratory)</th>
</tr>
</thead>
</table>
| Gurbel et al 33 (RESPOND) | Randomized, double-blind, double-dummy crossover | Stable CAD (N=98) | LTA VN P2Y12 VASP | Nonresponder cohort: MPA 36±14% on T \rightarrow 56±9% 4 hours after C 600 mg.
Responder cohort: MPA 25±11% on T \rightarrow 45±8% 4 hours after C 600 mg.
VN and VASP: consistent finding (data not reported) | Outcomes at 30 days: 4 patients (2 nonresponders and 2 responders) experienced the 5 serious adverse events, and all events occurred during or after T therapy. One major and 3 minor bleeding events occurred during T treatment, and no bleeding events occurred during C treatment. Dyspnea was reported in 13 and 4 patients receiving T and C, respectively. Two nonresponder patients had dyspnea during switching. |
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Study Population</th>
<th>Primary Endpoint</th>
<th>Comparison</th>
<th>Results</th>
<th>Outcome Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiviott et al (PRINCIPLE-TIMI44)</td>
<td>Multicenter, randomized, double-blind, double-dummy, active comparator-controlled, crossover</td>
<td>Planned PCI (N=201)</td>
<td>LTA VASP VN P2Y12</td>
<td>IPA 61.9% on P 10 mg → 46.8% after 15 days on C 150 mg.</td>
<td>Outcomes at 29 days: no bleeding events in subject switching from P to C.</td>
<td></td>
</tr>
<tr>
<td>Montalescot et al (ACAPULCO)</td>
<td>Double-blind, randomized, crossover</td>
<td>UA/NSTE MI (N=56)</td>
<td>LTA VN P2Y12 VASP</td>
<td>MPA 28.9% on P 10 mg → 42.5% after 15 days on C 150 mg.</td>
<td>Outcomes at 60 days: there were no differences in any non-CABG-related TIMI major or GUSTO severe/life-threatening bleeding events. Five subjects (3 P and 2 C) experienced bleeding during MD treatment.</td>
<td></td>
</tr>
<tr>
<td>Sardella et al (RESET GENE)</td>
<td>Open-label, crossover randomized</td>
<td>Stable CAD with HPR undergoing PCI (N=32)</td>
<td>MEA</td>
<td>AUC 180.5 after 15 on P 10 mg → 330 after 15 days on C 150 mg.</td>
<td>Outcomes at 3 months: 3 minor bleedings in patients initially treated with P and 1 minor bleeding while on C.</td>
<td></td>
</tr>
<tr>
<td>Pourdjabbar et al (CAPITAL OPTI-CROSS)</td>
<td>Prospective, randomized, open-label</td>
<td>ACS (N=60)</td>
<td>VN P2Y12</td>
<td>PRU40 on T* → 114±73.1, 48 hrs after C 600 mg PRU40 on T* → 165.1±70.5, 48 hrs after C 75 mg</td>
<td>Outcomes at 30 days: No differences in MACE, TIMI major bleeding or stent.</td>
<td></td>
</tr>
</tbody>
</table>
| Kerneis et al 37 | Prospective, observational registry | ACS (N=31) | LTA VN P2Y12 VASP | MPA 21.01±10.47% on P 10 mg → 43.84±15.19% after 15 on C 75 mg.
PRU 14.23±27.98 on P 10 mg → 155±87.24 after 15 days on C 75 mg.
PRI 12.55±11.9% on P 10 mg → 43.63±21.82% after 15 days on C 75 mg. | Outcomes at 30 days: no major bleedings. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deharo et al 38 (POBA)</td>
<td>Prospective, observational LPR (N=20)</td>
<td>ACS with LPR</td>
<td>VASP</td>
<td>PRI 7±2% on P → 37.8±15.6% on C</td>
<td>Outcomes at 30 days: no bleeding events after switching to C.</td>
</tr>
</tbody>
</table>

PRU~40 on T* → 165.8±71, 72 hrs after C 600 mg
PRU~40 on T* → 184.1±68, 72 hrs after C 75 mg
HPR rate after C 600 mg: 27%
HPR rate after C 75 mg: 57%

