Glucocorticoid intracellular metabolism, catalyzed by the 2 isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD), determines the corticosteroid action on target tissues. 11β-HSD1 functions as a reductase in most cells and catalyzes the regeneration of active glucocorticoids, thereby amplifying their action. This isozyme is widely expressed in liver, adipose tissue, muscle, pancreatic islets, and adult brain. 11β-HSD2 is a high-affinity dehydrogenase and inactivates cortisol and corticosterone to the inert product, cortisone. Cortisone in turn can be reactivated through reduction by 11β-HSD1 (Figure 1). The 11β-HSD2 isozyme is highly expressed in the distal nephron and, as we learn here, in the nucleus tractus solitarius. 11β-HSD2 serves to protect the mineralocorticoid receptor (MR) from occupation by cortisol or corticosterone (Figure 2).

The development of this complicated arrangement of receptors and steroid ligands has been elucidated by molecular evolutionary biologists. The vertebrate ancestral cortical receptor has been tracked back to 450 million years ago, its receptor's hormone specificity for cortisol from an MR-like ancestor, suggesting that, back then, salt was more important than sugar. Interestingly, the MR is older than the glucocorticoid receptor (GR).

In mammals, the adrenal cortex synthesizes aldosterone, the major mineralocorticoid, from the zona glomerulosa and the glucocorticoids, cortisol and corticosterone, from the zona fasciculata and zona reticularis. The corticosteroids are bound in the circulation primarily to corticosteroid-binding protein. The corticosteroid molecules are highly lipophilic, are believed to readily permeate biological membranes, and then activate intracellular receptors. The GR has a lower affinity for corticosteroids than the MR. Both receptors bind 11β-hydroxycorticosteroids, whereas the binding of the 11-keto forms is negligible. On binding to GR or MR, the receptors are released from chaperone proteins and can translocate into the nucleus where they bind on target genes. A surprising 2% of the human genome is said to be regulated by glucocorticosteroids. Membrane receptors also exist. The MR exhibits a more restricted tissue distribution and resides particularly in the kidney, colon, salivary glands, and parts of the central nervous system. The GR is more widely expressed and at higher levels than the MR.

The adrenal cortex secretes nanomolar concentrations of cortisol but only picomolar concentrations of aldosterone. The MR binds cortisol and aldosterone with similar affinity in vitro; however, in the presence of 11β-HSD2, cortisol is inactivated to cortisone in vivo, enabling the MR in kidney, and wherever else 11β-HSD2 resides, to bind solely with aldosterone. At some sites, such as the hippocampus, where 11β-HSD2 is absent, the MR signals primarily by binding to cortisol.

Glucocorticoids have profound effects on brain development and adult central nervous system function. Elevated hippocampal and neocortical 11β-HSD1 is observed with ageing and causes cognitive decline in humans. Its deficiency prevents the emergence of cognitive defects with age. In contrast, the major central nervous system effects of 11β-HSD2 occur in development, because the expression of 11β-HSD2 is high in fetal brain and placenta. Deficient fetoplacental 11β-HSD2 results in a life-long phenotype of anxiety and cardiometabolic disorders, consistent with early-life glucocorticoid programming. Geerling et al discovered a novel group of neurons in the nucleus tractus solitarius that express 11β-HSD2, which makes them selectively responsive to aldosterone. MR activation at this site paralleled salt appetite. In the rat brain, aldosterone-selective areas have also been identified that are important to blood pressure regulation, including the nucleus tractus solitarius, subformical organ, and hypothalamic regions. For instance, Janiak et al found that MR central nervous system binding sites were necessary for the development of deoxycorticosterone acetate–salt hypertension.

Modern molecular technology sheds light on the role of specific MR signaling in the central nervous system. In this issue of Circulation, Evans and colleagues report on conditional deletion of the gene encoding 11β-HSD2 (Hsd11b2) in the brain. Hsd11b2 floxed mice were generated on a C57BL6 background and were bred with transgenic mice expressing Cre recombinase under the control of a rat nestin promoter. Nestin is an intermediate filament protein expressed in the central and peripheral nervous system. Hsd11b2 brain-knockout (Hsd11b2BKO) mice had normal basal blood pressures, serum electrolytes, and circulating corticosteroids. However, when
Figure 1. 11β-HSD1 is predominantly a reductase that catalyzes the NADPH-dependent reduction of cortisone to the active glucocorticoid, cortisol. 11β-HSD2 functions mainly as an NADP-dependent dehydrogenase, inactivating cortisol to cortisone. 11β-HSD indicates 11β-hydroxysteroid dehydrogenase. Adapted from Chapman et al with permission of the publisher. Copyright © 2013, the American Physiological Society. Authorization for this adaptation has been obtained both from the owner of the copyright in the original work and from the owner of copyright in the translation or adaptation.

