Hypertension

SIRT3–AMP-Activated Protein Kinase Activation by Nitrite and Metformin Improves Hyperglycemia and Normalizes Pulmonary Hypertension Associated With Heart Failure With Preserved Ejection Fraction

Yen-Chun Lai, PhD; Diana M. Tabima, PhD; John J. Dube, PhD; Kara S. Hughan, MD; Rebecca R. Vanderpool, PhD; Dmitry A. Goncharov, BS; Claudette M. St. Croix, PhD; Adolfo Garcia-Ocaña, PhD; Elena A. Goncharova, PhD; Stevan P. Tofovic, MD, PhD; Ana L. Mora, MD; Mark T. Gladwin, MD

Background—Pulmonary hypertension associated with heart failure with preserved ejection fraction (PH-HFpEF) is an increasingly recognized clinical complication of metabolic syndrome. No adequate animal model of PH-HFpEF is available, and no effective therapies have been identified to date. A recent study suggested that dietary nitrate improves insulin resistance in endothelial nitric oxide synthase null mice, and multiple studies have reported that both nitrate and its active metabolite, nitrite, have therapeutic activity in preclinical models of pulmonary hypertension.

Methods and Results—To evaluate the efficacy and mechanism of nitrite in metabolic syndrome associated with PH-HFpEF, we developed a 2-hit PH-HFpEF model in rats with multiple features of metabolic syndrome attributable to double-leptin receptor defect (obese ZSF1) with the combined treatment of vascular endothelial growth factor receptor blocker SU5416. Chronic oral nitrite treatment improved hyperglycemia in obese ZSF1 rats by a process that requires skeletal muscle SIRT3–AMPK-GLUT4 signaling. The glucose-lowering effect of nitrite was abolished in SIRT3-deficient human skeletal muscle cells, and in SIRT3 knockout mice fed a high-fat diet, as well. Skeletal muscle biopsies from humans with metabolic syndrome after 12 weeks of oral sodium nitrite and nitrate treatment (IND#115926) displayed increased activation of SIRT3 and AMP-activated protein kinase. Finally, early treatments with nitrite and metformin at the time of SU5416 injection reduced pulmonary pressures and vascular remodeling in the PH-HFpEF model with robust activation of skeletal muscle SIRT3 and AMP-activated protein kinase.

Conclusions—These studies validate a rodent model of metabolic syndrome and PH-HFpEF, suggesting a potential role of nitrite and metformin as a preventative treatment for this disease. (Circulation. 2016;133:717-731. DOI: 10.1161/CIRCULATIONAHA.115.018935.)

Key words: AMP-activated protein kinases • heart failure • hypertension, pulmonary • metabolic syndrome • SIRT3 protein

Group 2 pulmonary hypertension (PH) or postcapillary pulmonary venous hypertension is known to occur secondary to left ventricular (LV) systolic or diastolic dysfunction. The latter is more commonly referred to as heart failure with preserved ejection fraction (HFpEF) or nonsystolic heart failure, and is the most common cause of group 2 PH. With chronic elevations in the diastolic filling pressure of the left heart, the pulmonary vasculature can vasoconstrict and undergo pathological remodeling, leading to an elevated pulmonary vascular resistance, high transpulmonary pressure gradients, and secondary right ventricular (RV) hypertrophy and dilation.4-6 Therefore, patients who have PH associated with HFpEF (PH-HFpEF) develop more severe symptoms than HFpEF patients and experience significant exercise intolerance, frequent hospitalization, and reduced survival.1 Because

Received August 10, 2015; accepted January 8, 2016.
From Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA (Y.-C.L., D.M.T., K.S.H., R.R.V., D.A.G., E.A.G., S.P.T., A.L.M., M.T.G.); Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA (J.J.D.); Division of Pediatric Endocrinology, Metabolism and Diabetes Mellitus, University of Pittsburgh, Pittsburgh, PA (K.S.H.); Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA (C.M.S.C.); Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY (A.G.-O.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA (E.A.G., S.P.T., A.L.M., M.T.G.).
The online-only Data Supplement is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIRCULATIONAHA.115.018935/-/DC1.
Correspondence to Mark T. Gladwin, MD, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace St, Pittsburgh, PA 15261. E-mail gladwinmt@upmc.edu
© 2016 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org
DOI: 10.1161/CIRCULATIONAHA.115.018935
PH-HFpEF patients usually have a higher prevalence of cardiovascular comorbidities, including hypertension, diabetes mellitus, obesity, and coronary artery disease, than patients with pulmonary arterial hypertension (PAH). PH-HFpEF is increasingly recognized as a clinical complication of metabolic syndrome. In fact, a recent observational study has shown that the development of PH-HFpEF is commonly associated with ≥2 features of metabolic syndrome. To date, no animal models of PH-HFpEF associated with metabolic syndrome have been established and no specific therapy has been identified.

Reduced bioavailability and impaired production of nitric oxide (NO) are thought to contribute to the development of both metabolic syndrome and PH. An increasing number of therapeutic approaches, which enhance NO generation and bioactivity, have been proposed over the past decade and include the administration of nitrite and nitrate. Recent publications from our group and others have shown that nitrite exhibits therapeutic efficacy in mouse, rat, and sheep preclinical models of PH and also appears to be well tolerated in humans. In addition, oral supplementation of nitrate prevents the development of hypoxia- and monocrotaline-induced PH. Furthermore, a recent study suggests that dietary supplementation of nitrite reverses features of metabolic syndrome in endothelial nitric oxide synthase (eNOS)-deficient mice, yet the mechanism behind this observation and the role of its active metabolite, nitrite, on metabolic syndrome and metabolic syndrome–associated PH-HFpEF remains elusive.

AMP-activated protein kinase (AMPK) is a cellular energy sensor that participates in many metabolic processes and controls liver and skeletal muscle glucose metabolism. Dysregulation of AMPK and its signaling network have been associated with metabolic syndrome, heart failure, and PH. Several studies have shown that NO donors increase glucose uptake and GLUT4 expression via AMPK activation, and nitrite has been shown to increase AMPK activation in cardiomyocytes, identifying AMPK as a candidate signaling modulator for the effects of nitrate and nitrite on glucose homeostasis. Activation of AMPK can be mediated by the upstream kinases, including liver kinase B1 (LKB1), calcium/calmodulin-dependent kinases (calmodulin-dependent protein kinase kinase-β and calcium-calmodulin-dependent protein kinase II (CaMKII)), and transforming growth factor β-activated kinase-1. Recently, sirtuin-3 (SIRT3), a major mitochondrial deacetylase that is upregulated with diet and exercise, has also been shown to activate AMPK in skeletal muscle and neurons. On the basis of such observations, we hypothesized that nitrite might improve metabolic syndrome and metabolic syndrome–associated PH-HFpEF via canonical insulin-dependent or noncanonical AMPK-dependent signaling pathways.

In addition to nitrite, metformin, the canonical AMPK activator and the first-line drug for modulating metabolic syndrome, has also been shown to prevent the development of hypoxia- and monocrotaline-induced PH. Hence, in the present study, we sought to evaluate the effectiveness and mechanism of nitrite and metformin in the treatment of metabolic syndrome–associated PH-HFpEF.

