Until 2015, consensus statements advised against sports participation more vigorous than golf for patients with implantable cardioverter-defibrillators (ICDs) because of the postulated risks of death caused by failure to defibrillate, injury resulting from arrhythmia-related syncope or shock, or device damage. The multinational, prospective, observational ICD Sports Safety Registry quantified risks associated with sports participation for athletes receiving ICDs on the basis of standard criteria. Initial results (2013) demonstrated no death, failure to defibrillate, or injury resulting from arrhythmia or shock during sports. On the basis of these data, the 2015 eligibility and disqualification recommendations for competitive athletes with cardiovascular disease now state that competitive sports may be considered for athletes with ICDs. This report describes 4-year follow-up of the completed registry. Methods are as reported previously. The Yale University Human Investigation Committee approved the study. All participants gave written informed consent.

Among 440 participants, 393 in organized sports and 47 in high-risk sports, the most common diagnoses were long-QT syndrome (n=87, 20%), hypertrophic cardiomyopathy (n=75, 17%), and arrhythmogenic right ventricular cardiomyopathy (n=55, 13%). Of 201 subjects with a preimplantation history of ventricular fibrillation (VF) or tachycardia (VT), 61 (30%) had VT/VF during sports. At enrollment, median time since implantation was 26 months (interquartile range, 11–59 months), with 126 subjects (29%) enrolled within 1 year of implantation. The most common organized sports were running, basketball, and soccer; the most common dangerous sport was skiing. Seventy-seven subjects (18%) engaged in varsity/junior varsity/traveling team competition, (highly competitive subgroup). Seventy-two postcollege athletes (16%) participated at a national/international level.

Median follow-up was 44 months (interquartile range, 30–48 months), totaling 1446 person-years. Thirty-seven participants did not complete the study: 20 were lost to follow-up (all confirmed alive), 5 withdrew, 6 developed worsening cardiac/medical conditions, 4 had the ICD removed, and 2 died (neither death was sports related, as reported previously). There were no tachyarrhythmic deaths or externally resuscitated tachyarrhythmias during or after sports participation or injury resulting from arrhythmia-related syncope or shock during sports. The 95% confidence interval for the occurrence of adverse event based on 376 participants followed up at least 2 years was 0% to 0.9% and based on 167 participants followed up at least 4 years was 0% to 2.2%.

The numbers and rhythms of shocks received for the overall group and the highly competitive subgroup are shown in the Table. Forty-six (10%) received appropriate shocks (for VT/VF) during competition or practice, a rate of 3 per 100 person-years (identical to the initial report). More participants received shocks during competition/practice or physical activity than rest (20% versus 10%; P<0.0001), but the proportion receiving a shock during competition/practice was similar to the proportion receiving a shock during other physical activity (12% versus 10%; P=0.56). Similarly, the
proportion receiving appropriate shocks during competition/practice or other physical activity was greater than the proportion receiving appropriate shocks during rest (11% versus 6%; P=0.005), but there was no difference between competition/practice and other physical activity (7% versus 5%; P=0.08). The only clinical or demographic variable associated with receiving appropriate shocks during competition/practice was presence of arrhythmogenic right ventricular cardiomyopathy. The percentage of individuals in the highly competitive subgroup receiving appropriate shocks during competition/practice (12%) was not different from the percentage of those not in the competitive subgroup (10%). Of 51 subjects receiving shocks during sports (11% of total), 7 stopped all sports, and 13 stopped 1 or several sports; 5 of these 20 returned after 6 to 18 months.

Sixteen individuals (4% of total) received multiple appropriate shocks for VT/VF because of shock failure (n=2), immediate recurrence within a single device-defined episode (n=6), or electric storm (>1 device-defined episode within 24 hours, n=8). Eight occurred during competition/practice, 4 during other physical activity, and 4 at rest. The rate of arrhythmias requiring multiple shocks for termination was 0.5 per 100 person-years, similar to the previously reported 0.4 per 100 person-years. Among all appropriate shock episodes occurring during competition/practice, 23% required multiple shocks for termination versus 15% during other physical activity and 11% during rest (P=NS). Among the 12 participants experiencing multiple shocks during competition/physical activity, 3 (of 45) had coronary artery disease, 3 (of 48) had idiopathic VF, 3 (of 55) had arrhythmogenic right ventricular cardiomyopathy, and 1 each had CPVT (of 12), dilated cardiomyopathy (of 35), and sarcoidosis (of 1).

