Part 5: Adult Basic Life Support and Cardiopulmonary Resuscitation Quality

2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

Monica E. Kleinman, Chair; Erin E. Brennan; Zachary D. Goldberger; Robert A. Swor; Mark Terry; Bentley J. Bobrow; Raúl J. Gazmuri; Andrew H. Travers; Thomas Rea

Introduction

As with other Parts of the 2015 American Heart Association (AHA) Guidelines Update for Cardiopulmonary Resuscitation (CPR) and Emergency Cardiovascular Care (ECC), Part 5 is based on the International Liaison Committee on Resuscitation (ILCOR) 2015 international evidence review process. ILCOR Basic Life Support (BLS) Task Force members identified and prioritized topics and questions with the newest or most controversial evidence, or those that were thought to be most important for resuscitation. This 2015 Guidelines Update is based on the systematic reviews and recommendations of the 2015 International Consensus on CPR and ECC Science With Treatment Recommendations, “Part 3: Adult Basic Life Support and Automated External Defibrillation.”

In the online version of this document, live links are provided so the reader can connect directly to the systematic reviews on the ILCOR Scientific Evidence Evaluation and Review System (SEERS) website. These links are indicated by a combination of letters and numbers (eg, BLS 740). We encourage readers to use the links and review the evidence and appendix.

As with all AHA Guidelines, each 2015 recommendation is labeled with a Class of Recommendation (COR) and a Level of Evidence (LOE). The 2015 Guidelines Update uses the newest AHA COR and LOE classification system, which contains modifications of the Class III recommendation and introduces LOE B-R (randomized studies) and B-NR (nonrandomized studies) as well as LOE C-LD (based on limited data) and LOE C-EO (consensus of expert opinion).

The AHA process for identification and management of potential conflicts of interest was used, and potential conflicts for writing group members are listed at the end of each Part of the 2015 Guidelines Update. For additional information about the systematic review process or management of potential conflicts of interest, see “Part 2: Evidence Evaluation and Management of Conflicts of Interest” in this 2015 Guidelines Update and the related publication, “Part 2: Evidence Evaluation and Management of Conflicts of Interest” in the ILCOR 2015 International Consensus on CPR and ECC Science With Treatment Recommendations.

Because this 2015 publication represents the first Guidelines Update, it includes an appendix with all the 2015 recommendations for adult BLS as well as the recommendations from the 2010 Guidelines. If the 2015 ILCOR review resulted in a new or significantly revised Guidelines recommendation, that recommendation will be labeled New or Updated.

It is important to note that the 2010 recommendations used a previous version of the AHA COR and LOE classification system that was current in 2010. Any of the 2010 algorithms that have been revised as a result of recommendations in the 2015 Guidelines Update are contained in this publication. To emphasize that the algorithm has been modified, the words 2015 Update will appear in the title of the algorithm.

Adult BLS and CPR Quality Overview

Sudden cardiac arrest remains a leading cause of death in the United States. Seventy percent of out-of-hospital cardiac arrests (OHCAs) occur in the home, and approximately 50% are unwitnessed. Outcome from OHCA remains poor: only 10.8% of adult patients with nontraumatic cardiac arrest who have received resuscitative efforts from emergency medical services (EMS) survive to hospital discharge. In-hospital cardiac arrest (IHCA) has a better outcome, with 22.3% to 25.5% of adults surviving to discharge.

BLS is the foundation for saving lives after cardiac arrest. Fundamental aspects of adult BLS include immediate recognition of sudden cardiac arrest and activation of the emergency response system, early CPR, and rapid defibrillation with an automated external defibrillator (AED). Initial recognition and response to heart attack and stroke are also considered part of BLS. This section presents the updated recommendations for adult BLS guidelines for lay rescuers and healthcare providers. Key changes and continued points of emphasis in this 2015 Guidelines Update include the following:

- The crucial links in the adult out-of-hospital Chain of Survival are unchanged from 2010; however, there is increased emphasis on the rapid identification of...
potential cardiac arrest by dispatchers, with immediate provision of CPR instructions to the caller.

- This Guidelines Update takes into consideration the ubiquitous presence of mobile phones that can allow the rescuer to activate the emergency response system without leaving the victim’s side. For healthcare providers, these recommendations allow flexibility for activation of the emergency response to better match the provider’s clinical setting.

- More data are available showing that high-quality CPR improves survival from cardiac arrest, including
 - Ensuring chest compressions of adequate rate
 - Ensuring chest compressions of adequate depth
 - Allowing full chest recoil between compressions
 - Minimizing interruptions in chest compressions
 - Avoiding excessive ventilation

- This Guidelines Update includes an updated recommendation for a simultaneous, choreographed approach to performance of chest compressions, airway management, rescue breathing, rhythm detection, and shocks (if indicated) by an integrated team of highly trained rescuers in applicable settings.

When the links in the Chain of Survival are implemented in an effective way, survival can approach 50% in EMS-treated patients after witnessed out-of-hospital ventricular fibrillation (VF) arrest. Un fortunately, survival rates in many out-of-hospital and in-hospital settings fall far short of this figure. For example, survival rates after cardiac arrest due to VF vary from approximately 5% to 50% in both out-of-hospital and in-hospital settings. This variation in outcome underscores the opportunity for improvement in many settings. The remaining links in the AHA Chain of Survival, namely advanced life support and integrated postarrest care, are covered in later Parts of this 2015 Guidelines Update (see “Part 7: Adult Advanced Cardiovascular Life Support” and “Part 8: Post–Cardiac Arrest Care”).

Adult BLS Sequence—Updated

The steps of BLS consist of a series of sequential assessments and actions, which are illustrated in a simplified BLS algorithm that is unchanged from 2010. The intent of the algorithm is to present the steps of BLS in a logical and concise manner that is easy for all types of rescuers to learn, remember, and perform. Integrated teams of highly trained rescuers may use a choreographed approach that accomplishes multiple steps and assessments simultaneously rather than in the sequential manner used by individual rescuers (eg, one rescuer activates the emergency response system while another begins chest compressions, a third either provides ventilation or retrieves the bag-mask device for rescue breaths, and a fourth retrieves and sets up a defibrillator). Moreover, trained rescuers are encouraged to simultaneously perform some steps (ie, checking for breathing and pulse at the same time) in an effort to reduce the time to first compressions. BLS assessments and actions for specific types of rescuers are summarized in Table 1.

Immediate Recognition and Activation of the Emergency Response System

Emergency medical dispatch is an integral component of the EMS response. Bystanders (lay responders) should immediately call their local emergency number to initiate a response any time they find an unresponsive adult victim. Healthcare providers should call for nearby help upon finding the victim unresponsive, but it would be practical for a healthcare provider to continue to assess for breathing and pulse simultaneously before fully activating the emergency response system.

For OHCA, a recent Scientific Statement recommended that all emergency dispatchers have protocols to guide the lay rescuer to check for breathing and to perform the steps of CPR, if needed. When dispatchers ask bystanders to determine if breathing is present, bystanders often misinterpret agonal gasps or abnormal breathing as normal breathing. This erroneous information can result in failure by dispatchers to identify potential cardiac arrest and failure to instruct bystanders to initiate CPR immediately. An important consideration is that brief, generalized seizures may be the first manifestation of cardiac arrest.

2015 Evidence Review

Patients who are unresponsive and not breathing normally have a high likelihood of being in cardiac arrest. Dispatcher CPR instructions substantially increase the likelihood of bystander CPR performance and improve survival from cardiac arrest.

2015 Recommendations—Updated

It is recommended that emergency dispatchers determine if a patient is unresponsive with abnormal breathing after acquiring the requisite information to determine the location of the event (Class I, LOE C-LD). If the patient is unresponsive with abnormal or absent breathing, it is reasonable for the emergency dispatcher to assume that the patient is in cardiac arrest (Class IIa, LOE C-LD). Dispatchers should be educated to identify unresponsiveness with abnormal breathing and agonal gasps across a range of clinical presentations and descriptions (Class I, LOE C-LD).

The role of dispatcher-guided CPR and recommendations for dispatcher training are more fully described in “Part 4: Systems of Care and Continuous Quality Improvement.”

Pulse Check

As recommended in the 2010 Guidelines, healthcare providers will continue to check for a pulse, limiting the time to no more than 10 seconds to avoid delay in initiation of chest compressions. Ideally, the pulse check is performed simultaneously with the check for no breathing or only gasping, to minimize delay in detection of cardiac arrest and initiation of CPR. Lay rescuers will not check for a pulse.