Methods

Methods are expanded in the online-only Data Supplement.

Animal Studies

All experimental procedures were approved by the University of Pittsburgh Institutional Animal Care and Use Committee. Male obese ZSF1 rats (8 and 23 weeks old) and their lean littermates (Charles River, Wilmington, MA) were used in this study. Sodium nitrite (Sigma) and metformin (Spectrum) were given in drinking water. Vascular endothelial growth factor receptor-2 antagonist SU5416 (Caudron Chemicals, East Lynne, South Africa; kindly provided as unrestricted gift by Dr Claude Piche) was dissolved in CMC buffer (0.5% sodium carboxymethyl cellulose, 0.4% polysorbate 80, 0.9% sodium chloride, and 0.9% benzyl alcohol) and was given as a single 100 mg/kg subcutaneous injection to lean and obese ZSF1 rats. Eight-week-old male 129-SIRT3 knockout (KO) mice (The Jackson Laboratory, Bar Harbor, ME) were fed a high-fat diet (HFD, 60% fat in calories, research diet) for 20 weeks. All animals were maintained in a normoxic environment.

Hemodynamic and Ventricular Measurements

In brief, rats were anesthetized with isoflurane (1%–2%). The trachea was cannulated, and rats were ventilated at the rate of 75 to 80 bpm with a tidal volume of 2.5 mL. RV systolic pressure, LV end-diastolic pressure, LV ejection fraction, and mean arterial blood pressure were measured by using an admittance pressure-volume catheter. RV and LV weights normalized to tibial length were used as indexes of ventricular mass. Fulton index (weight of RV/weight of LV+septum) was used as an index of RV hypertrophy.

Human Skeletal Muscle Cell Culture

Myoblasts isolated from biopsied vastus lateralis muscle obtained from lean and obese (~33kg/m²) volunteers were cultured in Hams F10 media (Invitrogen, Grand Island, NY) with 20% fetal bovine serum, 1% penicillin/streptomycin, and fibroblastic growth factors (Invitrogen, Grand Island, NY). Passages 3 to 5 were used. Differentiation was induced by using Dulbecco modified Eagle medium containing 1 g/L glucose, 110 mg/L sodium pyruvate, 2% fetal bovine serum, and 1% penicillin/streptomycin. Cells were allowed to differentiate for 7 days into mature myotubes. Medium was changed every 48 hours, and cells were incubated in a 5% CO₂, 37 °C humidified atmosphere.

Human Subject Recruitment and Nitrite/Nitrate Supplementation

Human subjects with metabolic syndrome were recruited from university/community advertisements, the University of Pittsburgh Research Participant Registry, and the ClinicalTrials.gov website (unique identifier: NCT01681810) to receive both sodium nitrite (20 mg, twice daily) and sodium nitrate (1000 mg, once daily), designed to maintain steady levels of nitrite in the circulation. The half-life in circulation following a single oral dose of nitrite is ~30 to 60 minutes, and 6 hours for nitrate, which is then further reduced to nitrite by the oral microbiome. Informed consent was obtained from all participants before participation in accordance with the ethical guidelines of the University of Pittsburgh.

Statistical Analysis

Statistical analyses were performed using STATA 14.0 software (StataCorp, College Station, TX). Statistical significance between 2 independent groups was assessed by Mann-Whitney U test. Wilcoxon signed rank test was used for comparing 2 paired groups. Statistical comparison among ≥3 groups was assessed by the Kruskal-Wallis test followed by the Dunn post hoc test with Bonferroni corrections for multiple comparisons. A mixed-effect model with bootstrapping was used to compare ≥3 groups across time points. Values of P<0.05 were considered to be statistically significant.
Results

Development of a 2-Hit Model of PH-HFpEF

To develop an animal model that can closely recapitulate the pathogeneses and clinical outcomes of human PH-HFpEF, we injected SU5416 (Sugen), a VEGF receptor blocker that induces lung endothelial injury and apoptosis, into rats with multiple features of metabolic syndrome, diabetic nephropathy, and diastolic dysfunction (obese ZSF1 rats, Figure 1A). Fourteen weeks after SU5416 administration, we found that SU5416-exposed obese ZSF1 rats (SU5416/ZSF1, labeled as Ob-Su) developed significantly higher RV systolic pressure (38.2±1.2 mmHg; P=0.0003) than lean rats (Figure 1B). Concomitant with elevated RV systolic pressure, the SU5416/ZSF1 rats exhibited higher LV end-diastolic pressure, preserved LV ejection fraction, and increased mean right arterial pressures and mean arterial blood pressure in comparison with lean rats (Figure 1C through 1F). Elevated pulmonary vascular resistance and pulmonary vascular proliferative remodeling were also observed in the SU5416/ZSF1 rats (Figure 1G and 1H). In addition, in comparison with lean rats, SU5416/ZSF1 rats had both RV and LV hypertrophy and increased Fulton index (Figure 1I through 1K). All these observed hemodynamic features in SU5416/ZSF1 rats are similar to the clinical characteristics of human PH-HFpEF.4

Figure 1. Development of a novel rat model of PH-HFpEF. A, A single subcutaneous injection of SU5416 (Sugen, 100 mg/kg) was administrated to 8-week-old obese ZSF1 rats. Fourteen weeks after SU5416 administration, B through G, right ventricular systolic pressure (RVSP, B), left ventricular end-diastolic pressure (LVEDP, C), left ventricular ejection fraction (LVEF, D), mean right atrial pressure (mRAP, E), mean arterial blood pressure (MABP, F), and pulmonary vascular resistance (PVR, G) were measured. H, Medial index (%) was calculated (n=5). I through K, RV (I) and LV (J) mass normalized to tibial length and Fulton index (K) were measured. Data are means±SEM. Mann-Whitney U test was used for 2-group comparison. Ln indicates lean rats; LV, left ventricle; Ob-Su, SU5416-exposed obese ZSF1 rats; PH-HFpEF, pulmonary hypertension associated with heart failure with preserved ejection fraction; RV, right ventricle; S, septum; and SEM, standard error of the mean.
Chronic Oral Nitrite Supplementation Improves Hyperglycemia and Glucose Intolerance in Obese ZSF1 Rats

To assess the effect of chronic oral nitrite treatment on metabolic syndrome, 2 doses of nitrite (50 and 100 mg/L) were provided in drinking water for 14 weeks in obese ZSF1 rats (Figure 2A). There was no significant effect of nitrite on the body weights during this 14-week period (Figure 2B). Obese ZSF1 rats had higher plasma triglyceride levels than lean rats; however, triglyceride levels were not significantly different in nitrite-treated ZSF1 rats in comparison with untreated obese animals (online-only Data Supplement Figure IA). In contrast, fasting blood glucose and glycosylated hemoglobin levels were lower in nitrite-treated obese ZSF1 rats than in untreated obese animals (Figure 2C). Furthermore, as shown in Figure 2E, obese ZSF1 rats had an impaired ability to maintain normal glucose levels during the oral glucose tolerance test, and chronic nitrite supplementation improved glucose intolerance in obese ZSF1 rats. Collectively, these data demonstrate that prolonged oral nitrite treatment improves hyperglycemia and glucose intolerance in obese ZSF1 rats independent of changes in body weight. These observations are similar to those observed with chronic nitrate therapy in the eNOS knockout mice, suggesting that the bioconversion of nitrate to nitrite accounted for these observed effects.