There were 31 definite and 13 possible lead malfunctions. The estimated lead survival free of definite malfunction (from implantation date) was 95% at 5 years and 89% at 10 years and free of definite plus possible malfunction was 94% at 5 years and 85% at 10 years. There were no generator malfunctions.

Limitations have been detailed previously. In conclusion, in longer-term follow-up of the ICD Sports Registry, athletes with ICDs engaged in vigorous competitive sports without physical injury or failure to terminate arrhythmia, despite the occurrence of inappropriate and appropriate shocks in some. Underlying disease should be considered, in particular arrhythmogenic right ventricular cardiomyopathy, because exercise increases disease progression and arrhythmia. These data can guide more informed individualized physician and patient decision making for sports participation for athletes with ICDs and continue to support the recent change in eligibility recommendations.

Table. Number of Shock Events and of Individuals Receiving Shocks

<table>
<thead>
<tr>
<th>Rhythm</th>
<th>Competition Related, n*</th>
<th>Physical Activity Related, n †</th>
<th>Rest, n</th>
<th>Total, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT</td>
<td>29/21</td>
<td>15/11</td>
<td>19/13</td>
<td>63/41 (9)</td>
</tr>
<tr>
<td>VF</td>
<td>12/10</td>
<td>9/8</td>
<td>14/9</td>
<td>35/25 (6)</td>
</tr>
<tr>
<td>VT/VF storm</td>
<td>4/4</td>
<td>3/3</td>
<td>2/2</td>
<td>9/9 (2)</td>
</tr>
<tr>
<td>NSVT</td>
<td>1/1</td>
<td>0</td>
<td>0</td>
<td>1/1 (1)</td>
</tr>
<tr>
<td>SR</td>
<td>8/7</td>
<td>4/3</td>
<td>1/1</td>
<td>13/10 (2)</td>
</tr>
<tr>
<td>AF</td>
<td>7/5</td>
<td>14/10</td>
<td>4/4</td>
<td>25/14 (3)</td>
</tr>
<tr>
<td>Other SVT</td>
<td>3/3</td>
<td>4/4</td>
<td>1/1</td>
<td>8/2 (2)</td>
</tr>
<tr>
<td>AF storm</td>
<td>0</td>
<td>1/1</td>
<td>0</td>
<td>1/1 (1)</td>
</tr>
<tr>
<td>AF/SVT storm</td>
<td>0</td>
<td>2/2</td>
<td>0</td>
<td>2/2 (1)</td>
</tr>
<tr>
<td>T-wave oversensing</td>
<td>2/2</td>
<td>3/2</td>
<td>3/3</td>
<td>9/7 (2)</td>
</tr>
<tr>
<td>Noise</td>
<td>1/1</td>
<td>7/7</td>
<td>11/10</td>
<td>19/17 (4)</td>
</tr>
<tr>
<td>Total</td>
<td>67/51</td>
<td>62/46</td>
<td>55/42</td>
<td>184/121 (28)</td>
</tr>
</tbody>
</table>