*: value estimated from the figure.
ACS: acute coronary syndrome; BARC: Bleeding Academic Research Consortium; C: clopidogrel; CAD: coronary artery disease; GP IIb/IIIa inhibitor: glycoprotein IIb/IIIa inhibitors; GUSTO: Global Use of Strategies to Open Occluded Arteries; HPR: high on treatment platelet reactivity; IPA: inhibition of platelet aggregation; LPR: low platelet reactivity; LTA: light transmission aggregometry; MD: maintenance dose; MPA: maximal platelet aggregation; NSTEMI: non-ST elevation myocardial infarction; P: prasugrel; PCI: percutaneous coronary intervention; PRU: P2Y12 reaction units; PRI: platelet reactivity index; T: ticagrelor; TIMI: Thrombolysis in Myocardial Infarction; UA: unstable angina; VNP2Y12: VerifyNow P2Y12; VASP: Vasodilator-stimulated phosphoprotein.
ACAPULCO: Prasugrel compared with high-dose clopidogrel in acute coronary syndrome; CAPITAL OPTI-CROSS: Optimizing crossover from ticagrelor to clopidogrel in patients with acute coronary syndrome: the Capital opti-cross randomized trial; POBA: Predictor of Bleeding with Antiplatelet drugs; PRINCIPLE-TIMI44: prasugrel in Comparison to Clopidogrel for Inhibition of Platelet Activation and Aggregation-Thrombolysis in Myocardial Infarction 44; RESET GENE: The pharmacodynamic effects of switching theRapy in patiEntS with high on-trEatment plateleT reactivity and GENotypE variation with high clopidogrel dose versus prasugrel; RESPOND: Response to Ticagrelor in Clopidogrel Nonresponders and Responders and Effect of Switching Therapies. Modified from Rollini F et al. Nat Rev Cardiol 2016;13:11-27 [ref 15].
Supplemental Table 5. Pharmacodynamic studies of switching between cangrelor and oral P2Y_{12} receptor inhibitors

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Design</th>
<th>Study Population (N)</th>
<th>PD test</th>
<th>Key PD switching findings</th>
<th>Clinical outcomes (exploratory)</th>
</tr>
</thead>
</table>
| Schneider et al[^39] | Prospective not randomized. Transition between Cang and T | Stable CAD (N=12) | LTA VN P2Y12 VASP | *Switching from Cang to T* (T administered during Cang infusion): MPA 20µmol/l: 2.3±2.2% on C→ 19±16%, 30 min after stopping infusion. MPA 5µmol/l: 4.1±2% on C→ 10±7%, 30 min after stopping infusion. VNP2Y12: 6.4±7.5% on C→ 76±79%, 30 min after stopping infusion. VASP: 15±9% on C→ 48±49%, 30 min after stopping infusion. No significant increase in platelet reactivity compared with the pre-defined reference time point (5.25 h after stopping infusion) with each assay.