Chronic Oral Nitrite Supplementation Improves Hyperglycemia and Glucose Intolerance in Obese ZSF1 Rats

To assess the effect of chronic oral nitrite treatment on metabolic syndrome, 2 doses of nitrite (50 and 100 mg/L) were provided in drinking water for 14 weeks in obese ZSF1 rats (Figure 2A). There was no significant effect of nitrite on the body weights during this 14-week period (Figure 2B). Obese ZSF1 rats had higher plasma triglyceride levels than lean rats; however, triglyceride levels were not significantly different in nitrite-treated ZSF1 rats in comparison with untreated obese animals (online-only Data Supplement Figure IA). In contrast, fasting blood glucose and glycosylated hemoglobin levels were lower in nitrite-treated obese ZSF1 rats than in untreated obese animals (Figure 2C). Furthermore, as shown in Figure 2E, obese ZSF1 rats had an impaired ability to maintain normal glucose levels during the oral glucose tolerance test, and chronic nitrite supplementation improved glucose intolerance in obese ZSF1 rats. Collectively, these data demonstrate that prolonged oral nitrite treatment improves hyperglycemia and glucose intolerance in obese ZSF1 rats independent of changes in body weight. These observations are similar to those observed with chronic nitrate therapy in the eNOS knockout mice, suggesting that the bioconversion of nitrate to nitrite accounted for these observed effects.

Prolonged Oral Nitrite Treatment Improves Hyperglycemia via Activation of AMPK-GLUT4-Mediated Glucose Uptake in Obese ZSF1 Rats

To determine whether the beneficial effect of nitrite on reducing blood glucose and improving glucose intolerance in obese ZSF1 rats is related to changes in insulin secretion and β-cell homeostasis, we measured plasma insulin levels and quantified β-cell mass in these rats. A significant increase in plasma insulin concentration (Figure 3A) and the mass of insulin-producing pancreatic β-cells (online-only Data Supplement Figure IB) was observed in obese ZSF1 rats in comparison with lean controls, suggestive of insulin resistance. However, 14 weeks of nitrite administration had no effect on plasma insulin levels or β-cell mass in the ZSF1 rats (Figure 3A and online-only Data Supplement Figure IB).

We next hypothesized that nitrite may increase sensitivity to insulin in skeletal muscle, which is the major
tissue for insulin-stimulated glucose use. As shown in Figure 3B, phosphorylation of Akt, the central mediator of insulin signaling in skeletal muscle, was not altered in nitrite-treated or untreated obese ZSF1 rats in comparison with lean controls, suggesting that the observed glucose-lowering effect of nitrite is independent of insulin-receptor signaling. In addition to Akt, AMPK activation has been shown to increase glucose uptake in skeletal muscle in an insulin-independent manner.46 We assessed the levels of AMPK activation in the skeletal muscle of these rats, collected after 14 weeks of nitrite supplementation, and found a significant increase in AMPK phosphorylation in nitrite-treated obese rats in comparison with untreated animals (Figure 3C). In skeletal muscle, AMPK enhances glucose uptake by promoting GLUT4 translocation to the cellular membrane.46 Analysis of GLUT4 levels in membrane protein extracts prepared from lean and obese rat skeletal muscles indicated that obese ZSF1 rats had lower levels of membrane-associated GLUT4 than lean rats, and GLUT4 levels increased significantly following chronic nitrite treatment (Figure 3D). Together, our data suggest that prolonged nitrite supplementation increases muscle glucose uptake via insulin-independent AMPK activation and GLUT4 membrane translocation.

SIRT3 Is Required for the Glucose-Lowering Effect of Nitrite in Human Skeletal Muscle Cells and in Mice Fed a HFD

To further explore the mechanism(s) by which nitrite activates AMPK in skeletal muscle, we used human skeletal muscle cells cultured from muscle biopsies obtained from lean and obese volunteers. Cells were challenged with a combination of 0.2 mmol/L palmitic acid, 25 mmol/L glucose, and 120 nmol/L insulin (labeled as PGI), and a further short-term insulin stimulation (120 nmol/L, 40 minutes) to induce insulin resistance (online-only Data Supplement Figure IIA and IIB). Consistent with the effect of nitrite on AMPK activation in rat skeletal muscles, prolonged

Figure 3. Chronic oral nitrite treatment improves glucose metabolism via AMPK phosphorylation and GLUT4 membrane translocation. At week 14, plasma samples and skeletal muscle were collected from lean and obese ZSF1 rats, treated or untreated with nitrite (50 and 100 mg/L). A, Plasma insulin levels were measured. Effects of nitrite on phosphorylation of insulin-dependent Akt signaling (B) and insulin-independent AMPK signaling (C) were detected by Western blot analyses in skeletal muscle. Each lane represents the skeletal muscle sample from an individual rat. The dot plots show pAkt/tAkt and pAMPK/tAMPK ratio, accounting for Akt and AMPK activation, respectively. D, Representative Western blots for GLUT4 expression in membrane protein extracts from skeletal muscle. Equal membrane protein loading was ensured by examination of Na+-K+-ATPase. Global significance among 4 groups was determined by Kruskal-Wallis test, followed by post hoc pairwise comparisons with the Dunn-Bonferroni procedure. All data are presented as mean±SEM. Ln indicates lean rats; N50, nitrite at 50 mg/L; N100, nitrite at 100 mg/L; Ob, obese ZSF1 rats; and SEM, standard error of the mean.
supplementation with 10 μmol/L nitrite increased AMPK phosphorylation (Figure 4A), accompanied by increased glucose uptake in primary human skeletal muscle cells (Figure 4B). Given that LKB1 and CaMKII are known upstream activators of AMPK, we investigated whether LKB1 and CaMKII are involved in nitrite-mediated AMPK activation. As shown in Figure 4C and online-only Data Supplement Figure IIE through IIG, phosphorylation levels of LKB1 and CaMKII were not altered in nitrite-treated or untreated human skeletal muscle cells, whereas the
downstream ACC phosphorylation mirrored AMPK activation, suggesting that LKB1 and CaMKII are not required for the activation of AMPK by nitrite. More recently, SIRT3 was recognized as an important regulator for AMPK activation in skeletal muscle. Because SIRT3 deficiency has been linked to the development of metabolic syndrome and PAH, we next assessed the activation levels of SIRT3 in human skeletal muscle cells. Increased SIRT3 activation levels (the antibody we used specifically recognizes the short active form of SIRT3 at \(\approx 28\) kDa, which contains the catalytic domain and regulates deacetylation) was observed in nitrite-treated human skeletal muscle cells (Figure 4D), concomitant with decreased acetylation of several mitochondrial proteins (Figure 4E), suggesting SIRT3 regulates muscle glucose uptake through SIRT3-AMPK activation. To further provide evidence for this observation, we used small interfering RNA–mediated knockdown of SIRT3 in human skeletal muscle cells to examine the effect of reduced SIRT3 on AMPK activation and glucose uptake. Data presented in Figure 5A showed a \(\approx 85\%\) baseline reduction of SIRT3 in the SIRT3 knockdown cells. Nitrite-treated SIRT3 knockdown cells had \(\approx 45\%\) lower levels of AMPK phosphorylation than nitrite-treated control cells (Figure 5B), with correlated lower glucose uptake levels (Figure 5B), indicating that SIRT3 is required for nitrite-mediated AMPK activation and muscle glucose uptake.