Highly competitive subgroup

<table>
<thead>
<tr>
<th>Rhythm</th>
<th>Competition Related, n*</th>
<th>Physical Activity Related, n †</th>
<th>Rest, n</th>
<th>Total, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT</td>
<td>1/1</td>
<td>5/5</td>
<td>2/2</td>
<td>8/3 (3)</td>
</tr>
<tr>
<td>VF</td>
<td>4/3</td>
<td>3/1</td>
<td>5/2</td>
<td>12/4 (4)</td>
</tr>
<tr>
<td>VT/VF storm</td>
<td>1/1</td>
<td>0</td>
<td>0</td>
<td>1/1 (1)</td>
</tr>
<tr>
<td>AF</td>
<td>1/1</td>
<td>2/1</td>
<td>0</td>
<td>3/2 (2)</td>
</tr>
<tr>
<td>Other SVT</td>
<td>0/0</td>
<td>2/2</td>
<td>2/2</td>
<td>4/4 (5)</td>
</tr>
<tr>
<td>AF/SVT storm</td>
<td>0/0</td>
<td>1/1</td>
<td>0/0</td>
<td>1/1 (1)</td>
</tr>
<tr>
<td>T-wave oversensing</td>
<td>1/1</td>
<td>2/1</td>
<td>2/2</td>
<td>5/4 (5)</td>
</tr>
<tr>
<td>Noise</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>3/3 (3)</td>
</tr>
<tr>
<td>Total</td>
<td>9/8</td>
<td>16/13</td>
<td>12/8</td>
<td>37/25</td>
</tr>
</tbody>
</table>

Values refer to number of events or number of unique individuals. Percents refer to percent of study population. AF indicates atrial fibrillation; NSVT, nonsustained ventricular tachycardia; SR, sinus rhythm; SVT, supraventricular; VF, ventricular fibrillation; and VT, ventricular tachycardia.

Among the total cohort, 33 shocks did not have available implantable cardioverter-defibrillator—stored data; the diagnosis is based on that of the treating physician. Of these, 13 were ventricular arrhythmia, 4 VT/VF, 13 noise, and 3 other. Among the highly competitive subgroup, 6 shocks did not have available implantable cardioverter-defibrillator—stored data: 3 noise, 1 VF, 1 T-wave oversensing, and 1 other SVT.

*Includes competition, postcompetition, or practice for competition.
†Includes physical activity and postphysical activity.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the invaluable assistance of the following organizations in disseminating information about this study to potential participants: Children’s Cardiomyopathy Foundation, Lisa Yue; Hypertrophic Cardiomyopathy Association, Lisa Salberg; Ken Heart Foundation, Linette Derminer; Long QT Syndrome Registry (University of Rochester Medical Center).
Kris Cutter; Parent Heart Watch, Martha Lopez-Anderson; Sudden Arrhythmia Death Syndromes, Alice Lara; Sudden Cardiac Arrest Association, Richard Brown; and Sudden Cardiac Arrest Foundation, Mary M. Newman. Participation of the European sites was approved by the Scientific Committee of the European Heart Rhythm Association and the Sports Cardiology Section of the European Association for Cardiovascular Prevention and Rehabilitation Association of the European Society of Cardiology.

SOURCES OF FUNDING

This study was supported by investigator-initiated grants from Boston Scientific, Medtronic, and St Jude Medical. These entities had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the article.

DISCLOSURES

Dr Lampert reports consulting fees/honoraria from Medtronic, Inc, and research grants from Boston Scientific Corp, Medtronic, Inc, and St. Jude Medical. Dr Olshansky reports consulting fees from Lundbeck, Aamarin, and Boehringer Ingelheim. Dr Heidbuchel reports consulting fees/honoraria from BoehringerIngelheim, Daiichi-Sankyo, Pfizer Inc, Merck Pharmaceuticals, and Bayer HealthCare, as well as research grants from Biotronik and Boston Scientific Corp. Dr Ackerman reports consulting fees from Boston Scientific Corp, Gilead Sciences, Invitae, Medtronic, Inc, MyoKardia, and St. Jude Medical, as well as royalty income from AliveCor and Transgenomic. Dr Calkins reports consulting fees/honoraria from Medtronic, Inc and Boston Scientific Corp and research grants from St. Jude Medical and Boston Scientific Corp. Dr Estes reports consulting fees/honoraria and fellowship support from Medtronic, Inc, Boston Scientific Corp, and St. Jude Medical. Dr Maron reports consulting fees/honoraria from GeneDX and research grants from Medtronic, Inc. Dr Scheinman reports consulting fees/honoraria from Gilead, Medtronic, Inc, and Boston Scientific Corp, Gilead Sciences, Invitae, Medtronic, Inc, MyoKardia, and St. Jude Medical, as well as research grants from Boston Scientific Corp, Medtronic, Inc, and St. Jude Medical. Dr Willems reports research grants from Fund for Scientific Research Flanders, Biotronik, Boston Scientific Belgium, and Medtronic Belgium, as well as consulting fees/honoraria from Medtronic, Boston Scientific, Biotronik, St. Jude Medical, and Sorin. Dr Cannom reports consulting fees/honoraria from Medtronic, Inc and Boston Scientific Corp, as well as being on the Speakers’ Bureau for Medtronic, Inc, Boston Scientific Corp, Sanofi Aventis, and St. Jude Medical. The other authors report no conflicts.

