Response to Letter Regarding Article, “Upregulation of K_{2P3.1} K⁺ Current Causes Action Potential Shortening in Patients With Chronic Atrial Fibrillation”

We thank Dr Olschewski and colleagues for their interest in our article, and we appreciate their recapitulation of 2 key findings of our work: (1) the identification of increased atrial K_{2P3.1} TASK-1 K⁺ channel expression, I_{K_{2P3.1}}, upregulation, and action potential shortening as substrate in patients with chronic atrial fibrillation (AF); and (2) the presentation of K_{2P3.1} current inhibition and resulting action potential prolongation as mechanism-based therapeutic paradigm in this subentity of the arrhythmia. Our study focused on the mechanistic contribution of K_{2P3.1} channels to human atrial electrophysiology and action potential regulation, with particular emphasis on pathological dysregulation in AF. Based on mechanistic data presented in the study, functional correction of atrial ionic remodeling through the suppression of atrial K_{2P3.1} current emerged as a novel antiarrhythmic option for AF management.

We agree with Olschewski et al that efficacy and safety require in-depth preclinical evaluation before transfer of novel therapeutic principles into human application. In their letter, the authors highlight their findings of K_{2P3.1} current inhibition and functional significance in human pulmonary artery smooth muscle cells, corresponding to previous observations by our group. K_{2P3.1} current in human pulmonary artery smooth muscle cells regulates vascular tone and pulmonary arterial pressure, and I_{K_{2P3.1}} reduction by endothelin-1 or genetic mutations has been implicated in the pathophysiology of pulmonary arterial hypertension. To date, clinical data on in vivo application of specific K_{2P3.1} inhibitors in humans or large animals have not been reported. Thus, conclusions regarding the true extent and causal relations between systemic K_{2P3.1} blockade and potential effects on pulmonary vasculature are limited. Nonetheless, pulmonary vascular tone should be carefully considered in future studies addressing K_{2P3.1} as antiarrhythmic target. Similarly, caution is required regarding potential cardiac effects when direct or indirect pharmacological K_{2P3.1} activation is explored as therapeutic principle in the treatment of pulmonary arterial hypertension. Increased K_{2P3.1} current amplitudes may result in atrial arrhythmia including AF, associated with further worsening of symptoms and prognosis.

Gene therapy with greater selectivity than small molecule-based approaches may be used to exclude potential extracardiac side effects. The gene of interest is packaged into viral or nonviral carriers and delivered to the target area by means of direct injection or by use of catheter-based interventional techniques, providing the advantage of site-restricted action in contrast to systemic application of drugs. Previous studies confirmed effective use of gene therapeutic approaches targeting electric or structural substrates for rhythm control in large-animal models of AF. Similarly, a better understanding of tissue-specific K_{2P3.1} channel regulation and of the molecular mechanisms underlying K_{2P3.1} upregulation might help to identify pathways to target increased atrial I_{K_{2P3.1}} without affecting channels in human pulmonary artery smooth muscle cells.

In summary, K_{2P3.1} K⁺ channels are important for determining the action potential duration in human atrial myocytes and set the resting membrane potential and vascular tone in human pulmonary artery smooth muscle cells. Further therapeutic exploitation of these significant mechanistic findings in cardiovascular medicine requires consideration of the potential side effects that may be minimized by the choice of application mode, appropriate dose titration, thorough preclinical evaluation, and patient monitoring.

Acknowledgments
This study was supported in part by research grants from the DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung – German Centre for Cardiovascular Research) and from the BMBF (German Ministry of Education and Research) (to C.S., F.W., X.B.Z., S.L., M.B., P.A.S., H.A.K., and D.T.)

Disclosures
The experimental compound A293 was kindly provided by Sanofi-Aventis (Frankfurt am Main, Germany). Dr Thomas served on advisory boards for and received honoraria for lectures from Sanofi-Aventis. The other authors report no conflicts.

Constance Schmidt, MD
Felix Wiedmann, MD
Department of Cardiology
University of Heidelberg
Heidelberg, Germany

Niels Voigt, MD
Institute of Pharmacology
West German Heart and Vascular Center
University Duisburg-Essen
Essen, Germany

Xiao-Bo Zhou, MD
First Department of Medicine
University Medical Center Mannheim
Mannheim, Germany

Jordi Heijman, PhD
Department of Cardiology
Cardiovascular Research Institute Maastricht
Maastricht University Medical Centre
Maastricht, The Netherlands

Siegfried Lang, PhD
First Department of Medicine
University Medical Center Mannheim
Mannheim, Germany

Virginia Albert, BSc
Department of Cardiology
University of Heidelberg
Heidelberg, Germany

Stefan Kallenberger, MD, PhD
Department for Bioinformatics and Functional Genomics
Division of Theoretical Bioinformatics
German Cancer Research Center (DKFZ)
Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant
Heidelberg University
Heidelberg, Germany

Arjang Ruhrparvar, MD
Gábor Szabó, MD, PhD
Klaus Kallenbach, MD
Matthias Karck, MD
Department of Cardiac Surgery
University Hospital Heidelberg
Heidelberg, Germany
Correspondence
e441

Martin Borggrefe, MD
First Department of Medicine
University Medical Center Mannheim
Mannheim, Germany

Peter Biliczki, MD, PhD
Department of Cardiology
Internal Medicine III
Goethe University
Frankfurt, Germany

Joachim R. Ehrlich, MD
Department of Cardiology
St. Josefs-Hospital
Wiesbaden, Germany

István Baczkó, MD, PhD
Department of Pharmacology and Pharmacotherapy
Faculty of Medicine
University of Szeged
Szeged, Hungary

Patrick Lugenbiel, MD
Patrick A. Schweizer, MD
Department of Cardiology
University of Heidelberg
Heidelberg, Germany

Birgit C. Donner, MD, PhD
Department of Cardiology
University of Basel Children’s Hospital
Basel, Switzerland

Hugo A. Katus, MD, PhD
Department of Cardiology
University of Heidelberg
Heidelberg, Germany

Dobromir Dobrev, MD
Institute of Pharmacology
West German Heart and Vascular Center
University Duisburg-Essen
Essen, Germany

Dierk Thomas, MD
Department of Cardiology
University of Heidelberg
Heidelberg, Germany

References

Response to Letter Regarding Article, "Upregulation of K_{2p3.1} K^+ Current Causes Action Potential Shortening in Patients With Chronic Atrial Fibrillation"

Constanze Schmidt, Felix Wiedmann, Niels Voigt, Xiao-Bo Zhou, Jordi Heijman, Siegfried Lang, Virginia Albert, Stefan Kallenberger, Arjang Ruhparwar, Gábor Szabó, Klaus Kallenbach, Matthias Karck, Martin Borggrefe, Peter Biliczki, Joachim R. Ehrlich, István Baczkó, Patrick Lugenbiel, Patrick A. Schweizer, Birgit C. Donner, Hugo A. Katus, Dobromir Dobrev and Dierk Thomas

Circulation. 2016;133:e440-e441
doi: 10.1161/CIRCULATIONAHA.115.020662

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/133/11/e440

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/