We further studied the impact of SIRT3 deficiency on the glucose-lowering effect of nitrite by exposing wild-type and SIRT3 KO mice to a HFD, which has been well described to induce glucose intolerance and insulin resistance, in the presence or absence of nitrite (50 mg/L, in drinking water) (Figure 5C). We observed no difference in body weight and 14-hour fasting blood glucose levels in 129 wild-type and SIRT3 KO mice (online-only Data Supplement Figure IIIB and IIIC). However, the effect of nitrite in lowering blood glucose during the oral glucose tolerance test was completely abolished in SIRT3 KO mice in comparison with wild-type mice fed with a HFD (Figure 5D).
support our finding that SIRT3 is required for the glucose-lowering effect of nitrite.

Nitrite-Mediated SIRT3 Activation Requires Reactive Oxygen Species Generation

We next examined the mechanism by which nitrite activates SIRT3. Because peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) is a known transcription factor that regulates SIRT3 expression, we first measured the transcript levels of PGC1α and SIRT3 in human skeletal muscle cells. As shown in online-only Data Supplement Figure IVA and IVB, both PGC1α and SIRT3 mRNA levels were not increased in nitrite-treated cells, whereas the activation level of SIRT3 was increased (Figure 4D). Thus, our data suggest PGC1α-mediated transcriptional regulation is not required for the activation of SIRT3 by nitrite. We next hypothesized that nitrite may activate SIRT3 through reduction to NO. To test this, human skeletal muscle cells were incubated with the conventional NO scavenger, cPTIO, in the presence or absence of nitrite and PGI, for 1 and 4 days. As shown in online-only Data Supplement Figure IVC, the ability of nitrite to activate SIRT3 was not altered (fold change relative to PGI alone) by the perturbation of cPTIO, suggesting that activation of SIRT3 by nitrite is independent of NO. This is consistent with the fact that these cells are under normoxic conditions and many of the enzymes known to reduce nitrite to NO are more effective under hypoxia. Given that an increase in reactive oxygen species (ROS) has been demonstrated to active SIRT3, which leads to SOD2 deacetylation and catabolism of superoxide, we next investigated the role of ROS in activation of SIRT3 by nitrite. Human skeletal muscle cells were incubated with ROS scavengers, peg-catalase and peg-SOD (CAT/SOD), in the presence or absence of nitrite and PGI, for 1 and 4 days. Our data showed that the ability of nitrite to active SIRT3 was reduced (fold change relative to PGI alone) with the duration of CAT/SOD treatment (Figure 4F). Taken together, these data suggest that nitrite reactions generate ROS that is necessary for SIRT3 activation.

Skeletal Muscle SIRT3 Activation Is Increased by Chronic Oral Nitrite Treatment in Obese ZSF1 Rats, and, in Human Volunteers, as Well, With Metabolic Syndrome

Consistent with our observations in human skeletal muscle cells, we found elevated activation levels of SIRT3 in the skeletal muscle of obese ZSF1 rats collected after 14 weeks of oral nitrite supplementation (Figure 6A). In addition, skeletal muscle samples obtained from human volunteers with metabolic syndrome without previous treatment history (body mass index >32 kg/m²) after 12 weeks of combined oral sodium nitrite (20 mg, twice daily) and sodium nitrate (1000 mg, once daily) treatment displayed even higher expression of active SIRT3 (Figure 6B). In line with increased SIRT3 activation, AMPK activation levels were also higher after combined nitrite/nitrate supplementation (Figure 6B).

Figure 6. Increased SIRT3 activation levels in skeletal muscle obtained from obese ZSF1 rats and human patients with metabolic syndrome. A, Representative Western blot for SIRT3 activation levels in skeletal muscle obtained from lean and obese ZSF1 rats treated or untreated with nitrite (50 and 100 mg/L, in drinking water). Data are mean±SEM. Global significance among 4 groups was determined by Kruskal-Wallis test, followed by post hoc pairwise comparisons with the Dunn-Bonferroni procedure. For comparison, AMPK activation levels are shown in Figure 3C. B, Representative Western blots and individual changes of SIRT3 and AMPK activation levels from pre- to post (12 weeks) of combined nitrite/nitrate treatment in vastus lateralis muscle obtained from human patients with metabolic syndrome. Statistical differences were P=0.028 by paired t test and P=0.11 by Wilcoxon signed rank test for SIRT3 activation. P=0.078 by paired t test and P=0.11 by Wilcoxon signed rank test for AMPK activation. AMPK indicates AMP-activated protein kinase; Ln, lean rats; N50, nitrite at 50 mg/L; N100, nitrite at 100 mg/L; Ob, obese ZSF1 rats; and SEM, standard error of the mean.
To evaluate the effect of chronic oral supplementation of nitrite on PH-HFpEF associated with metabolic syndrome, we evaluated preventative treatment at the time of SU5416 exposure to the obese ZSF1 rat, and reversal treatment following late-stage disease in our 2-hit SU5416/ZSF1 rat model of PH-HFpEF, as well. For the early-phase preventative intervention study, 2 doses of nitrite (50 and 100 mg/L) and metformin (300 mg/kg) were provided in drinking water for 14 weeks after a single injection of SU5416 to 8-week-old SU5416/ZSF1 rats (Ob-Su). Right ventricular systolic pressures (RVSP) were measured. Representative images of lung sections stained with α-smooth muscle actin (α-SMA) and quantification of medial index from the mean of 5 vessels per lung section from 3 to 6 rats per group. Data are means±SEM. Global significance among 5 groups was determined by Kruskal-Wallis test, followed by post hoc pairwise comparisons with the Dunn-Bonferroni procedure. Ln-Su indicates SU5416-exposed lean rats; Met, metformin; N50, nitrite at 50 mg/L; N100, nitrite at 100 mg/L; Ob-Su, SU5416-exposed obese ZSF1 rats; and RVSP, right ventricular systolic pressure.