Early CPR

Begin chest compressions as quickly as possible after recognition of cardiac arrest. The 2010 Guidelines included a major change for trained rescuers, who were instructed to begin the CPR sequence with chest compressions rather than breaths (C-A-B versus A-B-C) to minimize the time to initiation.
of chest compressions. The 2015 ILCOR BLS Task Force reviewed the most recent evidence evaluating the impact of this change in sequence on resuscitation.

2015 Evidence Review
Additional evidence published since 2010 showed that beginning the CPR sequence with compressions minimized time to first chest compression.30–32

2015 Recommendation—Updated
Similar to the 2010 Guidelines, it may be reasonable for rescuers to initiate CPR with chest compressions (Class IIb, LOE C-LD). The characteristics of effective chest compressions are described in the following section on BLS skills. As in the 2010 sequence, once chest compressions have been started, a trained rescuer delivers rescue breaths by mouth-to-mask or bag-mask device to provide oxygenation and ventilation. Recommendations regarding the duration of each breath and the need to make the chest rise were not updated in 2015.

Early Defibrillation With an AED
After activating the emergency response system, the lone rescuer retrieves an AED (if nearby and easily accessible) and then returns to the victim to attach and use the AED and provide CPR. When 2 or more trained rescuers are present, 1 rescuer begins CPR, starting with chest compressions, while a second rescuer activates the emergency response system and gets the AED (or a manual defibrillator in most hospitals) and other emergency equipment. The AED or manual defibrillator is used as rapidly as possible, and both rescuers are expected to provide CPR with chest compressions and ventilation. The sequence for using an AED has not been updated from the 2010 Guidelines.

Rescuer-Specific CPR Strategies: Putting It All Together

This section summarizes the sequence of CPR interventions to be performed by 3 types of prototypical rescuers after they activate the emergency response system. The specific steps for rescuers and healthcare providers (compression-only [Hands-Only™ CPR, conventional CPR with rescue breaths, and CPR with AED use) are determined by the rescuer’s level of training.

Untrained Lay Rescuer—Updated
Bystander CPR may prevent VF from deteriorating to asystole, and it also increases the chance of defibrillation, contributes to preservation of heart and brain function, and improves survival from OHCA.33 Bystander CPR rates remain unacceptably low in many communities. Because compression-only CPR is easier to teach, remember, and perform, it is preferred for “just-in-time” teaching for untrained lay rescuers.

Untrained Lay Rescuer—Updated

When telephone guidance is needed, survival is improved when compression-only CPR is provided as compared with conventional CPR for adult victims of cardiac arrest.34 Multiple studies have shown no difference in survival when adult victims of OHCA receive compression-only CPR versus conventional CPR.27,29,35–42

2015 Recommendations—Updated
Untrained lay rescuers should provide compression-only CPR, with or without dispatcher assistance (Class I, LOE C-LD). The rescuer should continue compression-only CPR until the arrival of an AED or rescuers with additional training (Class I, LOE C-LD).

Trained Lay Rescuer
The 2010 Guidelines recommended that trained rescuers should provide rescue breaths in addition to chest compressions because they may encounter victims with asphyxial causes of cardiac arrest or they may be providing CPR for prolonged periods of time before additional help arrives.

2015 Recommendations—Updated
All lay rescuers should, at a minimum, provide chest compressions for victims of cardiac arrest (Class I, LOE C-LD). In
addition, if the trained lay rescuer is able to perform rescue breaths, he or she should add rescue breaths in a ratio of 30 compressions to 2 breaths. The rescuer should continue CPR until an AED arrives and is ready for use or EMS providers take over care of the victim (Class I, LOE C-LD).

Healthcare Provider—Updated
Optimally, all healthcare providers should be trained in BLS. As in past Guidelines, healthcare providers are trained to provide both compressions and ventilation.

2015 Evidence Review
There is concern that delivery of chest compressions without assisted ventilation for prolonged periods could be less effective than conventional CPR (compressions plus breaths) because the arterial oxygen content will decrease as CPR duration increases. This concern is especially pertinent in the setting of asphyxial cardiac arrest.36 For the 2015 ILCOR evidence review, the Adult BLS Task Force reviewed observational studies and randomized controlled trials (RCTs), including studies of dispatcher-guided CPR; much of the research involved patients whose arrests were presumed to be of cardiac origin and in settings with short EMS response times. It is likely that a time threshold exists beyond which the absence of ventilation may be harmful,35,37 and the generalizability of the findings to all settings must be considered with caution.

2015 Recommendation—Updated
It is reasonable for healthcare providers to provide chest compressions and ventilation for all adult patients in cardiac arrest, from either a cardiac or noncardiac cause (Class IIa, LOE C-LD). In addition, it is realistic for healthcare providers to tailor the sequence of rescue actions to the most likely cause of arrest. For example, if a lone healthcare provider sees an adolescent suddenly collapse, the provider may assume that the victim has had a sudden arrhythmic arrest and call for help, get a nearby AED, return to the victim to use the AED, and then provide CPR.

Delayed Ventilation
Several EMS systems have tested a strategy of initial continuous chest compressions with delayed positive-pressure ventilation for adult OHCA.

2015 Evidence Review
During adult OHCA, survival to hospital discharge was improved by the use of an initial period of continuous chest compressions.43,44 Three observational studies showed improved survival with favorable neurologic status when EMS providers performed a set of continuous chest compressions with delayed ventilation for victims with witnessed arrest or shockable rhythm.35-37 These studies were performed in systems that use priority-based, multitiered response in both urban and rural communities, and all included a “bundled” package of care that included up to 3 cycles of passive oxygen insufflation, airway adjunct insertion, and 200 continuous chest compressions with interposed shocks. Providers received additional training with emphasis on provision of high-quality chest compressions.

2015 Recommendation—New
For witnessed OHCA with a shockable rhythm, it may be reasonable for EMS systems with priority-based, multitiered response to delay positive-pressure ventilation by using a strategy of up to 3 cycles of 200 continuous compressions with passive oxygen insufflation and airway adjuncts (Class IIb, LOE C-LD).

Adult BLS Skills
The sequence of BLS skills for the healthcare provider is depicted in the BLS Healthcare Provider Adult Cardiac Arrest Algorithm (Figure 1). There are minor changes to the 2010 Guidelines as the result of new evidence regarding compression rate, feedback received from the training network, and new evidence regarding the incidence of opioid overdose and the effects of naloxone-administration programs.

Verify Scene Safety
Rescuers arriving on the scene of an emergency should verify that the environment in which they are approaching a patient is safe for the provider. This is accomplished by a quick scan of the patient’s location and surroundings to make sure there are no imminent physical threats such as toxic or electrical hazards.

Recognition of Arrest
The necessary first step in the treatment of cardiac arrest is immediate recognition. Initial major steps for bystanders remain unchanged from the 2010 Guidelines. CPR training, both formal classroom training and “just-in-time” training such as that given through a dispatch center, should emphasize how to recognize occasional gasps. Dispatchers should instruct rescuers to provide CPR if the victim is unresponsive with no normal breathing, even when the victim demonstrates occasional gasps (Class I, LOE C-LD).

Scenario: Pulse Present, Normal Breathing
Closely monitor the patient, and activate the emergency response system as indicated by location and patient condition.

Scenario: Pulse Present, No Normal Breathing
This topic was last reviewed in 2010. The 2015 ILCOR systematic review addressed whether bystander-administered naloxone to patients with suspected opioid-associated cardiopulmonary arrest affected resuscitation outcomes. The evaluation did not focus on opioid-associated respiratory arrest. The authors acknowledge the epidemiologic data demonstrating the large burden of disease from lethal opioid overdoses as well as targeted national strategies for bystander-administered naloxone for people at risk. Since the 2014 US Food and Drug Administration approval of the use of a naloxone autoinjector by lay rescuers and healthcare providers,48 the training network has requested information regarding the best way to incorporate such a device in the BLS sequence. In response to requests, the ILCOR BLS Task Force performed an additional search for evidence of effectiveness of the use of naloxone for opioid overdose.

