A 57-year-old man presented to the emergency department with an 8-day history of abdominal and suprapubic pain radiating in the back associated with fever (38.6°C), myalgia, and a painful rectal examination. A treatment with olofoxacin had been prescribed for a suspected prostatitis. His past medical history included overweight and current cigarette smoking (30 pack-year). Clinical examination found a tense and nonpressible abdomen without nausea or vomiting. On auscultation, he had an abdominal vascular murmur.

Computed tomography angiography performed on day 1 revealed a moderate aneurysmal dilation of the infrarenal abdominal aorta with a maximal diameter of 25 mm along with a thickened wall, a periaortic infiltration, and thrombus (Figure 1A). Biological investigations revealed an elevated leukocyte count (14780/mm³ with 92.5% neutrophils) and a high C-reactive protein level (256.4 mg/L), but no serological evidence for syphilis, HIV, hepatitis B or C infections, and negative standard bacterial and mycobacterial blood cultures. The persistence of abdominal pain and biological inflammation led to that performance of a new computed tomography angiography on day 4. It revealed an enlargement of the aneurysm (34 mm) and aorto caval lymphadenopathies (Figure 1B); these findings were suggestive of an infective aortitis. Then, we switched the antibiotic regimen to intravenous vancomycin (2.5 g/d). Histological examination of the excised aorta showed an abscess of the aortic wall, marked atherosclerosis with necrosis and calcified plaques, fresh thrombus, and enlarged lymph nodes (Figure 1C). Nine days after surgery, we observed a major reduction of biological inflammation (leukocyte count reduced to 7410/mm³ and C-reactive protein markedly reduced to 11.7 mg/L). Although bacterial culture of the aortic wall remained negative, a sequence of Haemophilus influenzae was obtained after amplification of 16S rDNA. Antibiotherapy was then switched to oral amoxicillin-clavulanic acid (3 g to 375 mg/d) and olofoxacin (600 mg/d) for 1 month.

Infected (mycotic) aneurysms of the descending aorta attributable to H influenzae are uncommon, but a life-threatening condition, because these aneurysms tend to grow rapidly and thus rupture. In our case, the final diagnosis was delayed because blood cultures performed after the initiation of antibiotics were negative. The diagnosis of infected aneurysm was suspected from the rapid growth on imaging and finally confirmed by identification of H influenzae 16S rDNA on the aortic wall. Although ≥90% of atherosclerotic aneurysms are located in the infrarenal aorta, only one-third of infected aneurysms are found in this location. Regarding treatment, an alternative to open surgery could be endovascular ultrasound on day 18 that revealed an irregular thrombus with a multiloculated hypoechoic image within, suggesting an abscess formation along with a thickened discontinuous aortic wall enhanced after contrast injection (Figures 3A and 3B). Another computed tomography angiography performed on the same day confirmed these findings; the maximal diameter and length were increased (42×87 mm) (Figures 1C, 4A, and 4B). Surgery went well on day 19, consisting of an open repair of the infrarenal abdominal aorta with a straight Dacron tube. Ciprofloxacin was changed to intravenous vancomycin (2.5 g/d). Histological examination of the excised aorta showed an abscess of the aortic wall, marked atherosclerosis with necrosis and calcified plaques, fresh thrombus, and enlarged lymph nodes (Figure 1A). Nine days after surgery, we observed a major reduction of biological inflammation (leukocyte count reduced to 7410/mm³ and C-reactive protein markedly reduced to 11.7 mg/L). Although bacterial culture of the aortic wall remained negative, a sequence of Haemophilus influenzae was obtained after amplification of 16S rDNA. Antibiotherapy was then switched to oral amoxicillin-clavulanic acid (3 g to 375 mg/d) and olofoxacin (600 mg/d) for 1 month.

