AHA Statistical Update

Heart Disease and Stroke Statistics—2015 Update
A Report From the American Heart Association

WRITING GROUP MEMBERS
Dariush Mozaffarian, MD, DrPH, FAHA; Emelia J. Benjamin, MD, ScM, FAHA; Alan S. Go, MD; Donna K. Arnett, PhD, MSPH, FAHA; Michael J. Blaha, MD, MPH; Mary Cushman, MD, MSc, FAHA; Sarah de Ferranti, MD, MPH; Jean-Pierre Després, PhD, FAHA; Heather J. Fullerton, MD, MAS; Virginia J. Howard, PhD, FAHA; Mark D. Huffman, MD, MPH, FAHA; Suzanne E. Judd, PhD; Brett M. Kissela, MD, MS, FAHA; Daniel T. Lackland, DrPH, MSPH, FAHA; Judith H. Lichtman, PhD, MPH; Lynda D. Lisabeth, PhD, MPH, FAHA; Simin Liu, MD, ScD, FAHA; Rachel H. Mackey, PhD, MPH, FAHA; David B. Matchar, MD, FAHA; Darren K. McGuire, MD, MHS, FAHA; Emile R. Mohler III, MD, FAHA; Claudia S. Moy, PhD, MPH; Paul Muntner, PhD; Michael E. Mussolino, PhD, FAHA; Khurram Nasir, MD, MPH; Robert W. Neumar, MD, PhD; Graham Nichol, MD, MPH, FAHA; Latha Palaniappan, MD, MS, FAHA; Dilip K. Pandey, MD, PhD, FAHA; Mathew J. Reeves, PhD, FAHA; Carlos J. Rodriguez, MD, MPH, FAHA; Paul D. Sorlie, PhD; Joel Stein, MD; Amytis Towfighi, MD; Tanya N. Turan, MD, MSCR, FAHA; Salim S. Virani, MD, PhD; Joshua Z. Willey, MD, MS; Daniel Woo, MD, MS, FAHA; Robert W. Yeh, MD, MSc, FAHA; Melanie B. Turner, MPH; on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee

Each chapter listed in this Table of Contents can be clicked to link directly to that chapter

Table of Contents

Summary .. e30
1. About These Statistics e37
2. Cardiovascular Health e40

Health Behaviors
3. Smoking/Tobacco Use e61
4. Physical Inactivity e67
5. Nutrition .. e76
6. Overweight and Obesity e91

Health Factors and Other Risk Factors
7. Family History and Genetics e101
8. High Blood Cholesterol and Other Lipids e106
9. High Blood Pressure e114
10. Diabetes Mellitus e125
11. Metabolic Syndrome e139
12. Chronic Kidney Disease e151
13. Total Cardiovascular Diseases e156
14. Stroke (Cerebrovascular Disease) e179
15. Congenital Cardiovascular Defects and Kawasaki Disease e206
16. Disorders of Heart Rhythm e215
17. Sudden Cardiac Arrest e234

The American Heart Association makes every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest.

A copy of the document is available at http://my.americanheart.org/stations by selecting either the “By Topic” link or the “By Publication Date” link. To purchase additional reprints, call 843-216-2553 or e-mail kelle.ramsay@wolterskluwer.com.

Expert peer review of AHA Scientific Statements is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit http://my.americanheart.org/stations and select the "Policies and Development" link.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the “Copyright Permissions Request Form” appears on the right side of the page.

(Circulation. 2015;131:e29–e322. DOI: 10.1161/CIR.000000000000152.)

© 2014 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIR.000000000000152
The concept of cardiovascular health represents a heightened focus for the AHA, with 3 central and novel emphases:

- The prevalence of ideal cardiovascular health is higher in US children and young adults than in US middle-aged and older adults, largely because of the higher prevalence of ideal levels of health factors in US children and young adults. However, with regard to health behaviors, children and young adults were similar to (PA) or worse than (diet) middle-aged and older adults. Poor diet and physical inactivity in childhood and younger age are strong predictors of suboptimal health factors later in life.

- Approximately 50% of US children 12 to 19 years of age have ≥5 metrics at ideal levels, with lower prevalence in girls (47%) than in boys (52%).

- Only 18% of US adults have ≥5 metrics with ideal levels, with lower prevalence in men (11%) than in women (25%).

- Among children, the prevalence of ideal levels of cardiovascular health behaviors and factors currently varies from <1% for the healthy diet pattern (ie, <1 in 100 US children meets at least 4 of the 5 dietary components) to >80% for the smoking, blood pressure, and fasting glucose levels.