2015 Summary of Evidence
There were no published studies to determine if adding intranasal or intramuscular naloxone to conventional CPR
is superior to conventional CPR alone for the management of adults and children with suspected opioid-associated cardiac or respiratory arrest in the prehospital setting. However, the additional search for available evidence regarding overdose education and naloxone distribution programs yielded 3 observational before-and-after studies. One study observed a dose-response effect with 0.73 (95% confidence interval [CI], 0.57–0.91) and 0.54 (95% CI, 0.39–0.76) adjusted rate ratios for lethal overdose in communities with low and high implementation, respectively.49 The remaining 2 observational studies reported reductions in rate ratios for lethal overdose of 0.62 (95% CI, 0.54–0.72)50 and 0.70 (95% CI, 0.65–0.74) in individual communities that implemented programs to address opioid overdose.51

2015 Recommendations—New
For a patient with known or suspected opioid overdose who has a definite pulse but no normal breathing or only gasping (ie, a respiratory arrest), in addition to providing standard BLS care, it is reasonable for appropriately trained BLS healthcare providers to administer intramuscular or intranasal naloxone (Class IIa, LOE C-LD). For patients in cardiac arrest, medication administration is ineffective without concomitant chest compressions for drug delivery to the tissues, so naloxone administration may be considered after initiation of CPR if there is high suspicion for opiate overdose (Class IIb, LOE C-EO). It is reasonable to provide opioid overdose response education with or without naloxone distribution to persons at risk for opioid overdose (or those living with or in frequent contact with such persons) (Class IIa, LOE C-LD). Information regarding lay rescuer education and the use of naloxone for known or suspected victims of opioid overdose is discussed in “Part 10: Special Circumstances of Resuscitation.”

Scenario: Pulse Absent, No Breathing or Only Gasping
As in the 2010 Guidelines, rescuers should initiate CPR and use an AED as soon as possible. By this point in all potential scenarios, the emergency response system is activated, and AED and emergency equipment are retrieved or requested.
Technique: Chest Compressions—Updated

Chest compressions are the key component of effective CPR. Characteristics of chest compressions include their depth, rate, and degree of recoil. The quality of CPR can also be characterized by the frequency and duration of interruptions in chest compressions—when such interruptions are minimized, the chest compression fraction (percent of total resuscitation time that compressions are performed) is higher. Finally, with high-quality CPR, the rescuer avoids excessive ventilation. These CPR performance elements affect intrathoracic pressure, coronary perfusion pressure, cardiac output, and, in turn, clinical outcomes.

Hand Position During Compressions

The 2015 ILCOR systematic review addressed whether hand position placement for chest compressions affected resuscitation outcomes. Different resuscuer hand positions alter the mechanics of chest compressions and may, in turn, influence their quality and effectiveness.

2015 Summary of Evidence

Only a few human studies involving a total of fewer than 100 cardiac arrest patients have evaluated hand position during CPR. These investigations assessed hand placement on the lower third of the sternum compared with the center of the chest in a crossover design, and they measured physiologic endpoints, such as blood pressure and end-tidal carbon dioxide (ETCO2). The studies have not provided conclusive or consistent results about the effects of hand placement on resuscitation outcomes.

2015 Recommendation—Unchanged

Consistent with the 2010 Guidelines, it is reasonable to position hands for chest compressions on the lower half of the sternum in adults with cardiac arrest (Class IIa, LOE C-LD).

Chest Compression Rate

In the 2010 Guidelines, the recommended compression rate was at least 100 compressions per minute. The 2015 Guidelines Update incorporates new evidence about the potential for an upper threshold of rate beyond which outcome may be adversely affected.

The 2015 ILCOR systematic review addressed whether compression rates different from 100/min influence physiologic or clinical outcomes. Chest compression rate is defined as the actual rate used during each continuous period of chest compressions. This rate differs from the number of chest compressions delivered per unit of time, which takes into account any interruptions in chest compressions.

2015 Summary of Evidence

Evidence involving compression rate is derived from observational human studies that evaluate the relationship between compression rate and outcomes including survival to hospital discharge, return of spontaneous circulation (ROSC), and various physiologic measures, such as blood pressure and end-tidal CO2. These investigations suggest that there may be an optimal zone for the rate of manual chest compressions—between 100/min and 120/min—that on average is associated with improved survival. Importantly, there is an interdependent relationship between compression rate and compression depth during manual chest compressions: as rate increases to greater than 120/min, depth decreases in a dose-dependent manner. For example, the proportion of compressions less than 38 mm (less than 3.8 cm or 1.5 inches) was about 35% for a compression rate of 100 to 119/min but increased to 50% for a compression rate of 120 to 139/min and 70% for a compression rate of greater than 140/min.

2015 Recommendation—Updated

In adult victims of cardiac arrest, it is reasonable for rescuers to perform chest compressions at a rate of 100/min to 120/min (Class IIa, LOE C-LD).

Chest Compression Depth

The 2015 ILCOR systematic review addressed whether a chest compression depth different from 2 inches (5 cm) influences physiologic or clinical outcomes. The depth of chest compression can affect the relative increase in intrathoracic pressure and, in turn, influence forward blood flow from the heart and great vessels to the systemic circulation. In the 2010 Guidelines, the recommended compression depth was at least 2 inches (5 cm). The 2015 Guidelines Update incorporates new evidence about the potential for an upper threshold of compression depth beyond which outcomes may be adversely affected.

2015 Summary of Evidence

Evidence involving compression depth is derived from observational human studies that evaluate the relationship between compression depth and outcomes including survival with favorable neurologic outcome, survival to hospital discharge, and ROSC. Studies often classify compression depth differently, using distinct categories of depth or using an average depth for a given portion of the resuscitation.

Even with this heterogeneity, there is consistent evidence that achieving compression depth of approximately 5 cm is associated with greater likelihood of favorable outcomes compared with shallower compressions. In the largest study to date (n=9136), the optimal compression depth with regard to survival occurred within the range of 41 to 55 mm (4.1 to 5.5 cm, or 1.61 to 2.2 inches). Less evidence is available about whether there is an upper threshold beyond which compressions may be too deep. During manual CPR, injuries are more common when compression depth is greater than 6 cm (2.4 inches) than when it is between 5 and 6 cm (2 and 2.4 inches). Importantly, chest compressions performed by professional rescuers are more likely to be too shallow (ie, less than 40 mm [4 cm] or 1.6 inches) and less likely to exceed 55 mm (5.5 cm or 2.2 inches).

2015 Recommendation—Updated

During manual CPR, rescuers should perform chest compressions to a depth of at least 2 inches or 5 cm for an average adult, while avoiding excessive chest compression depths (greater than 2.4 inches or 6 cm) (Class I, LOE C-LD).

Chest Wall Recoil

The 2015 ILCOR systematic reviews addressed whether full chest wall recoil compared with incomplete recoil influenced...
physiologic or clinical outcomes. Full chest wall recoil occurs when the sternum returns to its natural or neutral position during the decompression phase of CPR. Chest wall recoil creates a relative negative intrathoracic pressure that promotes venous return and cardiopulmonary blood flow. Leaning on the chest wall between compressions precludes full chest wall recoil. Incomplete recoil could increase intrathoracic pressure and reduce venous return, coronary perfusion pressure, and myocardial blood flow and could potentially influence resuscitation outcomes.67,68 Observational studies indicate that leaning is common during CPR in adults and children.69,70

2015 Summary of Evidence
There are no human studies reporting the relationship between chest wall recoil and clinical outcomes. The evidence is derived from 2 animal studies and a pediatric study of patients not in cardiac arrest.67,71,72 In all 3 studies, an increased force of leaning (incomplete recoil) was associated with a dose-dependent decrease in coronary perfusion pressure. Based on 2 studies, the relationship between leaning and cardiac output was inconsistent.67,71

2015 Recommendation—Updated
It is reasonable for rescuers to avoid leaning on the chest between compressions to allow full chest wall recoil for adults in cardiac arrest (Class IIa, LOE C-LD).

Minimizing Interruptions in Chest CompressionsBLS 359—Updated
As in the 2010 Guidelines, minimizing interruptions in chest compressions remains a point of emphasis. The 2015 ILCOR systematic review addressed whether shorter compared with longer interruptions in chest compressions influenced physiologic or clinical outcomes. Interruptions in chest compressions can be intended as part of required care (ie, rhythm analysis and ventilation) or unintended (ie, rescuer distraction).