Early Preventative Treatment With Oral Nitrite and Oral Metformin Normalize PH-HFpEF Associated With Metabolic Syndrome via Activation of SIRT3 and AMPK in SU5416/ZSF1 Rats

To evaluate the effect of chronic oral supplementation of nitrite on PH-HFpEF associated with metabolic syndrome, we evaluated preventative treatment at the time of SU5416 exposure to the obese ZSF1 rat, and reversal treatment following late-stage disease in our 2-hit SU5416/ZSF1 rat model of PH-HFpEF, as well. For the early-phase preventative intervention study, 2 doses of nitrite (50 and 100 mg/L) were provided in drinking water for 14 weeks after a single injection of SU5416 to 8-week-old obese ZSF1 rats (Figure 7A). Note that these rats already have metabolic syndrome at this time point but have not yet developed PH-HFpEF. The effect of nitrite on PH-HFpEF was compared with the canonical AMPK activator, metformin (300 mg/kg). Our data showed that both oral nitrite and oral metformin treatments lowered the increased RV systolic pressure in SU5416/ZSF1 rats (Figure 7B), but had no effect on systemic blood pressure and LV and RV hypertrophy (online-only Data Supplement Figure VE through VG). In addition, nitrite and metformin treatments resulted in a lower percentage of medial wall thickness in comparison with untreated SU5416/ZSF1 rats (Figure 7C). For the late-stage disease reversal study, nitrite (100 mg/L) and metformin (300 mg/kg) were given in drinking water 3 to 4 weeks after a single injection of SU5416 (100 mg/kg) to 23-week-old obese ZSF-1 rats that have more advanced obesity, hyperglycemia, glucose intolerance, and insulin resistance (online-only Data Supplement Figure VIA). Our data showed that both nitrite and metformin failed to reverse the increased RV systolic pressure (online-only Data Supplement Figure VIB) and were unable to reverse biventricular hypertrophy in the late-phase model of PH-HFpEF (online-only Data Supplement Figure VIC and VID), suggesting that an early intervention of nitrite and metformin may be needed for the clinical treatment of PH-HFpEF.

We next examined the mechanism by which nitrite and metformin reduce pulmonary pressure and pulmonary vascular remodeling, as observed in the early-phase intervention study. Although SIRT3 activation was not detected in pulmonary vessels obtained from SU5416/ZSF1 rats
following nitrite and metformin treatments (online-only Data Supplement Figure VIIA), an increase in AMPK activation levels was observed, as AMPK phosphorylation signals colocalize with the smooth muscle layer (Figure 8A). In addition, nitrite and metformin increased SIRT3 activation levels in skeletal muscle (Figure 8B), but not in lung, LV, RV, and liver obtained from SU5416/ZSF1 rats after 14 weeks of oral supplementation (online-only Data Supplement Figure VIIB through VIIE), accompanied by increased AMPK activation levels in skeletal muscle (Figure 8C). Note that SIRT3 KO mice fed with a HFD did not develop PH (online-only Data Supplement Figure IIIID), so we were not able to confirm the role of SIRT3 on nitrite-mediated inhibition of pulmonary vascular remodeling in these experiments. Together, our data show that the early chronic oral supplementations of nitrite and metformin normalize PH-HFpEF associated with metabolic syndrome, at least in part, via SIRT3 and AMPK activation.

Discussion

In this study, we developed a 2-hit model of PH-HFpEF, which combines endothelial injury in rats with multiple features of metabolic syndrome. This model uncovers evidence of a relationship between pulmonary endothelial injury and severe metabolic syndrome, which leads to the development of PH-HFpEF. Clinically, PH-HFpEF patients have elevated LV end-diastolic pressures, RV systolic pressure, and right atrial pressure, preserved LV ejection fraction, and biventricular hypertrophy, all...
features that were observed in our model. Using this model of PH-HFpEF associated with metabolic syndrome, we show that early chronic oral suppletions of nitrite and metformin reduce pulmonary pressures and vascular remodeling by a mechanism involving, at least in part, skeletal muscle SIRT3-AMPK activation and improved glucose uptake and metabolism. These findings are of significant importance, because there are no approved specific treatments for PH-HFpEF. In fact, the use of US Food and Drug Administration–approved therapies for PAH in PH-HFpEF patients has been shown to worsen symptoms or cause adverse events.6–13

The effects of SU5416-induced pulmonary endothelial injury and elevated pulmonary pressure in rats with metabolic syndrome observed in this study provides support for the proposed role of metabolic syndrome as a risk factor for the development of PH-HFpEF.54–56 Epidemiological studies indicate that PH-HFpEF patients are older and have a higher prevalence of hypertension, diabetes mellitus, obesity, and coronary artery disease than patients with PAH.3–6 Metabolic syndrome is associated with LV diastolic dysfunction and is considered a risk factor for PH-HFpEF. According to Robbins et al,6 >90% of patients with PH-HFpEF in their study had ≥2 features of metabolic syndrome. Leung et al56 also demonstrated that obesity is associated with worsening of LV diastolic dysfunction and elevated pulmonary pressures.

Although oral supplementation of nitrate, the dietary precursor of nitrite, has been recently reported to reverse features of metabolic syndrome in eNOS KO mice,20 the mechanism of nitrate’s effect and the role of its active metabolite nitrite on metabolic syndrome has not been established. Here, we show that chronic treatment with nitrite significantly reduces blood glucose levels and improves glucose intolerance in ZSF1 rats with severe metabolic syndrome. Unlike dietary nitrate treatment, which appeared to reduce body weight, improve glucose and lipid homeostasis, and decrease blood pressure in eNOS-deficient mice,20 nitrite did not have any effect on weight loss and lipid homeostasis in obese ZSF1 rats. Mice with eNOS deficiency present a prediabetic phenotype with moderate insulin resistance, hyperlipidemia, and hypertension.52 In contrast, obese ZSF1 rats develop more profound diabetes mellitus associated with hyperglycemia, dyslipidemia, and hypertension at 8 weeks of age (the starting point of our study).53 Even though these metabolic defects become more severe as disease progresses, our data demonstrate that nitrite is still able to improve hyperglycemia and glucose intolerance over 14 weeks.

Glucose uptake is mainly controlled by 2 processes, insulin-dependent and insulin-independent signaling pathways. Normally, insulin binds to its receptor followed by Akt phosphorylation, which leads to GLUT4 membrane translocation.54 Low AMPK activity attributable to nutrient overload and lack of exercise has been correlated with obesity and insulin resistance.22–25 Here, we show that AMPK activation is severely impaired in obese ZSF1 rats, accompanied by decreased GLUT4 membrane translocation. Chronic oral nitrite supplementation, in turn, increases AMPK phosphorylation and restores GLUT4 localization to the membrane, which is consistent with previous studies.58,59 Thus, AMPK activation appears to be an important mechanism behind the observed effect of nitrite on improving glucose uptake. Our finding may explain, at least in part, the underlying mechanism for nitrate-mediated improvement of glucose metabolism in the background of eNOS deficiency.20 In addition, AMPK is known to regulate glucose homeostasis by inhibiting hepatic glucose production.60 Our data, however, showed that AMPK activation was not altered by nitrite treatment in the livers from rats with metabolic syndrome (online-only Data Supplement Figure VIII), suggesting that AMPK-GLUT4–mediated skeletal muscle glucose uptake is the primary mechanism by which nitrite improves hyperglycemia.