offered saline to drink, they drank 3 times as much fluid as controls and developed salt-sensitive hypertension. The authors measured blood pressure with radiotelemetry, and a consistent 10 mm Hg difference in blood pressure was recorded between Hsd11b2BKO and control mice. When salt was withdrawn, the blood pressure increase disappeared within 1 week. When given spironolactone, the salt preference of Hsd11b2BKO was reduced by ≈30%. The authors gave Hsd11b2BKO and control mice exposed to salt dexamethasone to reduce endogenous glucocorticoid production. This maneuver raised blood pressure in control mice, but had little influence on the blood pressure of Hsd11b2BKO mice. The authors could detect no volume expansion or failure in salt elimination in Hsd11b2BKO mice subjected to a high-salt intake. However, pressor responses to phenylephrine were enhanced and resultant baroreflex regulation was impaired in the mice.

What are the implications of these findings? The authors suggest that 11β-HSD2 neurons must exist that integrate salt appetite and blood pressure via an MR-dependent pathway. They then suggest that central MR antagonism could increase compliance to a low-salt diet and facilitate management of hypertension. How well does spironolactone cross the blood-brain barrier? Corticosteroid analogs are highly lipophilic and presumably cross cell membranes; however, there is a role for membrane transporters, such as ABCB1, the multidrug-resistant/P-glycoprotein that is particularly effective at the blood-brain barrier. For instance, the P-glycoprotein minimizes the access of dexamethasone into the brain. The spironolactone-active metabolite, canrenone, has been studied in detail and crosses the blood-brain barrier fairly well. The authors implanted 30 mg spironolactone subcutaneously into their mice. Any similarity to doses used in humans is uncertain, although the present findings are sufficiently stimulating to warrant studies on salt appetite in humans.

The presence of an enzymatic mechanism protecting the MR and the effects on salt appetite and blood pressure with its absence, underscores the notion that aldosterone regulates salt appetite independent of angiotensin II–related effects. The data also have relevance to salt resistance, because the mice with an intact enzymatic barrier could increase their salt intake 5-fold without effects on blood pressure. Aldosterone is believed to activate the same signaling and effector mechanisms in the brain as in the kidney, including the MR, the serum and glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4–2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. The effects of aldosterone on both the brain and kidney synergize with the effects of angiotensin II. Thus, the current findings provide a unifying connection between MR activation in the central nervous system, salt appetite, and blood pressure regulation.

Disclosures

None.

References

Figure 2. 11β-HSD2 catalyzes the rapid inactivation of cortisol (compound F) to cortisone (compound E) in the kidney and the nucleus tractus solitarius. Cortisol is intended for the gluco- corticoid receptor (GR). However, 11β-HSD2 is absent in the hippocampus, which expresses the mineralocorticoid receptor (MR). At this site, the MR can be activated by cortisol. Because the GR has a 10-fold lower affinity for cortisol than the MR, 11β-HSD1 provides a dynamic range for amplification to impact signaling events. Aldo indicates aldosterone; and 11β-HSD, 11β-hydroxysteroid dehydrogenase. Adapted from Chapman et al with permission of the publisher. Copyright © 2013, the American Physiological Society. Authorization for this adaptation has been obtained both from the owner of the copyright in the original work and from the owner of copyright in the translation or adaptation.

7. Meijer OC, de Lange EC, Breimer DD, de Boer AG, Workel JO, de Kloet ER. Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. *Endocrinology*. 1998;139:1789–1793. doi: 10.1210/endo.139.4.5917.

Key Words: Editorials, genetics, hypertension, mice, knockout models, animal
11β-Hydroxysteroid Dehydrogenase-2 and Salt-Sensitive Hypertension
Friedrich C. Luft

Circulation. 2016;133:1335-1337; originally published online March 7, 2016; doi: 10.1161/CIRCULATIONAHA.116.022038

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/133/14/1335

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/