The past 50 years have witnessed sea changes in cardiovascular medicine and research. We came to recognize untreated hypertension as a highly malignant disorder and to recognize that medical treatment of hypertension leads to marked reductions in risk of stroke, myocardial infarction, and premature death. We also came to recognize the power of the randomized trial for assessing candidate strategies for prevention and treatment. Indeed, mega-trials conducted by cardiovascular clinician scientists have played a critical role in defining nearly every major evidence-based intervention, from hypertension treatment to cholesterol reduction and use of aspirin.

By definition, a healthcare system, or a community within which health care is given, cannot be the same as an individual patient. This may seem obvious yet has profound consequences for research strategies. It would make little sense to test a community-based intervention such as deployment of community-based health workers with a traditional randomized trial that treats individual patients as the unit of study. Instead, we can take advantage of a long-standing but increasingly appreciated methodology: the cluster randomized trial. Instead, we can take advantage of a long-standing but increasingly appreciated methodology: the cluster randomized trial.5

In a cluster randomized trial, investigators randomize groups of people instead of individuals. They might randomize whole communities, as in a recently reported cluster randomized trial on community health workers and enhanced physician education for the treatment of hypertension in Pakistan.8

In this issue of Circulation, Tian and colleagues report an intriguing randomized cluster trial of a “simplified cardiovascular management program (SimCard)” for the management of patients at high risk for cardiovascular disease. The investigators randomized 27 rural Chinese villages and 20 rural Indian villages to either control or the SimCard intervention, in which community health workers were deployed to manage patients with an Android “app” (application) that promoted antihypertensive medications, aspirin, and 2 lifestyle modifications. There were 2086 high-risk patients enrolled. The investigators found that the SimCard intervention led to increased use of antihypertensive medications and aspirin and to a small decrease in systolic blood pressure; however, the intervention led to no material lifestyle changes.

A close look at the methods and data showed 2 important differences between the Chinese and Indian villages and patients. First, the investigators randomized the Chinese villages with stratification for township and county; they did not perform any stratification in the Indian villages. This difference may have been important because there were a number of marked baseline differences among the Indian patients but not among the Chinese patients. Second, the Chinese community health workers were village doctors who had the right to prescribe medications, whereas the Indian community health workers were not authorized to prescribe medications. They instead had to work in partnership with local licensed physicians. This difference may explain why the difference for the primary end-point of antihypertensive medication use was much more clear-cut in the Chinese villages: The intervention villages saw a 10-fold increase in use, whereas the control villages had absolutely no change (Figure 3B). In the Indian villages, antihypertensive medication use increased substantially in both the intervention and control groups, perhaps because of cross-contamination resulting from the fact that the licensed physicians who prescribed medications may have interacted with patients in both intervention and control villages. The differences in the prescribing powers of the community health workers may in a similar way explain why the Chinese villages saw a fairly marked decline in systolic blood pressure (−4.1 mm Hg), whereas the Indian villages saw no significant change (−0.8 mm Hg).

How can we analyze the robustness of this cluster randomized trial? Meurer and Lewis just published a framework that includes 4 key questions: (1) Was the use of clustering well justified? (2) Was there potential bias? (3) Was intracluster correlation properly considered? (4) Was the sample size...
appropriately justified, and were any clusters lost to follow-up? Let us consider each of these issues in turn.

Was clustering well justified? The question considered here, whether community health workers armed with a smartphone app could improve cardiovascular care, is arguably perfectly suited for a cluster trial. The investigators, pioneers in global health implementation research, were interested in assessing a community intervention, just the kind of intervention that occurs within a cluster and therefore should be tested within a cluster. Indeed, one could argue not only that was clustering well justified but also that an individual-patient randomized trial might have been the lesser design.

Was there potential bias? By the very nature of the intervention, it was impossible to blind caregivers and patients. In the Chinese villages, there may have been some degree of quasi-blinding in that the intervention villages were unlikely to “contaminate” the control villages. Presumably, the community health workers in the intervention villages did not provide care “on the side” in the control villages. Furthermore, because they had full prescription rights, they would have had less need to communicate with physicians who were also caring for control patients.

Was intracluster correlation properly considered? Intracluster correlation refers to similarities that patients within clusters have that are greater than similarities among patients in different clusters.5 We might expect patients from Village A to be more similar to each other than to patients from Village B. Intracluster correlation represents a threat to the power of cluster trial: The greater the intracluster correlations, the lower the effective sample size. The investigators accounted for intracluster correlation in their power calculations and found that the intracluster correlation coefficient was low, only 0.02.

Finally, was the sample size appropriately justified, and were clusters lost to follow-up? The authors conducted careful prospective sample size calculations, although the structural differences between the Chinese and Indian components—no stratification and no prescription-writing author in the Indian villages—may have diminished the effective power of the study. It is reassuring that no villages were lost to follow-up, but it is a bit concerning that 12% of the patients were lost to follow-up.

The SimCard Trial exemplifies the power of the cluster randomized trial, a trial design that is especially useful for assessments of systems- or community-based interventions. We look forward to further community-based cluster trials that consider who has prescribing rights, that incorporate practicing physicians when appropriate, and that focus on hard clinical end points.10 Given our increasing appreciation that cardiovascular disease is emerging as the number one threat to global health11 and given our increasing appreciation of the value of systems- or community-based interventions for effective management, we also look forward to seeing investigators conduct many more similar cluster randomized trials to enhance the scientific evidence base underlying cardiovascular medicine.

Disclosures
Drs Lauer and Mensah are full-time employees of the National Heart, Lung, and Blood Institute, which partially funded the trial that is the subject of this editorial. Otherwise, they report no conflicts. The views expressed in this editorial are those of the authors and do not necessarily reflect official positions of the National Heart, Lung, and Blood Institute or the US federal government.

References

Key Words: Editorials ■ delivery of health care ■ hypertension ■ randomized trial
Power of the Cluster
Michael S. Lauer and George A. Mensah

Circulation. 2015;132:794-795; originally published online July 17, 2015;
doi: 10.1161/CIRCULATIONAHA.115.018142
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/132/9/794

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/