Chest compression fraction is a measurement of the proportion of time that compressions are performed during a cardiac arrest. An increase in chest compression fraction can be achieved by minimizing pauses in chest compressions. The optimal goal for chest compression fraction has not been defined. The AHA expert consensus is that a chest compression fraction of 80\% is achievable in a variety of settings.73

2015 Summary of Evidence
Evidence involving the consequences of compression interruptions is derived from observational and randomized human studies of cardiac arrest. These studies provide heterogeneous results. Observational studies demonstrate an association between a shorter duration of compression interruption for the perishock period and a greater likelihood of shock success,62 ROSC,74 and survival to hospital discharge.75,76 Other observational studies have demonstrated an association between higher chest compression fraction and likelihood of survival among patients with shockable rhythms, and return of circulation among patients with nonshockable rhythms.77,78 In contrast, the results of a randomized trial comparing a bundle of changes between the 2000 and 2005 Guidelines showed no survival difference when perishock pauses were reduced.79 In an investigation of first responders equipped with AEDs, the duration of pauses specific to ventilation was not associated with survival.80

2015 Recommendations—Updated
In adult cardiac arrest, total preshock and postshock pauses in chest compressions should be as short as possible (Class I, LOE C-LD). For adults in cardiac arrest receiving CPR without an advanced airway, it is reasonable to pause compressions for less than 10 seconds to deliver 2 breaths (Class IIa, LOE C-LD). In adult cardiac arrest with an unprotected airway, it may be reasonable to perform CPR with the goal of a chest compression fraction as high as possible, with a target of at least 60\% (Class IIb, LOE C-LD).

Compression-to-Ventilation RatioBLS 362—Updated
In 2005, the recommended compression-to-ventilation ratio for adults in cardiac arrest was changed from 15:2 to 30:2. The 2015 ILCOR systematic review addressed whether compression-to-ventilation ratios different from 30:2 influenced physiologic or clinical outcomes. In cardiac arrest patients without an advanced airway, chest compressions are briefly paused to provide rescue breaths in order to achieve adequate air entry.

2015 Summary of Evidence
Evidence involving the compression-to-ventilation ratio is derived from observational before-and-after human studies in the out-of-hospital setting.81–84 These studies compared the compression-to-ventilation ratio of 30:2 with 15:2 for survival and other outcomes. However, the treatment of the comparison groups also differed in other respects that typically reflected changes from the 2000 to 2005 Guidelines, such as an increase in the duration of CPR cycles between rhythm analyses from 1 to 2 minutes. Overall, outcomes were typically better in the 30:2 group compared with the 15:2 group.

2015 Recommendation—Unchanged
Consistent with the 2010 Guidelines, it is reasonable for rescuers to provide a compression-to-ventilation ratio of 30:2 for adults in cardiac arrest (Class IIa, LOE C-LD).

Layperson—Compression-Only CPR Versus Conventional CPRBLS 372 (Chest Compressions Plus Rescue Breaths)—Updated
The 2015 ILCOR systematic review addressed whether layperson CPR consisting of chest compressions alone compared with conventional CPR (compressions plus rescue breaths) influenced physiologic or clinical outcomes.

2015 Summary of Evidence
Evidence comparing layperson compression-only CPR with conventional CPR is derived from RCTs of dispatcher-guided CPR and observational studies. There were no short-term survival differences in any of the 3 individual randomized trials comparing the 2 types of dispatcher instructions.77,79,85 Based on meta-analysis of the 2 largest randomized trials (total n=2496), dispatcher instruction in compression-only CPR was associated with long-term survival benefit compared with instruction in chest compressions and rescue breathing.34
Among the observational studies, survival outcomes were not different when comparing the 2 types of CPR.35-42,86-90

2015 Recommendations—Updated
The following recommendations are consistent with 2010 Guidelines involving layperson CPR. Dispatchers should provide chest compressions—only CPR instructions to callers for adults with suspected OHCA (Class I, LOE C-LD). For lay rescuers, compression-only CPR is a reasonable alternative to conventional CPR in the adult cardiac arrest patient (Class IIa, LOE C-LD). For trained lay rescuers, it is reasonable to provide ventilation in addition to chest compressions for the adult in cardiac arrest (Class IIa, LOE C-LD).

Managing the Airway
A significant change in the 2010 Guidelines was the initiation of chest compressions before ventilation (ie, a change in the sequence from A-B-C to C-A-B). The prioritization of circulation (C) over ventilation reflected the overriding importance of blood flow generation for successful resuscitation and practical delays inherent to initiation of rescue breaths (B). Physiologically, in cases of sudden cardiac arrest, the need for assisted ventilation is a lower priority because of the availability of adequate arterial oxygen content at the time of a sudden cardiac arrest. The presence of this oxygen and its renewal through gasping and chest compressions (provided there is a patent airway) also supported the use of compression-only CPR and the use of passive oxygen delivery.

Open the Airway: Lay RescuerFA 772—Updated
The recommendation for trained and untrained lay rescuers remains the same as in 2010. For victims with suspected spinal injury, rescuers should initially use manual spinal motion restriction (eg, placing 1 hand on either side of the patient’s head to hold it still) rather than immobilization devices, because use of immobilization devices by lay rescuers may be harmful (Class III: Harm, LOE C-LD). Spinal immobilization devices may interfere with maintaining a patent airway, but ultimately the use of such a device may be necessary to maintain spinal alignment during transport. This treatment recommendation is explored in depth in “Part 15: First Aid.”

Open the Airway: Healthcare Provider
A healthcare provider uses the head tilt–chin lift maneuver to open the airway of a victim with no evidence of head or neck trauma. The evidence for this was last reviewed in 2010. For victims with suspected spinal cord injury, this evidence was last reviewed in 2010 and there is no change in treatment recommendation.

Rescue Breathing—Updated
The 2015 Guidelines Update makes many of the same recommendations regarding rescue breathing as were made in 2005 and 2010. Effective performance of rescue breathing or bag-mask or bag-tube ventilation is an essential skill and requires training and practice. During CPR without an advanced airway, a compression-to-ventilation ratio of 30:2 is used.

Mouth-to-Mouth Rescue Breathing
The technique for mouth-to-mouth rescue breathing was last reviewed in 2010.10

Mouth-to–Barrier Device Breathing
The technique for mouth–to–barrier device breathing was last reviewed in 2010.10

Mouth-to-Nose and Mouth-to-Stoma Ventilation
The technique for mouth-to-nose and mouth-to-stoma ventilation was last reviewed in 2010.10

Ventilation With Bag-Mask Device
When using a self-inflating bag, rescuers can provide bag-mask ventilation with room air or oxygen. A bag-mask device can provide positive-pressure ventilation without an advanced airway and may result in gastric inflation and its potential complications.

The Bag-Mask Device
The elements of a bag-mask device are the same as those used in 2010.10

Bag-Mask Ventilation
Bag-mask ventilation is a challenging skill that requires considerable practice for competency. As long as the patient does not have an advanced airway in place, the rescuers should deliver cycles of 30 compressions and 2 breaths during CPR. The rescuer delivers breaths during pauses in compressions and delivers each breath over approximately 1 second (Class IIa, LOE C-LD).

Ventilation With an Advanced AirwayBLS 808—Updated
When the victim has an advanced airway in place during CPR, rescuers no longer deliver cycles of 30 compressions and 2 breaths (ie, they no longer interrupt compressions to deliver 2 breaths). Instead, it may be reasonable for the provider to deliver 1 breath every 6 seconds (10 breaths per minute) while continuous chest compressions are being performed (Class IIb, LOE C-LD). This represents a simplification of the 2010 Guidelines recommendations, to provide a single number that rescuers will need to remember for ventilation rate, rather than a range of numbers.

Passive Oxygen Versus Positive-Pressure Oxygen During CPRBLS 352—Updated
Some EMS systems have studied the use of passive oxygen flow during chest compressions without positive-pressure ventilation, an option known as passive oxygen administration.

2015 Evidence Summary
Two studies compared positive-pressure ventilation through an endotracheal tube to continuous delivery of oxygen or air directly into the trachea after intubation by using a modified endotracheal tube that had microcannulas inserted into its inner wall.93,94 A third study compared bag-mask ventilation to high-flow oxygen delivery by nonrebreather face mask after oropharyngeal airway insertion as part of a resuscitation
bundle that also included uninterrupted preshock and post-shock chest compressions and early epinephrine administration. Continuous tracheal delivery of oxygen or air through the modified endotracheal tube was associated with lower arterial P_cO_2 but no additional improvement in ROSC, hospital admission, or ICU discharge when compared with positive-pressure ventilation. High-flow oxygen delivery via a face mask with an oropharyngeal airway as part of a resuscitation bundle was associated with improved survival with favorable neurologic outcome. This study, however, included only victims who had witnessed arrest from VF or pulseless ventricular tachycardia (pVT).