Infected (mycotic) aneurysms of the descending aorta attributable to H influenzae are uncommon, but a life-threatening condition, because these aneurysms tend to grow rapidly and thus rupture. In our case, the final diagnosis was delayed because blood cultures performed after the initiation of antibiotics were negative. The diagnosis of infected aneurysm was suspected from the rapid growth on imaging and finally confirmed by identification of H influenzae 16S rDNA on the aortic wall. Although ≥90% of atherosclerotic aneurysms are located in the infrarenal aorta, only one-third of infected aneurysms are found in this location. Regarding treatment, an alternative to open surgery could be endovascular ultrasound on day 18 that revealed an irregular thrombus with a multiloculated hypoechoic image within, suggesting an abscess formation along with a thickened discontinuous aortic wall enhanced after contrast injection (Figures 3A and 3B). Another computed tomography angiography performed on the same day confirmed these findings; the maximal diameter and length were increased (42×87 mm) (Figures 1C, 4A, and 4B). Surgery went well on day 19, consisting of an open repair of the infrarenal abdominal aorta with a straight Dacron tube. Ciprofloxacin was changed to intravenous vancomycin (2.5 g/d). Histological examination of the excised aorta showed an abscess of the aortic wall, marked atherosclerosis with necrosis and calcified plaques, fresh thrombus, and enlarged lymph nodes (Figure 1A). Nine days after surgery, we observed a major reduction of biological inflammation (leukocyte count reduced to 7410/mm³ and C-reactive protein markedly reduced to 11.7 mg/L). Although bacterial culture of the aortic wall remained negative, a sequence of Haemophilus influenzae was obtained after amplification of 16S rDNA. Antibiotherapy was then switched to oral amoxicillin-clavulanic acid (3 g to 375 mg/d) and olofoxacin (600 mg/d) for 1 month.

Infected (mycotic) aneurysms of the descending aorta attributable to H influenzae are uncommon, but a life-threatening condition, because these aneurysms tend to grow rapidly and thus rupture. In our case, the final diagnosis was delayed because blood cultures performed after the initiation of antibiotics were negative. The diagnosis of infected aneurysm was suspected from the rapid growth on imaging and finally confirmed by identification of H influenzae 16S rDNA on the aortic wall. Although ≥90% of atherosclerotic aneurysms are located in the infrarenal aorta, only one-third of infected aneurysms are found in this location. Regarding treatment, an alternative to open surgery could be endovascular ultrasound on day 18 that revealed an irregular thrombus with a multiloculated hypoechoic image within, suggesting an abscess formation along with a thickened discontinuous aortic wall enhanced after contrast injection (Figures 3A and 3B). Another computed tomography angiography performed on the same day confirmed these findings; the maximal diameter and length were increased (42×87 mm) (Figures 1C, 4A, and 4B). Surgery went well on day 19, consisting of an open repair of the infrarenal abdominal aorta with a straight Dacron tube. Ciprofloxacin was changed to intravenous vancomycin (2.5 g/d). Histological examination of the excised aorta showed an abscess of the aortic wall, marked atherosclerosis with necrosis and calcified plaques, fresh thrombus, and enlarged lymph nodes (Figure 1A). Nine days after surgery, we observed a major reduction of biological inflammation (leukocyte count reduced to 7410/mm³ and C-reactive protein markedly reduced to 11.7 mg/L). Although bacterial culture of the aortic wall remained negative, a sequence of Haemophilus influenzae was obtained after amplification of 16S rDNA. Antibiotherapy was then switched to oral amoxicillin-clavulanic acid (3 g to 375 mg/d) and olofoxacin (600 mg/d) for 1 month.

Infected (mycotic) aneurysms of the descending aorta attributable to H influenzae are uncommon, but a life-threatening condition, because these aneurysms tend to grow rapidly and thus rupture. In our case, the final diagnosis was delayed because blood cultures performed after the initiation of antibiotics were negative. The diagnosis of infected aneurysm was suspected from the rapid growth on imaging and finally confirmed by identification of H influenzae 16S rDNA on the aortic wall. Although ≥90% of atherosclerotic aneurysms are located in the infrarenal aorta, only one-third of infected aneurysms are found in this location. Regarding treatment, an alternative to open surgery could be endovascular ultrasound on day 18 that revealed an irregular thrombus with a multiloculated hypoechoic image within, suggesting an abscess formation along with a thickened discontinuous aortic wall enhanced after contrast injection (Figures 3A and 3B). Another computed tomography angiography performed on the same day confirmed these findings; the maximal diameter and length were increased (42×87 mm) (Figures 1C, 4A, and 4B). Surgery went well on day 19, consisting of an open repair of the infrarenal abdominal aorta with a straight Dacron tube. Ciprofloxacin was changed to intravenous vancomycin (2.5 g/d). Histological examination of the excised aortic wall showed an abscess of the aortic wall, marked atherosclerosis with necrosis and calcified plaques, fresh thrombus, and enlarged lymph nodes (Figure 1A). Nine days after surgery, we observed a major reduction of biological inflammation (leukocyte count reduced to 7410/mm³ and C-reactive protein markedly reduced to 11.7 mg/L). Although bacterial culture of the aortic wall remained negative, a sequence of Haemophilus influenzae was obtained after amplification of 16S rDNA. Antibiotherapy was then switched to oral amoxicillin-clavulanic acid (3 g to 375 mg/d) and olofoxacin (600 mg/d) for 1 month.