SIRT3 is a member of the siruin family of protein deacetylases that is preferentially localized in mitochondria and regulates ROS levels and global respiration, via target protein deacetylation.50–53 It has been recently recognized as an important regulator of skeletal muscle metabolism and AMPK activation.53,56 Using SIRT3 knockdown in human skeletal muscle cells, we demonstrated that SIRT3 regulates AMPK activation and glucose uptake, an effect that is further confirmed in nitrite-treated SIRT3-deficient mice fed with a HFD. Hence, our data provide evidence that SIRT3 is linked to the glucose-lowering effect of nitrite. The next question we answered is how SIRT3 is regulated by nitrite. Our data indicate that nitrite-mediated skeletal muscle SIRT3 activation is independent of NO, but at least in part dependent on ROS generation. This observation is consistent with previous findings that nitrite mediates delayed cytoprotection after ischemia/reperfusion through ROS–induced AMPK activation in a nitrite-dependent manner.60 Our observation also confirms the previous findings that SIRT3 is activated by increases in ROS that serve to detoxify ROS via target proteins (ie, SOD2) deacetylation.50 Exercise training has been shown to generate low levels of ROS. In addition, ROS has been reported to be involved in the activation of insulin-independent glucose uptake via AMPK-GLUT4 signaling during exercise, and this skeletal muscle contraction–stimulated glucose uptake can be elevated by up to 50-fold during maximal exercise in humans.63,64 In animals, exercise training has also been shown to increase SIRT3 expression.55,65 These studies suggest that nitrite activates ROS-signaling pathways similar to the effects of exercise training. Further experiments are required to better understand the mechanism in this context.

Several recent studies have suggested that skeletal muscle insulin resistance and glucose intolerance, and global mitochondrial abnormalities, as well, are the likely causes of severe exercise intolerance and worsening of functional capacity in patients with either metabolic syndrome, HFpEF,
or PAH.66–69 Exercise training leads to multiple health benefits within the cardiovascular and musculoskeletal systems, and has been shown to improve metabolic syndrome, HFpEF, or PAH.35,70,71 As stated above, exercise training increases SIRT3, which has been shown to modulate diabetes mellitus through the maintenance of skeletal muscle insulin action and glucose disposal, and mitochondrial function.36,40,72 Therefore, our observations suggest that the activation of SIRT3, even at the level of skeletal muscle, may be crucial in regulating the beneficial actions of nitrite and metformin on treating PH-HFpEF, as observed in our prevention studies. Although SIRT3 KO mice have been shown to develop spontaneous PH,44 and HFD has been reported to induce PH in apoE KO mice,45 we found that 20 weeks of HFD treatment did not induce PH in SIRT3 KO mice (online-only Data Supplement Figure IIIID). This may be attributable to higher resistance of the background strain 129/Sv mice to HFD or a longer period of HFD treatment is required to develop PH-HFpEF. It is also possible that a second hit (ie, SU5416) is required to promote PH-HFpEF in our SIRT3 KO mice. Future studies are needed to determine whether SIRT3 is indeed required for the beneficial effect of nitrite, and metformin, as well, on limiting PH-HFpEF.

Although the marked glucose-lowering effect of nitrite was observed only at week 7, but not for the entire 14-week exposure period, an increase in plasma adiponectin levels was observed in SU5416/ZSF1 rats following the 14 weeks of nitrite treatment (online-only Data Supplement Figure V). In comparison, metformin effectively improved hyperglycemia and glucose intolerance and elevated the circulation levels of adiponectin in SU5416/ZSF1 rats (online-only Data Supplement Figure V). As reported previously, adiponectin is an anti-diabetic adipokine secreted by adipose tissue and has been recognized as a key protector of both metabolic and vascular diseases.73,74 High levels of adiponectin have also been shown to suppress the proliferation of pulmonary arterial smooth muscle cells, thus reversing PAH through AMPK activation.35,75 Our results showed that oral nitrite and metformin treatments resulted in higher AMPK activation in pulmonary vessels of SU5416/ZSF1 rats together with higher skeletal muscle SIRT3-AMPK signaling and circulating adiponectin levels, suggesting that nitrite and metformin may alleviate PH-HFpEF through a broader set of mechanisms contributed by multiple organs, such as skeletal muscle, adipose tissue, and pulmonary vasculature. Aside from the proposed cross-organ communication, it is possible that other unknown substrates of nitrite and metformin or other proteins of the sirtuin family may directly activate AMPK in pulmonary vessels, thereby preventing the development of PH-HFpEF in SU5416/ZSF1 rats. The relative contribution of skeletal muscle and adipose tissue to the treatment of PH-HFpEF, in comparison with that of lung signaling events, needs to be further investigated.

We are intrigued by the lack of beneficial effects of nitrite and metformin in the more severely affected and older SU5416/ZSF1 rats (online-only Data Supplement Figure VI). These findings may suggest that PH-HFpEF cannot be treated or reversed once it is firmly established and is resistant to the beneficial effect of nitrite and metformin on glucose homeostasis and insulin sensitivity. These findings suggest that earlier intervention with nitrite and metformin may be required for the treatment of PH-HFpEF, for example, in patients presenting with signs of diabetes mellitus, insulin resistance, or impaired glucose metabolism with borderline PH severity determined by echocardiogram or right heart catheterization. In addition, our observations open a new avenue for combination therapy of nitrite and metformin in the management of PH-HFpEF.

In conclusion, we show that nitrite has similar effects to metformin, activating SIRT3-AMPK in skeletal muscle and enhancing insulin-independent muscle glucose uptake by stimulation of GLUT4 membrane translocation. We also demonstrate that chronic oral nitrite treatment activates skeletal muscle SIRT3-AMPK signaling in rats and humans and, to some extent, improves metabolic syndrome and cardiopulmonary hemodynamics in the rat model of PH-HFpEF. Hence, future trials of chronic oral nitrite and oral metformin therapies may be considered for patients with PH-HFpEF.

Acknowledgments
We thank Dr Sergei Snovida for helpful comments on the manuscript and Dr Seyed Mehdi Nouraie for assistance with statistical analysis. We also thank Jeff Baust, Dr Jian Hu, Alexander Chacon, Victor Bilan, Mark Ross, Mackenzie Mosher, Gabriella Casinelli, Timothy Bachman, Alex Despines, Nicole Helbling, Dr Maya Stefanovic-Racic, and Dr Juan C. Alvarez-Perez for technical assistance. We thank Gopal Potti, Ram Agarwal, George Grimes, Deborah Sperling, and Judy Starling at the NIH Pharmaceutical Development Section for the development of the IND-approved oral sodium nitrate and nitrite capsules for human use.

Sources of Funding
Dr Gladwin receives research support from NIH grants 2R01HL098032, R01HL096973, and 2P01HL103455, T32 HL110849, the Institute for Transfusion Medicine, and the Hemophilia Center of Western Pennsylvania. The research was also supported by 5K12-HD052892, UL1 TR000005, and UL1 RR024153 (University of Pittsburgh Clinical and Translational Science Institute) to Dr Hughan and NIH/NHLBI R01HL113178 to Dr Goncharova.

Disclosures
Dr Gladwin is a coinventor on a National Institutes of Health government patent for the use of sodium nitrite for the treatment of cardiovascular diseases. The other authors report no conflicts.