2015 Recommendations—New

We do not recommend the routine use of passive ventilation techniques during conventional CPR for adults (Class IIb, LOE C-LD). However, in EMS systems that use bundles of care involving continuous chest compressions, the use of passive ventilation techniques may be considered as part of that bundle (Class IIb, LOE C-LD).

AED Defibrillation

Ideally, all BLS providers are trained on use of an AED given that VF and pVT are treatable cardiac arrest rhythms with outcomes closely related to the rapidity of recognition and treatment. Survival in victims of VF/pVT is highest when bystanders deliver CPR and defibrillation is attempted within 3 to 5 minutes of collapse. Accordingly, in 2010, we recommended that BLS providers immediately apply an AED in witnessed OHCA or for monitored patients who develop IHCA. In 2015, the review focused on (1) the evidence surrounding the clinical benefit of automatic external defibrillators in the out-of-hospital setting by laypeople and healthcare providers, and (2) the complex choreography of care needed to ensure high-quality CPR and effective defibrillation.

CPR Before Defibrillation—Updated

The 2015 ILCOR systematic review addressed whether a specified period (typically 1.5 to 3 minutes) of chest compressions before shock delivery compared with a short period of chest compressions before shock delivery affected resuscitation outcomes. When cardiac arrest is unwitnessed, experts have debated whether a period of CPR might be beneficial before attempting defibrillation, especially in the out-of-hospital setting when access to defibrillation may be delayed until arrival of professional rescuers. Observational clinical studies and mechanistic studies in animal models suggest that CPR under conditions of prolonged untreated VF might help restore metabolic conditions of the heart favorable to defibrillation. Others have suggested that prolonged VF is energetically detrimental to the ischemic heart, justifying rapid defibrillation attempts regardless of the duration of arrest.

2015 Evidence Summary

Five RCTs, 4 observational cohort studies, 3 meta-analyses, and 1 subgroup analysis of an RCT addressed the question of CPR before defibrillation. The duration of CPR before defibrillation ranged from 90 to 180 seconds, with the control group having a shorter CPR interval lasting only as long as the time required for defibrillator deployment, pad placement, initial rhythm analysis, and AED charging. These studies showed that outcomes were not different when CPR was provided for a period of up to 180 seconds before attempted defibrillation compared with rhythm analysis and attempted defibrillation first for the various outcomes examined, ranging from 1-year survival with favorable neurologic outcome to ROSC. Subgroup analysis suggested potential benefit from CPR before defibrillation in patients with prolonged EMS response intervals (4 to 5 minutes or longer) and in EMS agencies with high baseline survival to hospital discharge, but these findings conflict with other subset analyses. Accordingly, the current evidence suggests that for unmonitored patients with cardiac arrest outside of the hospital and an initial rhythm of VF or pVT, there is no benefit from a period of CPR of 90 to 180 seconds before attempted defibrillation.

2015 Recommendations—Updated

For witnessed adult cardiac arrest when an AED is immediately available, it is reasonable that the defibrillator be used as soon as possible (Class IIa, LOE C-LD). For adults with unmonitored cardiac arrest or for whom an AED is not immediately available, it is reasonable that CPR be initiated while the defibrillator equipment is being retrieved and applied and that defibrillation, if indicated, be attempted as soon as the device is ready for use (Class IIa, LOE B-R).

Analysis of Rhythm During Compressions—Updated

The 2015 ILCOR systematic review addressed whether analysis of cardiac rhythm during chest compressions compared with analysis of cardiac rhythm during pauses in chest compressions affected resuscitation outcomes.

Although the performance of chest compressions during AED rhythm analysis would reduce the time that CPR is paused, motion artifacts currently preclude reliable AED assessment of heart rhythm during chest compressions and may delay VF/pVT identification and defibrillation.

2015 Evidence Summary

There are currently no published human studies that address whether compressions during manual defibrillator or AED rhythm analysis affect patient outcome. New technology to assess the potential benefit of filtering electrocardiogram (ECG) compression artifacts has not been evaluated in humans.

2015 Recommendation—New

There is insufficient evidence to recommend the use of artifact-filtering algorithms for analysis of ECG rhythm during CPR. Their use may be considered as part of a research protocol or if an EMS system, hospital, or other entity has already incorporated ECG artifact-filtering algorithms in its resuscitation protocols (Class IIb, LOE C-EO).

Timing of Rhythm Check—Updated

The 2015 ILCOR evidence review process considered whether the assessment of rhythm immediately after shock delivery,
as opposed to immediate resumption of chest compressions, affected resuscitation outcomes. In 2010, the Guidelines emphasized the importance of avoiding pauses in cardiac compressions during CPR. Assessment of rhythm after shock delivery lengthens the period of time that chest compressions are not delivered.

2015 Evidence Summary

Three before-and-after observational studies of OHCA evaluated the impact of omitting a rhythm check immediately after attempted defibrillation as part of a bundle of interventions to minimize pauses in chest compressions (eg, elimination of 3 stacked shocks and postshock rhythm and pulse checks). The observational studies documented improved survival with favorable neurologic outcome at hospital discharge associated with the bundle of care, including resumption of chest compressions immediately after shock delivery. One RCT comparing immediate postshock CPR to rhythm checks failed to demonstrate improved ROSC or survival to hospital admission or discharge. One small, low-quality RCT evaluated the ability to identify recurrence of VF and showed no benefit to checking rhythm immediately after defibrillation.

2015 Recommendation—Updated

It may be reasonable to immediately resume chest compressions after shock delivery for adults in cardiac arrest in any setting (Class Iib, LOE C-LD).

CPR Quality, Accountability, and Healthcare Systems

The quality of CPR in both in-hospital and OHCA events is variable. CPR quality encompasses the traditional metrics of chest compression rate and depth and chest recoil, but it also includes parameters such as chest compression fraction and avoiding excessive ventilation. Other important aspects of CPR quality include resuscitation team dynamics, system performance, and quality monitoring. Today, despite clear evidence that providing high-quality CPR significantly improves cardiac resuscitation outcomes, few healthcare organizations consistently apply strategies of systematically monitoring CPR quality. As a consequence, there is an unacceptable disparity in the quality of resuscitation care and outcomes, as well as an enormous opportunity to save more lives.

Like other urgent healthcare conditions, the use of a relatively simple, iterative continuous quality improvement approach to CPR can dramatically improve CPR quality and optimize outcomes. Similar to successful approaches toward mitigating medical errors, programs aimed at system-wide CPR data collection, implementation of best practices, and continuous feedback on performance have been shown to be effective.

Chest Compression Feedback—Updated

Technology allows for real-time monitoring, recording, and feedback about CPR quality, including both physiologic patient parameters and rescuer performance metrics. This important data can be used in real time during resuscitation, for debriefing after resuscitation, and for system-wide quality improvement programs.

2015 Evidence Review

In studies to date, the use of CPR feedback devices has not been shown to significantly improve performance of chest compression depth, chest compression fraction, and ventilation rate. There is some evidence that the use of CPR feedback may be effective in modifying chest compression rates that are too fast. Additionally, there is evidence that CPR feedback decreases the leaning force during chest compressions. For the outcome of ROSC, there is conflicting evidence, with the majority of studies showing no difference in the number of patients that achieved ROSC with and without CPR feedback. However, studies to date have not demonstrated a significant improvement in favorable neurologic outcome or survival to hospital discharge related to the use of CPR feedback devices during actual cardiac arrest events.

2015 Recommendation—Updated

It may be reasonable to use audiovisual feedback devices during CPR for real-time optimization of CPR performance (Class Iib, LOE B-R).

Team-Based Resuscitation

Resuscitation from cardiac arrest most often involves a team of caregivers, with team composition and level of experience varying depending on location (in- versus out-of-hospital), setting (field, emergency department, hospital ward), and circumstances. Despite the varied environments and team members, a designated team leader is needed to direct and coordinate all components of the resuscitation with a central focus on delivering high-quality CPR. The team leader choreographs team activities with an aim to minimize interruptions in CPR and, through the use of real-time feedback, ensures delivery of adequate compression rate and depth, minimization of leaning, and interruptions in chest compressions, and avoidance of excessive ventilation.