Infected (mycotic) aneurysms of the descending aorta attributable to H influenzae are uncommon, but a life-threatening condition, because these aneurysms tend to grow rapidly and thus rupture. In our case, the final diagnosis was delayed because blood cultures performed after the initiation of antibiotics were negative. The diagnosis of infected aneurysm was suspected from the rapid growth on imaging and finally confirmed by identification of H influenzae 16S rDNA on the aortic wall. Although ≥90% of atherosclerotic aneurysms are located in the infrarenal aorta, only one-third of infected aneurysms are found in this location. Regarding treatment, an alternative to open surgery could be endovascular ultrasound on day 18 that revealed an irregular thrombus with a multiloculated hypoechoic image within, suggesting an abscess formation along with a thickened discontinuous aortic wall enhanced after contrast injection (Figures 3A and 3B). Another computed tomography angiography performed on the same day confirmed these findings; the maximal diameter and length were increased (42×87 mm) (Figures 1C, 4A, and 4B). Surgery went well on day 19, consisting of an open repair of the infrarenal abdominal aorta with a straight Dacron tube. Ciprofloxacin was changed to intravenous vancomycin (2.5 g/d). Histological examination of the excised aortic wall showed an abscess of the aortic wall, marked atherosclerosis with necrosis and calcified plaques, fresh thrombus, and enlarged lymph nodes (Figure 1A). Nine days after surgery, we observed a major reduction of biological inflammation (leukocyte count reduced to 7410/mm³ and C-reactive protein markedly reduced to 11.7 mg/L). Although bacterial culture of the aortic wall remained negative, a sequence of Haemophilus influenzae was obtained after amplification of 16S rDNA. Antibiotherapy was then switched to oral amoxicillin-clavulanic acid (3 g to 375 mg/d) and olofoxacin (600 mg/d) for 1 month.
aortic repair associated with antibiotics; indeed, a recent European multicenter study showed that endovascular aortic repair of mycotic aortic aneurysms was a feasible and durable treatment option. However, this latter option needs to establish diagnosis before the procedure, which is not always possible, and the outcome of endograft placement in an unsuspected mycotic aneurysm may be unfavorable.

Consensus guidelines on bacterial aneurysms are still needed to provide diagnostic criteria and the choice of adapted therapeutic strategies according to clinical presentation and imaging findings.

Disclosures

None.

References

Figure 1. Thoracic computed tomography angiography showing the growth of an infrarenal abdominal aortic aneurysm along with a peri-aortic infiltration and a thrombus from 25 mm on day 1 (A, arrow) to 34 mm on day 4 related to an enlargement of the thrombus (B, arrow) and with a maximal diameter increased to 42 mm on day 18 (C, arrow).

Figure 2. A positron emission tomography scan on day 9 visualized a FDG uptake of the periaortic fat and the aortic wall in axial section (A) extending over an 8-cm longitudinal section (B). FDG indicates fluorodeoxyglucose.
Figure 3. Abdominal ultrasound revealed on day 18 an irregular thrombus (A, cross) with a multiloculated hypoechogenic image along with a thickened discontinuous aortic wall enhanced after contrast injection (B, arrow).

Figure 4. Computed tomography angiography reconstruction of the aneurysmal dilation of the infrarenal abdominal aorta with a maximal diameter and length of 42×87 mm (A, arrow) along with an irregular thrombus (B, arrow).

Figure 5. Microscopic section of the excised aorta showing suppurative atherosclerotic plaque. A, Hematoxylin and eosin ×1.2 aortic aneurysm with fibrin deposition (cross) and periaortic lymph node (arrow). B, Hematoxylin and eosin ×100 suppurative (polymuclear neutrophil, cross) atherosclerotic plaque (cholesterol crystals, arrow).
Infected Abdominal Aortic Aneurysm Attributable to *Haemophilus influenzae*: Rapid Changes of Imaging Findings

Jessie Risse, Nicla Settembre, Damien Mandry, Haroun Benayad, Camille Lemarié, Corentine Alauzet, Stéphane Zuily, Alix Bertaux, Sergueï Malikov, Michel Claudon and Denis Wahl

Circulation. 2015;132:613-615
doi: 10.1161/CIRCULATIONAHA.115.016323

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/132/7/613

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/