References

Pulmonary hypertension associated with heart failure with preserved ejection fraction (PH-HFpEF) represents the most frequent cause of pulmonary hypertension worldwide, with no currently approved therapies. A major risk factor for the development of PH-HFpEF is metabolic syndrome. Although, at present, there are more than 10 US Food and Drug Administration–approved drugs to treat pulmonary arterial hypertension available on the market, all clinical trials with pulmonary arterial hypertension drugs have targeted patients with normal left ventricular filling pressures and are contraindicated in patients with PH-HFpEF. In this study, we show that oral treatment with nitrite or metformin targets both metabolic syndrome and the pulmonary vasculature, improving insulin sensitivity and reducing pulmonary pressures and vascular remodeling in a novel rat model of PH-HFpEF. These effects are caused by direct action on skeletal muscle, with activation of SIRT3-AMPK-GLUT4, which enhances skeletal muscle glucose uptake. We also confirm in patients with metabolic syndrome that chronic oral therapy with nitrite and nitrate similarly increases skeletal muscle SIRT3 and AMP-activated protein kinase activation. Thus, our study suggests a potential role for nitrite and metformin as preventative treatments for PH-HFpEF developing in patients with metabolic syndrome and identifies skeletal muscle SIRT3 as a potential therapeutic target in the management of PH-HFpEF. Future trials of chronic oral nitrite and oral metformin, alone or in combination, may be considered for patients with PH-HFpEF.
SIRT3–AMP-Activated Protein Kinase Activation by Nitrite and Metformin Improves Hyperglycemia and Normalizes Pulmonary Hypertension Associated With Heart Failure With Preserved Ejection Fraction

Circulation. 2016;133:717-731; originally published online January 26, 2016; doi: 10.1161/CIRCULATIONAHA.115.018935

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/133/8/717

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2016/01/26/CIRCULATIONAHA.115.018935.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/
Supplemental Material

Supplemental methods

Oral sodium nitrite and nitrate formulations

The N\(^{14}\) nitrite and nitrate isotopes were purchased from Spectrum Chemical Manufacturing Corporation, Inc. (Gardena, CA). Sodium nitrite and nitrate capsules were formulated by the NIH Pharmaceutical Development Section. Each isotope was milled separately to provide uniformity in particle size with the needed excipients to ensure uniform powder mixture content and controlled disintegration and dissolution characteristics. The quality and stability of the capsules were measured by stability indicating HPLC assays. All operations were performed at the NIH Clinical Center Pharmacy Development Service GMP pharmaceutical manufacturing facility with chemical analyses performed on site.

Skeletal muscle isolation

During fasting conditions at baseline and ~1 ½ hours after study drugs dosing 12 weeks post, 2% buffered lidocaine was used to numb an area of skin overlying the subjects’ vastus lateralis muscle. A biopsy needle was passed into the muscle 1-2 times and suction was applied in order to obtain a muscle sample as previously described (1). A portion of the sample was placed in an aliquot tube, immediately placed in liquid nitrogen and then stored in a -80°C freezer.

Western blot analysis

Total protein extracts from tissues were homogenized in freshly prepared T-PER tissue protein extraction buffer (Life Technologies) with protease and phosphatase inhibitors. Supernatants were separated by centrifugation at 14000g for 10 min at 4°C. Membrane protein extracts from tissues were prepared as described before (2). Briefly, tissues were homogenized with 15 strokes in homogenization buffer (255 mM sucrose, 20 mM Hepes, pH 7.4, 2 mM EDTA with protease inhibitor). After homogenization, lysates were centrifuged at 700g for 5 min at 4°C to remove nuclei and unbroken cells. Supernatants
were then centrifuged at 195,000 g for 75 min at 4 °C to obtain membrane fractions. Final pellets were resuspended in lysis buffer (2% SDS, 100 mM Tris-HCl, pH 6.8, 1 mM DTT, 1 mM PMSF and protease inhibitor). For mitochondrial fraction, tissues were gently rinsed with PBS and then homogenized in homogenization buffer (250 mM sucrose, 1 mM EDTA, 10 mM Tris, pH 7.4 with protease inhibitor). After homogenization, lysates were centrifuged at 1000 g for 4 min at 4 °C. Supernatants were then centrifuged at 10000 g for 10 min at 4 °C. Final pellets were then resuspended in 1X lysis buffer (Cell Signaling). Aliquots of total lysates (12-15 μg) were subjected to immunoblotting with antibodies recognizing pAKT, AKT, pAMPK, AMPK, GLUT4, Na⁺-K⁺-ATPase, pLKB1, LKB1, pCamKII, pACC, ACC, SIRT3, and lysine-acetylation (all from Cell Signaling).

Glucose uptake assay

Glucose uptake was determined using the methods of Klip (3) with modifications. Briefly, at the end of treatment of nitrite, metformin, and/or PGI, cells were serum starved for 4 h in depletion medium (DMEM, no glucose, 1% pen/strep). Cells were then incubated with insulin (120 nM) in depletion medium for 40 min and rinsed twice with Hapes Buffered Saline (140 mM NaCl, 20 mM Hapes-Na, 5 mM KCl, 2.5 mM MgSO₄, 2.0 mM CaCl₂). HBS transport solution containing 10 μM 2-deoxy-D-glucose, 0.5 uCi/mL 2-[1,2-³H(N)]-2-deoxy-D-glucose, and 0 or 120 nM insulin was added for 1 h. Nonspecific glucose transport was determined using 10 μM cytochalasin B. The reaction was stopped by washing 3 times with ice-cold PBS. Cells were solubilized in 0.05% NaOH and glucose uptake was quantified via liquid scintillation counting of ionizing radiation using Scintiscafe 30% (Fisher). Protein content was determined using a BCA assay (Thermo Scientific).

Real-time PCR

Human skeletal muscle cells were lysed in TRIzol reagent (Invitrogen) and total RNA was extracted according to the manufacture’s instructions. The cDNA was generated using a SuperScript IV first strand synthesis kit (Invitrogen). The real-time PCR measurement of individual cDNAs was performed using SYBR green dye to measure duplex DNA formation with 7900HT fast real-time PCR system (Applied Biosystems). Primer sequences used are PGC1α F: 5’ GAG TGA CAT CGA GTG TGC TG, PGC1α
R: 5' GGG CAA TCC GTC TTC ATC CA, SIRT3 F: 5' GCA GCA GCT CCC AGT TTC TT, and SIRT3 R: 5' CGG CGA TCT GAA GTC TGG AA.

Lung histology

For Figure 1H, lungs were inflated and fixed in 2% paraformaldehyde. Paraffin sections (3 μm) were used for hematoxylin and eosin staining. For pulmonary vascular morphometry, images of terminal arterioles were captured with a microscope digital camera system (Nikon Eclipse 55i). The external diameter and medial wall thickness was measured using ImageJ in 5-8 muscular arteries (ranging in size from 50-100 μm in external diameter) per lung section from 5 rats per group. Medial index (%) = (mean medial wall thickness/mean external diameter) × 100. For Figure 7C, lungs were perfused and fixed with 2% paraformaldehyde then washed with 30% sucrose-PBS. Frozen sections (7 μm) were stained with α-SMA and PECAM, and followed by incubation with Cy3 or Cy5-conjugated secondary antibodies. To mark nuclei, sections were stained with DAPI. Images of terminal arterioles were captured with a fluorescence microscope digital camera system (Olympus Provis), and the medial index (%) was measured as described above in 5 vessels per lung section from 3-6 rats per group.