More information on team training is available in “Part 14: Education” and “Part 4: Systems of Care and Continuous Quality Improvement.”

Duration of Resuscitation

Investigators have published relatively few studies that examine the impact of resuscitation duration on clinical outcomes, and most of these studies have important limitations. In an older series of 313 IHCA patients, the percentage who survived to discharge was 45% when resuscitation lasted less than 5 minutes and less than 5% when the resuscitation extended beyond 20 minutes. More recently, an analysis from a single-hospital registry in Taiwan suggested that the rate of achieving ROSC was higher than 90% among patients resuscitated for less than 10 minutes but approximately 50% for those resuscitated for 30 minutes or more.

Two observational cohort studies of patients with in-hospital arrests from the Get With The Guidelines®-Resuscitation...
registry were recently published suggesting that extending the duration of resuscitation efforts may result in improved cardiac arrest survival. For adult patients, hospitals that systematically practiced longer durations of resuscitation had improved outcomes of ROSC and survival to discharge, with no apparent detriment in neurologic outcomes. Another report of pediatric patients demonstrated an intact survival of 16.2% after more than 35 minutes of CPR in certain patient populations. While investigators can define neither an optimal duration of resuscitation before the termination of efforts nor which patients may benefit from prolonged efforts at resuscitation, extending the duration of resuscitation may be a means of improving survival in selected hospitalized patients.

CPR Registry Data

Ideally, RCTs will be used to advance the science and practice of resuscitation. However, conducting clinical trials in cardiac arrest patients is exceedingly challenging, given the small number of patients at single-center sites. Moreover, such research confers unique limitations and ethical concerns. Given these challenges, real-world observational data from registries can be a valuable resource for studying and reporting resuscitation processes and outcomes. Registries are available for both in-hospital and out-of-hospital arrests.

Formerly known as the National Registry of Cardiopulmonary Resuscitation, the AHA’s Get With The Guidelines-Resuscitation registry is the largest prospective, multicenter, observational registry of IHCA. At present, more than 600 hospitals in the United States and Canada participate in the registry, and more than 200,000 index arrests have been recorded since 2000.

To date, the Get With The Guidelines-Resuscitation registry has provided important insights into several aspects of IHCA. Recent work has highlighted the survival gains by reducing time to defibrillation, reducing racial differences and trends in IHCA incidence and survival, and gathering evidence to support lengthier durations of CPR.

The Resuscitation Outcomes Consortium (ROC) is a clinical research network designed to evaluate the effectiveness of prehospital emergency care for patients with OHCA or life-threatening injury. Data collection began in 2007 and stems from 264 EMS agencies in 11 sites (8 in the United States and 3 in Canada), altogether representing 10% of the North American population. The ROC has afforded insights on several aspects of OHCA, including regional variation in incidence and outcomes and chest compression rates.

The Cardiac Arrest Registry to Enhance Survival (CARES) is a central repository of OHCA events of presumed cardiac etiology treated with CPR and/or defibrillation throughout the United States. CARES was designed as a quality improvement project, with the aim of providing performance indicators to EMS medical and administrative directors to improve processes and outcomes. As of 2011, it has collected data on more than 31,000 OHCA from 46 EMS agencies in 36 communities in 20 states. CARES has offered important insight into bystander CPR, prehospital termination of resuscitation, and variation in EMS systems of care.

Family Presence During Resuscitation

Studies that explicitly examined the association between family presence and outcomes have shown mixed results. In an analysis of simulated resuscitations in an urban emergency department, investigators demonstrated that family presence may have a significant effect on physicians’ ability to perform critical interventions as well as on resuscitation-based performance outcomes. Specifically, the presence of a witness to resuscitation was associated with longer mean times to defibrillation (2.6 versus 1.7 minutes) and fewer shocks (4.0 versus 6.0).

A recent observational study using the Get With The Guidelines-Resuscitation registry demonstrated that implementing a hospital policy that allows family presence had no impact on survival or the processes of attempted resuscitations. Overall, given the evidence for improved psychological benefits for families present during out-of-hospital resuscitation, and without an apparent negative effect on outcomes at hospitals that allow families to be present, family presence represents an important dimension in the paradigm of resuscitation quality.

Special Resuscitation Situations

Acute Coronary Syndrome

Acute coronary syndrome (ACS) is a term that subsumes a spectrum of diseases leading to myocardial ischemia or infarction. The subtypes of ACS are principally stratified through a combination of electrocardiographic changes and/or the elevations of cardiac biomarkers, in the context of symptoms consistent with ACS (e.g., substernal chest pain or discomfort with or without characteristic radiation, shortness of breath, weakness, diaphoresis, nausea or vomiting, light-headedness). ACS may manifest as an ST-segment elevation myocardial infarction (STEMI) or non–ST-segment elevation myocardial infarction (NSTEMI)/unstable angina (UA), now called non–ST-segment acute coronary syndromes (NSTE-ACS). Both diagnoses are pathophysiologically linked to varying degrees of a reduction in coronary blood flow due to atherosclerotic plaque progression, instability, or rupture with or without luminal thrombosis and vasospasm.

Since 2010, the American College of Cardiology and the AHA have published targeted clinical practice guidelines pertaining to the management of patients with STEMI and NSTE-ACS. These guidelines should be referred to for full details on the specific management of ACS. In addition, other parts of the 2015 AHA Guidelines Update for CPR and ECC include updates on basic and advanced life support for prehospital providers who care for these patients (“Part 9: Acute Coronary Syndromes,” “Part 4: Systems of Care and Continuous Quality Improvement,” and “Part 10: Special Circumstances of Resuscitation”); aspirin and chest pain are presented in “Part 15: First Aid”).
Stroke
Approximately 800,000 people have a stroke each year in the United States, and stroke is a leading cause of severe, long-term disability and death. Fibrinolytic therapy administered within the first hours of the onset of symptoms limits neurologic injury and improves outcome in selected patients with acute ischemic stroke. Effective therapy requires early detection of the signs of stroke; prompt activation of the EMS system and dispatch of EMS personnel; appropriate triage to a stroke center; prearrival notification; rapid triage, evaluation, and management in the emergency department; and prompt delivery of fibrinolytic therapy to eligible patients. Since 2010, the AHA and the American Stroke Association have published clinical practice guidelines pertaining to the early management of patients with acute ischemic stroke.

Drowning
Drowning is a leading cause of unintentional injury and death worldwide and a preventable cause of death for more than 4000 Americans annually. The highest rates of morbidity and mortality are among children aged 1 to 4 years. The incidence of fatal drowning has declined from 1.45 deaths per 100,000 population in 2000 to 1.26 in 2013. Immediate resuscitation to restore oxygenation and ventilation—especially by bystanders—is essential for survival after a drowning incident.

This topic was last reviewed in 2010, and the treatment recommendations have not changed.
Since the 2010 Guidelines, there has been a growing appreciation for the fact that the response to the submersion victim often involves a multiagency approach with several different organizations responsible for different phases of the victim’s care, from the initial aquatic rescue, on-scene resuscitation, transport to hospital, and in-hospital care. Attempting the rescue of a submerged victim has substantial resource implications and may place rescuers at risk themselves.

Unintentional Hypothermia
This topic was last reviewed in 2010, and the treatment recommendations have not changed.