- Among US adults, the prevalence of ideal levels of cardiovascular health behaviors and factors currently varies from 0.5% for the healthy diet pattern to up to 78% for the smoking metric (never having smoked or being a former smoker who has quit for >12 months).

Effective Approaches to Improve Cardiovascular Health (Chapter 2)

- The current evidence supports a range of complementary strategies to improve cardiovascular health, including:
 - Individual-focused approaches, which target lifestyle and treatments at the individual level
 - Healthcare systems approaches, which encourage, facilitate, and reward efforts by providers to improve health behaviors and health factors
 - Population approaches, which target lifestyle and treatments in schools or workplaces, local communities, and states, as well as throughout the nation

- Such approaches can focus on both (1) improving cardiovascular health among those who currently have less than optimal levels and (2) preserving cardiovascular health among those who currently have ideal levels (in particular, children, adolescents, and young adults) as they age.

- The metrics with the greatest potential for improvement are health behaviors, including diet quality, PA, and body...
The leading risk factor for death and disability in the United States and in the world.

Health Behaviors (Chapters 3 to 6)

Based on comparable risk assessment methods, poor lifestyle behaviors and lifestyle-related risk factors are the foremost causes of death and disability in the United States and in the world.

Smoking/Tobacco Use (Chapter 3)

- Although tobacco use has declined substantially in the United States, it remains the second-leading cause of total deaths and disability. The percentage of adults who reported current cigarette use declined from 24.1% in 1998 to 17.9% in 2013; among high school students, the decline was from 36.4% in 1997 to 15.7% in 2013. Still, almost one third of coronary heart disease deaths are attributable to smoking and exposure to secondhand smoke.

- Declines in tobacco usage in the United States may be threatened by the >250 e-cigarette products that were available in 2014. To date, the risks and benefits of e-tobacco products remain controversial but are an area of intense investigation by scientists, as well as scrutiny by the US Food and Drug Administration. Public health experts are concerned that e-cigarettes may be a gateway to smoking traditional cigarettes and may be eroding gains in the public’s awareness of the harms of tobacco products.

- Annual smoking-attributable economic costs in the United States, including direct medical costs and lost productivity, are estimated to exceed $289 billion.

Physical Inactivity (Chapter 4)

- In 2013, 15.2% of adolescents reported being inactive during the prior week, and inactivity was more likely to be reported by girls (19.2%) than boys (11.2%). Inactivity was more commonly reported by black (27.3%) and Hispanic (20.3%) girls than their white counterparts (16.1%); similarly, black (15.2%) and Hispanic (12.1%) boys reported more inactivity than white boys (9.2%).

- According to 2013 National Health Interview Survey data, only half of American adults met the current aerobic PA guidelines (≥150 minutes of moderate PA or 75 minutes of vigorous PA or an equivalent combination each week). Women (46.1%) were less likely to meet the guidelines than men (54.2%), and non-Hispanic blacks (41.4%) and Hispanics (42.9%), were less likely to meet them than non-Hispanic whites (53.4%).

- Unfortunately, the proportion of individuals meeting PA recommendations is likely to be lower than indicated by self-report data. Studies examining actual (with accelerometers, pedometers, etc) versus self-reported PA indicate that both men and women overestimate their PA substantially (by 44% and 138% for men and women, respectively).

Nutrition (Chapter 5)

- The leading risk factor for death and disability in the United States is suboptimal diet quality, which in 2010 led to 678,000 annual deaths of all causes. Major contributors were insufficient intakes of fruits, nuts/seeds, whole grains, vegetables, and seafood, as well as excess intakes of sodium. In the United States, an estimated 58,000 annual CVD deaths (95% confidence interval, 37,000–80,000) in 2010 were attributable to sodium intake >2.0 g/d, representing 1 in 16 (6.3%) of all CVD deaths and 1 in 8 (13.1%) CVD deaths before age 70 years. Globally, an estimated 1.65 million annual CVD deaths (95% confidence interval, 1.10–2.22) were attributable to sodium intake >2.0 g/d, representing nearly 1 in 10 (9.5%) of all CVD deaths.

- Although healthier diets cost modestly more than unhealthful diets, comparing extremes of unhealthful versus healthful food-based diet patterns, the more healthful patterns cost on average ≈$1.50 per day more. Similarly priced options are also common; in a comparison of 20 fruits and vegetables versus 20 common snack foods such as cookies, chips, pastries, and crackers, the average price per portion of fruits and vegetables was 31 cents, with an average of 57 calories per portion, versus 33 cents and 183 calories per portion for snack foods.

Obesity (Chapter 6)

- Although the overall prevalence of obesity in US youth did not change between 2003 to 2004 and 2011 to 2012, the prevalence decreased among those aged 2 to 5 years. Obesity decreased among those of higher socioeconomic status but increased among those of lower socioeconomic status. In addition, the overall prevalence of severe obesity in US youth continued to increase, especially among adolescent boys.

