Late I_{Na} in the Heart
Physiology, Pathology, and Pathways

Jonathan C. Makielski, MD; John W. Kyle, PhD

In this issue of *Circulation*, Glynn and colleagues¹ make an important contribution to our understanding of the physiological and pathophysiological roles of late sodium current ($I_{\text{Na,a}}$) in the heart, with a focus on a key pathways regulating late I_{Na} amplitude. They conducted well-designed and detailed studies with 2 new genetically engineered mouse lines: an S571A mouse that ablates phosphorylation by Ca²⁺/calmodulin-dependent kinase II (CaMKII)² selectively at serine 571 (S571) in the cardiac Na channel pore-forming protein Scn5a and an S571E mouse that mimics phosphorylation at S571. S571 was shown previously to be a target for phosphorylation by CaMKII, and this phosphorylation enhanced late I_{Na}³. The present studies in “knock-in” mice expressing either S571A or S571E have distinct advantages over earlier studies in heterologous expression systems, including cultured myocyte models, because they allow the study of whole-animal and organ phenotypes and cellular and molecular biophysical properties in a more native environment. These new in vivo studies reveal that, despite the extensive network of CaMKII targets, phosphorylation of S571 selectively regulates late I_{Na} and, in particular, enhanced late I_{Na} in failing heart.

Article see p 567

Peak I_{Na} is the large inward current flowing mainly through the cardiac Na channel pore formed by Scn5a, which is part of a larger sodium channel macromolecular complex. Members of this macromolecular complex act to localize the complex and to regulate I_{Na}³. With the onset of the action potential (AP) in the myocardium, the peak I_{Na} rapidly rises and decays to nearly zero over several milliseconds. This I_{Na} spike underlies excitability and conduction in working myocardium and the Purkinje conduction system. In contrast to peak I_{Na}, late I_{Na} is a small inward current, usually <0.5% of peak I_{Na}, that flows throughout the AP plateau. Although the amplitude of late I_{Na} is small, it plays a role in maintaining the AP plateau because competing repolarizing potassium currents are also small. Increased late I_{Na} can directly affect cardiac electrophysiology by prolonging refractoriness and predisposing to triggered activity as early afterdepolarizations, observed clinically as long-QT arrhythmia. Because late I_{Na} flows for much longer time than peak I_{Na} (∼300–400 milliseconds for late I_{Na}), it is predicted to play a greater role in Na⁺ loading than peak I_{Na}⁴ Increased Na⁺ loading increases intracellular Ca²⁺ levels through effects on Na⁺-Ca²⁺ exchange and thereby affects contractility and relaxation.⁵ Increased intracellular Ca²⁺ levels affect the electrophysiology of the cell via a number of mechanisms, including delayed afterdepolarizations. Late I_{Na} is increased under many conditions, including inherited disorders such as long-QT syndromes (LQT3, LQT9, LQT10, LQT12) and acquired conditions such as hypertension, heart failure, ischemia, and diabetes mellitus, in which it plays roles in the pathogenesis of arrhythmia, heart failure, and angina,⁶ and has attracted as much attention as a therapeutic drug target.⁷⁻⁹ Therefore, understanding the properties and pathways regulating late I_{Na} has the potential to help us understand the pathogenesis and to provide avenues for treatment of many disease processes in clinical cardiology.

In this commentary, we consider key unanswered and partially answered questions about late I_{Na} and discuss how the genetically engineered mice developed and characterized by Glynn and colleagues¹ have addressed or could be used to address them.

What Are the Signaling Pathways That Regulate Late I_{Na}? How Do They Interact?