Foreign-Body Airway Obstruction
This topic was last reviewed in 2010, and the treatment recommendations have not changed.
Disclosures

Part 5: Adult Basic Life Support and Cardiopulmonary Resuscitation Quality: 2015 Guidelines Update Writing Group Disclosures

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monica E. Kleinman</td>
<td>Boston Children’s Hospital</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bentley J. Bobrow</td>
<td>Arizona Department of Health Services</td>
<td>Medtronic Foundation†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Erin E. Brennan</td>
<td>Queen’s University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Raúl J. Gazmuri</td>
<td>Rosalind Franklin University of Medicine and Science</td>
<td>VA Merit Review Grant†; Defense Medical Research and Development Program (DMRDP); Applied Research and Technology Development Award (ARADTA); Chicago Medical School and Advocate Lutheran General Hospital Translational Research Pilot Grant Program†; Baxter Healthcare Corporation†; Friends Medical Research Institute†; ZOLL Medical Corporation†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Zachary D. Goldberger</td>
<td>University of Washington</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Thomas Rea</td>
<td>Department of Medicine, University of Washington; Public Health-Seattle and King County, Emergency Medical Services Division</td>
<td>Philips*; Medtronic Foundation*; NIH*; Laerdal Foundation*; Life Sciences Discovery Fund*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>University of Washington*</td>
</tr>
<tr>
<td>Robert A. Swor</td>
<td>William Beaumont Hospital</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mark Terry</td>
<td>Johnson County MED-ACT</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Consultant</td>
<td>Emergency Health Services, Nova Scotia</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>American Heart Association†</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest.
†Significant.
Appendix

2015 Guidelines Update: Part 5 Recommendations

<table>
<thead>
<tr>
<th>Year Last Reviewed</th>
<th>Topic</th>
<th>Recommendation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Immediate Recognition and Activation of the Emergency Response System</td>
<td>It is recommended that emergency dispatchers determine if a patient is unresponsive with abnormal breathing after acquiring the requisite information to determine the location of the event (Class I, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Immediate Recognition and Activation of the Emergency Response System</td>
<td>If the patient is unresponsive with abnormal or absent breathing, it is reasonable for the emergency dispatcher to assume that the patient is in cardiac arrest (Class IIa, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Immediate Recognition and Activation of the Emergency Response System</td>
<td>Dispatchers should be educated to identify unresponsiveness with abnormal breathing and agonal gasps across a range of clinical presentations and descriptions (Class I, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Early CPR</td>
<td>Similar to the 2010 Guidelines, it may be reasonable for rescuers to initiate CPR with chest compressions (Class IIb, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Untrained Lay Rescuer</td>
<td>Untrained lay rescuers should provide compression-only CPR, with or without dispatcher assistance (Class I, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Untrained Lay Rescuer</td>
<td>The rescuer should continue compression-only CPR until the arrival of an AED or rescuers with additional training (Class I, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Trained Lay Rescuer</td>
<td>All lay rescuers should, at a minimum, provide chest compressions for victims of cardiac arrest (Class I, LOE C-LD). In addition, if the trained lay rescuer is able to perform rescue breaths, he or she should add rescue breaths in a ratio of 30 compressions to 2 breaths.</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Trained Lay Rescuer</td>
<td>The rescuer should continue CPR until an AED arrives and is ready for use or EMS providers take over care of the victim (Class I, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Healthcare Provider</td>
<td>It is reasonable for healthcare providers to provide chest compressions and ventilation for all adult patients in cardiac arrest, from either a cardiac or noncardiac cause (Class IIa, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Delayed Ventilation</td>
<td>For witnessed OHCA with a shockable rhythm, it may be reasonable for EMS systems with priority-based, multitiered response to delay positive-pressure ventilation by using a strategy of up to 3 cycles of 200 continuous compressions with passive oxygen insufflation and airway adjuncts (Class IIb, LOE C-LD).</td>
<td>new for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Recognition of Arrest</td>
<td>Dispatchers should instruct rescuers to provide CPR if the victim is unresponsive with no normal breathing, even when the victim demonstrates occasional gasps (Class I, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Suspected Opioid-Related Life-Threatening Emergency</td>
<td>For a patient with known or suspected opioid addiction who has a definite pulse but no normal breathing or only gasping (ie, a respiratory arrest), in addition to providing standard BLS care, it is reasonable for appropriately trained BLS healthcare providers to administer intramuscular or intranasal naloxone (Class IIa, LOE C-LD).</td>
<td>new for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Suspected Opioid-Related Life-Threatening Emergency</td>
<td>For patients in cardiac arrest, medication administration is ineffective without concomitant chest compressions for drug delivery to the tissues, so naloxone administration may be considered after initiation of CPR if there is high suspicion for opiate overdose (Class IIb, LOE C-EO).</td>
<td>new for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Suspected Opioid-Related Life-Threatening Emergency</td>
<td>It is reasonable to provide opioid overdose response education with or without naloxone distribution to persons at risk for opioid overdose in any setting (Class IIa, LOE C-LD).</td>
<td>new for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Hand Position During Compressions</td>
<td>Consistent with the 2010 Guidelines, it is reasonable to position hands for chest compressions on the lower half of the sternum in adults with cardiac arrest (Class IIa, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Chest Compression Rate</td>
<td>In adult victims of cardiac arrest, it is reasonable for rescuers to perform chest compressions at a rate of 100/min to 120/min (Class IIa, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Chest Compression Depth</td>
<td>During manual CPR, rescuers should perform chest compressions to a depth of at least 2 inches or 5 cm for an average adult, while avoiding excessive chest compression depths (greater than 2.4 inches or 6 cm) (Class I, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Chest Wall Recoil</td>
<td>It is reasonable for rescuers to avoid leaning on the chest between compressions to allow full chest wall recoil for adults in cardiac arrest (Class IIa, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Minimizing Interruptions in Chest Compressions</td>
<td>In adult cardiac arrest, total preshock and postshock pauses in chest compressions should be as short as possible (Class I, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Minimizing Interruptions in Chest Compressions</td>
<td>For adults in cardiac arrest receiving CPR without an advanced airway, it is reasonable to pause compressions for less than 10 seconds to deliver 2 breaths (Class IIa, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Year Last Reviewed</th>
<th>Topic</th>
<th>Recommendation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Minimizing Intermittions in Chest Compressions</td>
<td>In adult cardiac arrest with an unprotected airway, it may be reasonable to perform CPR with the goal of a chest compression fraction as high as possible, with a target of at least 60% (Class IIb, LOE C-LD).</td>
<td>new for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Compression-to-Ventilation Ratio</td>
<td>Consistent with the 2010 Guidelines, it is reasonable for rescuers to provide a compression-to-ventilation ratio of 30:2 for adults in cardiac arrest (Class IIa, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Layperson—Compression-Only CPR Versus Conventional CPR</td>
<td>Dispatchers should instruct untrained lay rescuers to provide compression-only CPR for adults with sudden cardiac arrest (Class I, LOE B-R).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Layperson—Compression-Only CPR Versus Conventional CPR</td>
<td>Compression-only CPR is a reasonable alternative to conventional CPR in the adult cardiac arrest patient (Class IIa, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Layperson—Compression-Only CPR Versus Conventional CPR</td>
<td>For trained rescuers, ventilation may be considered in addition to chest compressions for the adult in cardiac arrest (Class IIb, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Open the Airway: Lay Rescuer</td>
<td>For victims with suspected spinal injury, rescuers should initially use manual spinal motion restriction (eg, placing 1 hand on either side of the patient’s head to hold it still) rather than immobilization devices, because use of immobilization devices by lay rescuers may be harmful (Class III: Harm, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Bag-Mask Ventilation</td>
<td>As long as the patient does not have an advanced airway in place, the rescuers should deliver cycles of 30 compressions and 2 breaths during CPR. The rescuer delivers breaths during pauses in compressions and delivers each breath over approximately 1 second (Class IIa, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Ventilation With an Advanced Airway</td>
<td>When the victim has an advanced airway in place during CPR, rescuers no longer deliver cycles of 30 compressions and 2 breaths (ie, they no longer interrupt compressions to deliver 2 breaths). Instead, it may be reasonable for the provider to deliver 1 breath every 6 seconds (10 breaths per minute) while continuous chest compressions are being performed (Class IIb, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Passive Oxygen Versus Positive-Pressure Oxygen During CPR</td>
<td>We do not recommend the routine use of passive ventilation techniques during conventional CPR for adults, because the usefulness/effectiveness of these techniques is unknown (Class IIb, LOE C-EO).</td>
<td>new for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Passive Oxygen Versus Positive-Pressure Oxygen During CPR</td>
<td>However, in EMS systems that use bundles of care involving continuous chest compressions, the use of passive ventilation techniques may be considered as part of that bundle (Class IIb, LOE C-LD).</td>
<td>new for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>CPR Before Defibrillation</td>
<td>For witnessed adult cardiac arrest when an AED is immediately available, it is reasonable that the defibrillator be used as soon as possible (Class IIa, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>CPR Before Defibrillation</td>
<td>For adults with unmonitored cardiac arrest or for whom an AED is not immediately available, it is reasonable that CPR be initiated while the defibrillator equipment is being retrieved and applied and that defibrillation, if indicated, be attempted as soon as the device is ready for use (Class IIa, LOE B-R).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Analysis of Rhythm During Compressions</td>
<td>There is insufficient evidence to recommend the use of artifact-filtering algorithms for analysis of ECG rhythm during CPR. Their use may be considered as part of a research program or if an EMS system has already incorporated ECG artifact-filtering algorithms in its resuscitation protocols (Class IIb, LOE C-EO).</td>
<td>new for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Timing of Rhythm Check</td>
<td>It may be reasonable to immediately resume chest compressions after shock delivery for adults in cardiac arrest in any setting (Class IIb, LOE C-LD).</td>
<td>updated for 2015</td>
</tr>
<tr>
<td>2015</td>
<td>Chest Compression Feedback</td>
<td>It may be reasonable to use audiovisual feedback devices during CPR for real-time optimization of CPR performance (Class IIb, LOE B-R).</td>
<td>updated for 2015</td>
</tr>
</tbody>
</table>

