A 89-year-old woman underwent transcatheter aortic valve implantation (TAVI) using a transapical approach for severe senile calcific aortic stenosis (area = 0.39 cm²; peak and mean gradients = 176 mmHg and 103 mmHg, respectively; ejection fraction = 62%). Preprocedural computed tomography imaging revealed severe calcification of the left coronary cusp and a small sinus of Valsalva (Figure 1A). The patient was considered high-risk for coronary obstruction after TAVI.

Aortography during predilatation with a 20-mm balloon showed reduced coronary blood flow. Sion Blue wires (Asahi Intecc, Aichi, Japan) and a 2.5-mm noncompliant balloon catheter were placed in the left coronary artery before valve implantation. A 23-mm Sapien XT valve (Edwards Lifesciences, Irvine, Calif.) was implanted under rapid right ventricular pacing at 200 bpm. Shortly after implantation, the patient became hypotensive, and transesophageal echocardiography revealed regional wall motion abnormalities involving the anterior and anteroseptal walls. Selective angiography revealed severe stenosis of the left main trunk (Figure 2A). After dilatation of the left main trunk by the 2.5-mm balloon catheter, an intravascular ultrasound examination was performed which showed that the left main trunk stenosis was attributable to external compression by the displaced native leaflet calcification and hematoma (Movie I in the online-only Data Supplement, Figure 3A). Transesophageal echocardiography revealed the absence of wall motion abnormalities and perivalvular leaks. The patient’s postprocedural course was uneventful. Postprocedural CT imaging obtained 10 days after TAVI showed that the displaced leaflet calcification compressed the left main trunk stent, but the stent was well expanded without any residual hematoma around the stent (Figure 1B). Coronary artery obstruction after TAVI is rare but can be a fatal complication.1,2 Unsuccessful percutaneous coronary intervention after coronary obstruction leads to disastrous outcomes. The most frequent mechanism associated with coronary obstruction after TAVI has been considered the displacement of the calcified native cusp over the coronary ostium. Kim and colleagues3 described a case of coronary occlusion after TAVI attributable to contained aortic root hematoma. Contained aortic root hematoma is another cause of TAVI-related coronary obstruction. To the best of our knowledge, our case is the first report that describes intravascular ultrasound imaging of TAVI-induced coronary obstruction caused by a bulky calcification and hematoma.

Disclosures
None.

References

© 2015 American Heart Association, Inc.
Circulation is available at http://circ.ahajournals.org
DOI: 10.1161/CIRCULATIONAHA.114.014690


Figure 1. Computed tomography (CT) imaging before and after transcatheter aortic valve implantation (TAVI). A, CT imaging before TAVI showing a severe calcification of the left coronary cusp and a small sinus of valsalva. B, CT imaging after TAVI showing the displaced leaflet calcification and the patent coronary stent. There were no signs of residual hematoma around the stent.

Figure 2. A, Coronary angiography just after the valve implantation showing a severe stenosis of the left main trunk. B, Final coronary angiography after successful deployment of a drug-eluting stent into the ostium of the left main trunk.

Figure 3. Intravascular ultrasound (IVUS) imaging before and after the coronary stent implantation. A, IVUS imaging showing severe left main trunk stenosis caused by external compression by the displaced native leaflet calcification and hematoma. B, IVUS imaging showing a well expanded stent.
Intravascular Ultrasound Observation of an Obstruction of the Left Main Coronary Artery Caused by Displaced Leaflet Calcification and Hematoma After Transcatheter Aortic Valve Implantation

Tomohiko Taniguchi, Naritatsu Saito, Kenji Minakata, Masao Imai, Hirotoshi Watanabe, Toshiaki Toyota, Shin Watanabe, Junichi Tazaki, Shigeki Koizumi, Shingo Hirao, Kazuhiro Taniguchi, Hiroki Daijo, Ryuzo Sakata and Takeshi Kimura

Circulation. 2015;131:e345-e346
doi: 10.1161/CIRCULATIONAHA.114.014690

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/131/7/e345

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2015/06/18/CIRCULATIONAHA.114.014690.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/