Two pathways that enhance late I_{Na} act by posttranslational modification of Scn5a involve CaMKII-dependent phosphorylation¹⁰ and neuronal nitric oxide synthase–dependent nitrosylation.¹¹ A third pathway that may involve direct phosphorylation of Scn5a or other regulatory protein involves phosphoinositide 3-kinase (PI3K), which acts to suppress late I_{Na}.¹² The CaMKII pathway is currently the most studied and best defined with the key phosphorylation site affecting late I_{Na} known to be S571. The neuronal nitric oxide synthase pathway appears to involve direct nitrosylation of the Scn5a channel, but the Cys sites have not yet been determined. Whether and how these different pathways interact are unknown. Are they independent and additive? Do they share common features? It is not known whether the PI3K pathway acts directly by phosphorylation of Scn5a or whether it may somehow involve the CaMKII or neuronal nitric oxide synthase or other pathways. Although these questions were not directly addressed in the present study, it is interesting to note that the S571A mouse retains a significant proportion of wild-type late I_{Na} (Figure 2 in Glynn et al¹), suggesting a component of late I_{Na} that is not regulated by the S571 site. The S571 mouse models should be useful for addressing other questions about pathway interactions. For example, would inhibition of the PI3K pathway result in an increase in late I_{Na} in the S571A model? If not, this...
would support the idea that PI3K activation ultimately acts by suppressing phosphorylation of S571. In addition to the above-mentioned pathways, protein kinase C–dependent phosphorylation at S1503 altered \(I_{\text{Na}} \) kinetics in a way that enhances a type of late \(I_{\text{Na}} \) called window current,\(^{11}\) and protein kinase C inhibition blocked increased late \(I_{\text{Na}} \) caused by calcium loading the cell,\(^{12}\) suggesting roles for protein kinase C that may interact with the CaMKII pathway. The S571A and S571E models will be useful tools to further define the relationships and relative importance among these pathways.

What Signaling Pathways Are Involved in Inherited and Acquired Diseases With Increased Late \(I_{\text{Na}} \)?

Enhanced late \(I_{\text{Na}} \) occurs in numerous inherited cardiac disorders (mutations in the \(\text{Scn5a} \) complex for LQT3, LQT9, LQT19, LQT12) and in acquired conditions (hypertrophy, heart failure, ischemia, diabetes mellitus) and can arise as a result of changes in metabolites and other molecules (acidosis, carbon monoxide, reactive oxygen species, and drugs [PI3K inhibitors]).\(^9\) The detailed mechanisms for the causes of late \(I_{\text{Na}} \) in disease and the pathways involved have been investigated in only a few of these diseases. Activation of the neuronal nitric oxide synthase pathway to increase late \(I_{\text{Na}} \) has been implicated in the pathogenesis of LQT9 involving caveolin3 mutations\(^{13}\) and LQT12 involving \(\alpha \)-syntrophin mutations.\(^11\) An important finding in the present study\(^1\) is that stress-induced heart failure in the \(S571A \) mouse failed to develop the increased late \(I_{\text{Na}} \) seen in wild-type mice,\(^1\) strongly supporting the idea that phosphorylation of S571 via the CaMKII pathway is required for the late \(I_{\text{Na}} \) in this model of heart failure. Further experiments in this model could extend these important insights into the role of the CaMKII pathway in causes of late \(I_{\text{Na}} \). For example, would late \(I_{\text{Na}} \) be enhanced by ischemia, carbon monoxide, reactive oxygen species, or PI3K inhibitors in the \(S571A \) mouse? If not, this would provide evidence that they all work through the CaMKII pathway.

Can Pathologically Enhanced Late \(I_{\text{Na}} \) Be Better Selectively Targeted on the Basis of Pathway Mechanism?

The authors of the present study\(^1\) emphasized how CaMKII-dependent S571 phosphorylation specifically regulates late \(I_{\text{Na}} \) and may represent an attractive target for blocking pathological late \(I_{\text{Na}} \). Currently used drugs such as flecainide, amiodarone, and ranolazine are all pore blockers and would presumably block late \(I_{\text{Na}} \) regardless of the mechanism generating late \(I_{\text{Na}} \).\(^6\) Their selectivity to block late \(I_{\text{Na}} \) over peak \(I_{\text{Na}} \) appears to derive from state-dependent block. Even more selective blockers of late \(I_{\text{Na}} \) are in development.\(^22\) Regulating the phosphorylation S571 could in theory be a novel and important specific regulator of late \(I_{\text{Na}} \) but it is not yet clear if small molecules can be found for this target.

Caveats and Importance

As the authors of the present study\(^1\) correctly point out, a mouse model may not be completely translatable to human
physiology. Despite this limitation, this study has generated insights into unanswered questions about the regulatory pathways and characteristics of both pathological and physiological late I_{Na}, and the models developed in these studies have the potential to generate more insights.

Sources of Funding

This work was supported by grants NIH R56HL071092 and R01HL128076.

Disclosures

None.

References

Keywords: Editorials ■ arrhythmias, cardiac ■ calcium/calmodulin-dependent protein kinase type 2 ■ long QT syndrome
Late I_{Na} in the Heart: Physiology, Pathology, and Pathways
Jonathan C. Makielski and John W. Kyle

Circulation. 2015;132:553-555; originally published online July 17, 2015;
doi: 10.1161/CIRCULATIONAHA.115.017980

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/132/7/553

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/