Switching from T to Cang (Cang started 12 h after last T dose): MPA 20µmol/l: 12±9% on T→ 1.5±1.9 during Cang infusion. VN and VASP: consistent findings
Previous treatment with ticagrelor did not alter the inhibitory effect of cangrelor. | Throughout study participation (telephone interview on study days 10-12): no adverse events |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Design</th>
<th>Disease Stage</th>
<th>P2Y12 Platelet Reactivity</th>
<th>Switching from Cang to P (P administered during Cang infusion):</th>
<th>Switching from P to Cang (Cang started 24 h after last P dose):</th>
<th>Study participation (telephone interview on study days 13-15):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schneider et al 40</td>
<td>Prospective not randomized Transition between Cang and P</td>
<td>Stable CAD (N=15)</td>
<td>LTA VN P2Y12 VASP</td>
<td>MPA 20µmol/l: <4% on C → 41%, 30 min after stopping infusion when P administered 30 min before infusion stop; ~60%, 30 min after stopping infusion when P administered 1 min before infusion stop or at the end of infusion. VN and VASP: consistent findings.</td>
<td>VN and VASP: consistent findings</td>
<td>no adverse events</td>
</tr>
<tr>
<td>Angiolillo et al 41</td>
<td>Prospective, randomized, double-blind, placebo controlled</td>
<td>ACS (N=210)</td>
<td>VN P2Y12</td>
<td>PRU 210.9±94.0 prior Cang infusion (thienopyridine administered median 29 h prior), 68.9±67.8 during infusion, 279.7±106.5 pre-CABG (median 3.2 h post infusion)</td>
<td>Study-defined excessive CABG-surgery-related bleeding not significantly different between Cang (11.8%) or placebo (10.4%). Ischemic end points prior to surgery were low: 2.8% with Cang, 4.0% with placebo</td>
<td>throughout the study participation</td>
</tr>
<tr>
<td>Angiolillo et al 42</td>
<td>Predefined substudy of CHAMPION-CAD undergoing PCI</td>
<td>CAD PCI</td>
<td>VN P2Y12 LTA VASP</td>
<td>PRU 93.5 on Cang → ~240 6-12 h after stopping infusions and administering C.</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Population</td>
<td>Methods</td>
<td>Findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCI and CHAMPION-PLATFORM randomized trials</td>
<td>(N=167)</td>
<td>Post infusion PRU was not significantly different in patients treated initially with Cang+C or placebo+C. LTA and VASP: consistent findings.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steinhubl et al 43</td>
<td>Randomized, open-label</td>
<td>Healthy volunteers (N=20)</td>
<td>Whole blood aggregometry: ADP-induced aggregation completely inhibited during Cang infusion. C at the end of cang infusion: max inhibition 3 h post C administration. C alone: max inhibition 2 h post C administration. C and Cang simultaneously: platelet reactivity similar to baseline (no antiplatelet therapy) at all time points after C administration.</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schneider et al 44</td>
<td>Prospective not randomized. Transition between Cang and C</td>
<td>Stable CAD (N=12)</td>
<td>LTA ADP 20µmol/l: MPA ≤2 during Cang inf. MPA 1 h after stop Cang infusion: 56±9% with C at the end of infusion 56±17 with C 30 min prior stop infusion 65±10 with C 1 h prior stop infusion. VN P2Y12 and Flow cytometry: consistent findings</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hochholzer et al 45</td>
<td>Prospective, randomized, open-label.</td>
<td>CAD without MI</td>
<td>HPR 1 h after stopping Cang: C: 35%; P: 6.7%; T: 4.4%</td>
<td>The incidence of 30-day ischemic and bleeding events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition from Cang to C, P, T*</td>
<td>undergoing PCI (n=110)</td>
<td>aggregometry</td>
<td>Platelet reactivity (median): 94 AU x min on Cang → 212 with C, 154 with P, 81 with T 1 h after stopping infusion</td>
<td>was similar among groups. MI: 0% with C, 11.1% with P and 4.4% with T. TIMI major bleeding: 0% with C, 0% with P and 2.2% with T.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*C 600 mg was administered immediately after discontinuation of Cang infusion. P 60 mg and T 180 mg were administered at the start of Cang infusion.

ACS: acute coronary syndrome; ADP: adenosine diphosphate; AU x min: aggregation units per min; C: clopidogrel; CAD: coronary artery disease; Cang: cangrelor; LTA: light transmission aggregometry; MI: myocardial infarction; MPA: maximal platelet aggregation; P: prasugrel; PCI: percutaneous coronary intervention; PRU: P2Y12 reaction units; T: ticagrelor; VNP2Y12: VerifyNow P2Y12; VASP: Vasodilator-stimulated phosphoprotein.
SUPPLEMENT REFERENCES

infarction patients: Insights from the Treatment with Adenosine Diphosphate Receptor Inhibitors: Longitudinal Assessment of Treatment Patterns and Events after Acute Coronary Syndrome (TRANSLATE-ACS) observational study. Am Heart J. 2017;183:62-68.

undergoing primary percutaneous coronary intervention: the CAPITAL RELOAD study.