AFFILIATIONS

From Yale University School of Medicine, New Haven, CT (R.L., C.B., J.D., F.L., L.S.); University of Iowa, Iowa City (B.O., I.L.); Antwerp University and University Hospital, Belgium (H.H.); Sports Cardiology Consultants LLC, Chicago, IL (C.L.); Cleveland Clinic, OH (E.S., B.L.W.); Mayo Clinic, Rochester, MN (M.A.); Johns Hopkins University, Baltimore, MD (H.C., A.C.); Tufts Medical Center, Boston, MA (N.A.M.E., B.J.M.); UT Southwestern, Dallas, TX (M.S.L.); University of Arizona, Tucson (F.M.); University of California, San Francisco (M.S.); Indiana University, Indianapolis (D.P.Z.); Children’s National Medical Center, Washington, DC (C.I.B.); Erasmus MC, Rotterdam, the Netherlands (L.J.); Michigan Heart, Ypsilanti (M.L.); University Hospitals Leuven, Belgium (R.W., K.B., K.V.); and Hospital of the Good Samaritan and Cedar Sinai Heart Institute, Los Angeles, CA (D.C.).

FOOTNOTES

This article was handled independently by William G. Stevenson, MD.

The online-only Data Supplement is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIRCULATIONAHA.117.027828/-/DC1. Circulation is available at http://circ.ahajournals.org.

REFERENCES

Safety of Sports for Athletes With Implantable Cardioverter-Defibrillators: Long-Term Results of a Prospective Multinational Registry

Rachel Lampert, Brian Olshansky, Hein Heidbuchel, Christine Lawless, Elizabeth Saarel, Michael Ackerman, Hugh Calkins, N.A. Mark Estes, Mark S. Link, Barry J. Maron, Frank Marcus, Melvin Scheinman, Bruce L. Wilkoff, Douglas P. Zipes, Charles I. Berul, Alan Cheng, Luc Jordans, Ian Law, Michele Loomis, Rik Willems, Cheryl Barth, Karin Broos, Cynthia Brandt, James Dziura, Fangyong Li, Laura Simone, Kathleen Vandenbergh and David Cannom

Circulation. 2017;135:2310-2312
doi: 10.1161/CIRCULATIONAHA.117.027828

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/135/23/2310

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2017/06/06/CIRCULATIONAHA.117.027828.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
North American Sites