The following recommendations were not reviewed in 2015. For more information, see the 2010 AHA Guidelines for CPR and ECC, “Part 5: Adult Basic Life Support.”
<table>
<thead>
<tr>
<th>Year Last Reviewed</th>
<th>Topic</th>
<th>Recommendation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Early Defibrillation With an AED</td>
<td>When 2 or more rescuers are present, one rescuer should begin chest compressions while a second rescuer activates the emergency response system and gets the AED (or a manual defibrillator in most hospitals) (Class Ila, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Recognition of Arrest</td>
<td>The rescuer should treat the victim who has occasional gasps as if he or she is not breathing (Class I, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Technique: Chest Compressions</td>
<td>The rescuer should place the heel of one hand on the center (middle) of the victim’s chest (which is the lower half of the sternum) and the heel of the other hand on top of the first so that the hands are overlapped and parallel (Class Ila, LOE B).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Technique: Chest Compressions</td>
<td>Because of the difficulty in providing effective chest compressions while moving the patient during CPR, the resuscitation should generally be conducted where the patient is found (Class Ila, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Compression-Ventilation Ratio</td>
<td>Once an advanced airway is in place, 2 rescuers no longer need to pause chest compressions for ventilations. Instead, the compressing rescuer should give continuous chest compressions at a rate of at least 100 per minute without pauses for ventilation (Class Ila, LOE B).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Open the Airway: Lay Rescuer</td>
<td>The trained lay rescuer who feels confident that he or she can perform both compressions and ventilations should open the airway using a head tilt–chin lift maneuver (Class Ila, LOE B).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Open the Airway: Healthcare Provider</td>
<td>Although the head tilt–chin lift technique was developed using unconscious, paralyzed adult volunteers and has not been studied in victims with cardiac arrest, clinical and radiographic evidence and a case series have shown it to be effective (Class Ila, LOE B).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Open the Airway: Healthcare Provider</td>
<td>If healthcare providers suspect a cervical spine injury, they should open the airway using a jaw thrust without head extension (Class IIb, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Rescue Breathing</td>
<td>During adult CPR, tidal volumes of approximately 500 to 600 mL (6 to 7 mL/kg) should suffice (Class Ila, LOE B).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Rescue Breathing</td>
<td>Rescuers should avoid excessive ventilation (too many breaths or too large a volume) during CPR (Class III, LOE B).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Mouth-to-Mouth Rescue Breathing</td>
<td>Give 1 breath over 1 second, take a “regular” (not a deep) breath, and give a second rescue breath over 1 second (Class IIb, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Mouth-to-Mouth Rescue Breathing</td>
<td>If an adult victim with spontaneous circulation (ie, strong and easily palpable pulses) requires support of ventilation, the healthcare provider should give rescue breaths at a rate of about 1 breath every 5 to 6 seconds, or about 10 to 12 breaths per minute (Class IIb, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Mouth-to-Nose and Mouth-to-Stoma Ventilation</td>
<td>Mouth-to-nose ventilation is recommended if ventilation through the victim’s mouth is impossible (eg, the mouth is seriously injured), the mouth cannot be opened, the victim is in water, or a mouth-to-mouth seal is difficult to achieve (Class Ila, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Mouth-to-Nose and Mouth-to-Stoma Ventilation</td>
<td>A reasonable alternative is to create a tight seal over the stoma with a round, pediatric face mask (Class IIb, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Bag-Mask Ventilation</td>
<td>The rescuer should use an adult (1 to 2 L) bag to deliver approximately 600 mL tidal volume for adult victims. This amount is usually sufficient to produce visible chest rise and maintain oxygenation and normocarbia in apneic patients (Class Ila, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Bag-Mask Ventilation</td>
<td>The rescuer delivers ventilations during pauses in compressions and delivers each breath over 1 second (Class Ila, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Mouth-to-Nose and Mouth-to-Stoma Ventilation</td>
<td>Ventilation with a bag through these devices provides an acceptable alternative to bag-mask ventilation for well-trained healthcare providers who have sufficient experience to use the devices for airway management during cardiac arrest (Class Ila, LOE B).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Cricoid Pressure</td>
<td>The routine use of cricoid pressure in adult cardiac arrest is not recommended (Class III, LOE B).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>AED Defibrillation</td>
<td>Rapid defibrillation is the treatment of choice for VF of short duration, such as for victims of witnessed out-of-hospital cardiac arrest or for hospitalized patients whose heart rhythm is monitored (Class I, LOE A).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>AED Defibrillation</td>
<td>There is insufficient evidence to recommend for or against delaying defibrillation to provide a period of CPR for patients in VF/pulseless VT out-of-hospital cardiac arrest. In settings with lay rescuer AED programs (AED onsite and available) and for in-hospital environments, or if the EMS rescuer witnesses the collapse, the rescuer should use the defibrillator as soon as it is available (Class Ila, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Recovery Position</td>
<td>The position should be stable, near a true lateral position, with the head dependent and with no pressure on the chest to impair breathing (Class Ila, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
</tbody>
</table>

(Continued)
2015 Guidelines Update: Part 5 Recommendations, Continued

<table>
<thead>
<tr>
<th>Year Last Reviewed</th>
<th>Topic</th>
<th>Recommendation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Acute Coronary Syndromes</td>
<td>If the patient has not taken aspirin and has no history of aspirin allergy and no evidence of recent gastrointestinal bleeding, EMS providers should give the patient nonenteric aspirin (160 to 325 mg) to chew (Class I, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Acute Coronary Syndromes</td>
<td>Although it is reasonable to consider the early administration of nitroglycerin in select hemodynamically stable patients, insufficient evidence exists to support or refute the routine administration of nitroglycerin in the ED or prehospital setting in patients with a suspected ACS (Class IIb, LOE B).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Stroke</td>
<td>Patients at high risk for stroke, their family members, and BLS providers should learn to recognize the signs and symptoms of stroke and to call EMS as soon as any signs of stroke are present (Class I, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Stroke</td>
<td>EMS dispatchers should be trained to suspect stroke and rapidly dispatch emergency responders. EMS personnel should be able to perform an out-of-hospital stroke assessment (Class I, LOE B), establish the time of symptom onset when possible, provide cardiopulmonary support, and notify the receiving hospital that a patient with possible stroke is being transported.</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Stroke</td>
<td>EMS systems should have protocols that address triaging the patient when possible directly to a stroke center (Class I, LOE B).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Stroke</td>
<td>Both out-of-hospital and inhospital medical personnel should administer supplementary oxygen to hypoxic (ie, oxygen saturation <94%) stroke patients (Class I, LOE C) or those with unknown oxygen saturation.</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Stroke</td>
<td>Unless the patient is hypotensive (systolic blood pressure <90 mm Hg), prehospital intervention for blood pressure is not recommended (Class III, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
<tr>
<td>2010</td>
<td>Drowning</td>
<td>Mouth-to-mouth ventilation in the water may be helpful when administered by a trained rescuer (Class IIb, LOE C).</td>
<td>not reviewed in 2015</td>
</tr>
</tbody>
</table>

References

29. Kleinman et al. Part 5: Adult BLS and CPR S431
71. Beesems SG, Wijnmans L, Tijssen JG, Koster RW. Duration of ventilation during cardiopulmonary resuscitation by lay rescuers and first responders: relationship between delivering chest compressions

105. Rea TD, Helbok M, Perry S, Garcia M, Cloyd D, Becker L, Eisenberg M. Increasing use of cardiopulmonary resuscitation during out-of-hospital ventricular fibrillation arrest: survival implications of...

Key Words: cardiac arrest ■ cardiopulmonary resuscitation ■ defibrillation ■ emergency