β-cell mass

Whole pancreases were Bouin fixed and embedded in paraffin. Pancreatic sections were immunostained for insulin (Dako) as previously described (5). β-cell mass was evaluated by point counting morphometry in two insulin-stained pancreas sections per animals using ImageJ.

Analysis of metabolites

For oral glucose tolerance assay, rats were fasted 14 hours and then gavaged with 2 g/kg of glucose solution. For mice studies, mice were fasted 14 hours for the measurement of fasting blood glucose levels, but only fasted for 6 hours for the glucose tolerance test. Blood samples were taken at different time points as indicated, and blood glucose levels were measured with a portable glucose meter (ACCU-CHECK Aviva; Roche). HbA1c levels were determined using an HbA1c blood monitor (A1c Now+; Bayer). Plasma triglyceride levels were quantified with a triglyceride quantification kit (Abcam). Plasma insulin levels were measured using a sensitive rat insulin RIA kit.
Plasma adiponectin levels were determined by a rat adiponectin ELISA kit (Millipore).

Supplemental results

![Graphs](image)

Figure S1. Two doses of nitrite (50 and 100 mg/L) were given in drinking water chronically for 14 weeks to the lean or obese ZSF1 rats. (A) At week 14, plasma samples were collected from lean (Ln) and obese ZSF1 (Ob) rats, treated or untreated with nitrite. Circulating triglyceride levels were determined. (B) At week 14, β-cell mass were measured. Results are mean ± SEM. Global significance among four groups was determined by Kruskal-Wallis test, followed by *post-hoc* pairwise comparisons with the Dunn-Bonferroni procedure.
Figure S2. (A and B) Human skeletal muscle cells (HSKMCs) cultured from vastus lateralis muscles obtained from lean and obese volunteers were chronically treated with nitrite (10 μM) and metformin (1 mM) throughout the differentiation period. These cells were then stimulated with different combination of 0.2 mM palmitic acid (P), 25 mM glucose (G) and 120 nM insulin (I) for 24 hours, and a further short-term insulin stimulation (120 nM, 40 min) to induce insulin resistance. The ability of insulin to activate Akt signaling was decreased in PGI-treated cells compared to controls, suggesting that PGI induced insulin resistance in human skeletal muscle cells. (C and D) HSKMCs were chronically treated with nitrite (10 μM) and metformin (1 mM) throughout the differentiation period, followed by the same stimulation protocol stated above to examine effects of nitrite and metformin on AKT phosphorylation in human skeletal muscle cells.
Phosphorylation and expression levels of Akt were measured by Western blot. PGI-induced insulin resistance was not altered by nitrite supplementation, further supporting the idea that the observed glucose lowering effect of nitrite is independent of insulin signaling. As a canonical AMPK activator, metformin treatment does not affect Akt signaling. (E-G) The bar graph shows pLKB1/LKB1, pCaMKII/CaMKII, pACC/ACC ratio, accounting for LKB1, CaMKII, and ACC activation, respectively (n = 3). Mann-Whitney U test was used to compare the effect of nitrite on ACC activation in HSKMCs. Representative Western blot of each graph are shown in Figure 4C. Data are mean ± SEM.
Figure S3. (A) WT and SIRT3 KO mice were fed with a HFD in the presence or absence of nitrite (50 mg/L, in drinking water) for 20 weeks. (B-C) Body weights (B) and 14h fasting blood glucose levels (C) were measured after 20 weeks of treatment. Global significance among four groups was determined by Kruskal-Wallis test. (D) At week 20, right ventricular systolic pressure (RVSP) was measured. Mann-Whitney U test was used to compare two groups. All results are mean ± SEM.
Figure S4. Human skeletal muscles cells (HSKMCs) were chronically treated with nitrite (10 μM) and metformin (1 mM) throughout the differentiation period. These cells were then stimulated with 0.2 mM palmitic acid, 25 mM glucose, and 120 nM insulin (PGI) for 24 hours, and a further short-term insulin stimulation (120 nM, 40 min). (A and B) PGC1α (A) and SIRT3 (B) transcript levels were evaluated by real-time PCR ($n = 3$). (C) HSKMCs were incubated with NO scavengers, cPTIO (100 μM), in the presence or absence of nitrite and/or PGI for 1 and 4 days. SIRT3 activation levels were measured by Western blot. Dot plots show the fold increases of activated SIRT3 compared to PGI alone with or without the treatment of cPTIO. Data are mean ± SEM.
Figure S5. Nitrite (50 and 100 mg/L) and metformin (300 mg/kg) were given in drinking water chronically for 14 weeks to eight-week old SU5416/ZSF1 rats (Ob-Su). (A-C) Body weight (A), fasting blood glucose (B), and HbA1c (C) levels were measured in whole
blood samples collected at week 0, 7 and 14 (n = 6-8 per group). Kruskal-Wallis test was performed, followed by post-hoc pairwise comparisons with the Dunn-Bonferroni procedure at each time point. *P < 0.01 Ob-Su N100 group compared to Ob-Su alone. (D) Rats were challenged with glucose (2 g/kg) at week 14. Tail-vein blood was sampled for glucose at the indicated times (n = 6-8 per group). (E) Mean arterial blood pressures were measured at week 14. (F and G) RV and LV mass normalized to tibial length. (H) Plasma adiponectin levels were determined at week 14 (n = 6-8 per group). Global significance among four groups was determined by Kruskal-Wallis test, followed by post-hoc pairwise comparisons with the Dunn-Bonferroni procedure. All data are presented as mean ± SEM.
Figure S6. (A) For the late stage disease reversal study, nitrite (100 mg/L) and metformin (300 mg/kg) were given in drinking water 3-4 weeks after a single injection of
SU5416 (100 mg/kg) to twenty-three-week old obese ZSF-1 rats (Ob-Su). (B) At the end of each treatment, right ventricular systolic pressures (RVSP) were measured. (C and D) RV and LV mass normalized to tibial length. (E-G) Body weights (E), fasting blood glucose (F), and HbA1c (G) levels were measured. (H) At the end of each treatment, rats were challenged with oral glucose (2 g/kg) and tail-vein blood was sampled for glucose at the indicated times ($n = 2-7$ per group). Results are mean ± SEM.
Figure S7. Nitrite (50 and 100 mg/L) and metformin (300 mg/kg) were given in drinking water chronically for 14 weeks to eight-week old SU5416/ZSF1 rats (Ob-Su). (A) Representative images of pulmonary vessels stained with SIRT3, α-smooth muscle actin (α-SMA), and DAPI. (B-E) Activation levels of SIRT3 were analyzed by Western blot in whole lung (B), LV (C), RV (D), and liver (E) obtained from SU5416/ZSF1 rats. Each lane represents the sample from an individual rat.
Figure S8. Two doses of nitrite (50 and 100 mg/L) were given in drinking water chronically for 14 weeks to eight-week old obese ZSF1 rats (Ob). At week 14, AMPK phosphorylation levels in livers obtained from obese ZSF1 rats were analyzed by Western blot. Each lane represents the liver sample from an individual rat. The dot plots show pAMPK/tAMPK ratio, accounting for AMPK activation. Results are mean ± SEM. Global significance among four groups was determined by Kruskal-Wallis test.
References