Arizona Pediatric Cardiology Consultants, Mitchell Cohen MD; Arrhythmia Center of CT, Mark Blitzer MD; Baylor College of Medicine, Bryan Cannon MD, Jeffrey Kim MD, Melba Koegele; Black Hills Clinical Research Medical Center, Jose Teixeira MD; Children’s Hospital Boston, Frank Cecchin MD, Mark Alexander MD, Ligia Jordao, Maria Martuscello; Healthcare of Atlanta, Peter Fischbach MD, Jeryl Huckaby; Children’s Hospital and Clinics of Minnesota, David Burton MD, Erin Zielinski; Children’s National Medical Center, Charles Berul MD, Vicki Freedenberg; Cleveland Clinic Foundation, Bruce Wilkoff MD, Raquel Rozich; Cypress Heart, Mohamad Khaled al Ahdab MD, Jenny Ecord; Duke University, Ronald Kanter MD, Ming Xu; Los Angeles Cardiology Associates, David Cannom MD, Cecille Mayoralgo; George Washington University, Allen Solomon MD, Lori Marshall; Hackensack Medical Center, Taya Glotzer MD; Heart Clinic Arkansas, Eleanor Kennedy MD, Jessie Byrd; Johns Hopkins, Alan Cheng MD, Crystal Tichnell; Legacy Clinical Research & Tech Center (Good Samaritan Hospital), John MacAnulty, MD, Joy Khamsookthavong; London Health Science Centre University Hospital, Andrew Krahn MD, Raymond Yee MD, Denise Hulley; Mainline Health Heart Center, Martin O’Riordan MD, Nancy Britton; Medical College of Wisconsin, Stuart Berger MD, Kristen Kubsch; Medical University of South Carolina, Michael Gold MD, Debi Adams; Miami Children’s Hospital, Steven Fishberger MD, Ruby Whalen; Michigan Heart, Michelle Loomis, Gail Brand; Midatlantic Cardiovascular Associates, Glenn Meininger MD, Michele Loughrey; Minneapolis Heart Institute, Robert Hauser MD, Linda Retel Kallinen; New England Medical Center, Mark Link MD; Park Nicollet Institute, Jay Simonson MD, Sandi Barnes; Rhode Island Hospital, Kristen Ellison MD, Lisa Fortin; St. Lukes-Roosevelt Hospital,
Merle Meyerson MD, Robin Knox; Ohio State University, John Hummel MD, Keri Baia, Julie Ryan; University of Arizona, Peter Ott MD, Kathy Gear; University of British Columbia, Shubhayan Sanatani MD, Karen Gibbs; University of California, San Francisco, Melvin Scheinman MD, Ronn Tanel, MD, Joan Caroll Compagna; University of Iowa, Brian Olshansky, MD, Ian Law MD, Jean Gingerich; University of Montreal, Bernald Thibault MD, Francois Lemarbre; University of Rochester, David Huang MD, Erin O’Gorman; University of Southern California, Leslie Saxon MD, Stephanie Mullin; University of Utah, Elizabeth Saarel MD, Mayson Heywood; University of Washington, Kristen Patton MD, Rebecca Letterer; Walter Reed Medical Center, Linda Huffer MD; Washington University, Mayre Gleva MD, Judy Osborn; Yale University, Rachel Lampert MD, Cheryl Barth

European Sites

Clin.du sud-Luxembourg, George MAiresse , MD; CHRU-Hopital de Pontchaillou, Francois Carre , MD, Pascal Lottom; Dlinique Pasteur, S. Boveda , MD, Stepane Combes; Erasmus Medisch Centrum, Luc Jordaens , MD, Agnes Muskens; Hospital Clinic-University of Barcelona, Lluis Mont , MD, Paola Berne; Hospital Puerta de Hierro, Ignacio Fernandez Lozano, MD, Carlos Gutierrez Landaluce; IKEM, Jose Kautzner , MD, Ivana Nemcova; Klinikum Bogenhausen, Dr. Ellen Hoffmann, Florian Straube; OLV Hospital Aalst, Peter Geelen , MD, Hedwig Batjoens; Radboud University Hospital Nijmegen, NM Panhuyzen-Goedkoop , MD; Rikshospitalet Oslo, Dr. O. Anfinsen; Southampton General Hospital, Prof. John Morgan, Lisa Fletcher; Sterling Memorial University Hospital, Dr. Iwona Cygankiewicz, MD; St. Vincent's Hospital, Mebourne LTD, David Prior, MD; Tel Aviv Sourasky Medical
Center, Prof. Samuel Viskin, Nurit Platner; University of Bern, Matthias Wilhelm, MD;
University Hospital Zurich, Prof. Firat Duru, Ellen Saga; University of Leipzig Heart Centre,
Andreas Mussigbrodt, Angeliki Darma; UZ Antwerpen, Johan Saenen, MD; UZ Leuven, Prof.
Hein Heidbuchel, MD, Katrien Vandenberghe, Anita Meuris

Data Safety and Monitoring Board

Andrew Epstein, MD, University of Pennsylvania; Henry Greenberg MD, Columbia University;
Jack Hall MD, University of Rochester; Alan Kadish MD, Touro College; Lauris Kalkjian MD,
University of Iowa