- Overweight and obesity predispose individuals to most major risk factors, including physical inactivity, hypertension, hyperlipidemia, and diabetes mellitus.

- Excess body weight is among the leading causes of death and disability in the United States and globally, with burdens expected to increase in coming years.

- Among overweight and obese individuals, existing cardiometabolic risk factors should be monitored and treated intensively with diet quality, PA, and pharmacological or other treatments as necessary. Each of these interventions provides benefits independent of weight loss and maintenance.

Health Factors and Other Risk Factors (Chapters 7 to 12)

The prevalence and control of cardiovascular health factors and risks remains a major issue for many Americans.

Family History and Genetics (Chapter 7)

- Familial aggregation of CVD is related to the clustering of specific lifestyle factors and risk factors, both of which have environmental and genetic contributors. Patients with a family history of coronary artery disease have a higher prevalence of traditional CVD risk factors, underscoring opportunities for prevention.

- The risk of most CVD conditions is higher in the presence of a family history, including CVD (45% higher odds with sibling history), stroke (50% higher odds with history in a first-degree relative), atrial fibrillation (AF, 80% higher odds with parental history), heart failure (70% higher odds...
with parental history), and peripheral arterial disease (80% higher odds with family history).

High Blood Cholesterol and Other Lipids (Chapter 8)
- 75.7% of children and 46.6% of adults have ideal cholesterol levels (untreated total cholesterol <170 mg/dL for children and <200 mg/dL for adults). Prevalence of ideal levels has improved over the past decade in children but remained the same in adults.
- According to 2009 to 2012 data, >100 million US adults ≥20 years of age have total cholesterol levels ≥200 mg/dL; almost 31 million have levels ≥240 mg/dL.

High Blood Pressure (Chapter 9)
- Based on 2009 to 2012 data, 32.6% of US adults ≥20 years of age have hypertension, which represents ≥80.0 million US adults. African American adults have among the highest prevalence of hypertension in the world. Among non-Hispanic black men and women, the age-adjusted prevalence of hypertension was 44.9% and 46.1%, respectively.
- National Health and Nutrition Examination Survey (NHANES) data from 2009 to 2012 revealed that among US adults with hypertension, 54.1% were controlled, 76.5% were currently treated, 82.7% were aware they had hypertension, and 17.3% were undiagnosed.

Diabetes Mellitus (Chapter 10)
- Diabetes mellitus affects 1 in 10 US adults, with 90% to 95% of cases being type 2 diabetes mellitus. Diabetes mellitus disproportionately affects racial/ethnic minorities. Type 2 diabetes mellitus is increasingly common in children and adolescents; the disease historically was diagnosed primarily in adults ≥40 years of age. The prevalence of type 2 diabetes mellitus in children/adolescents has increased by 30.5% between 2001 and 2009, and it now constitutes ≥50% of all childhood diabetes mellitus.
- Diabetes mellitus is associated with reduced longevity, with men with diabetes mellitus living an average of 7.5 years and women with diabetes mellitus living an average of 8.2 years less than their counterparts without diabetes mellitus.

Metabolic Syndrome (Chapter 11)
- From 1999 to 2010, the age-adjusted national prevalence of metabolic syndrome in the United States peaked (in the 2001–2002 cycle) and began to fall. This is attributable to decreases in the age-adjusted prevalence among women and no change in men. In addition, there has been variation in the trends over time for each individual component of the metabolic syndrome. Generally, the national prevalences of hypertriglyceridemia and elevated blood pressure have decreased, whereas hyperglycemia and elevated waist circumference have increased. However, these trends also vary significantly by sex and race/ethnicity.

Cardiovascular Conditions/Diseases (Chapters 13 to 22)
Rates of death attributable to CVD have declined in the United States, but the burden remains high.

Total Cardiovascular Diseases (Chapter 13)
- The 2011 overall rate of death attributable to CVD was 229.6 per 100000 Americans. The death rates were 275.7 for males and 192.3 for females. The rates were 271.9 for white males, 352.4 for black males, 188.1 for white females, and 248.6 for black females.
- From 2001 to 2011, death rates attributable to CVD declined 30.8%. In the same 10-year period, the actual number of CVD deaths per year declined by 15.5%. Yet in 2011, CVD still accounted for 31.3% (786641) of all 2515458 deaths, or ≥1 of every 3 deaths in the United States.
- On the basis of 2011 death rate data, >2150 Americans die of CVD each day, an average of 1 death every 40 seconds. Approximately 135000 Americans who died of CVD in 2011 were <65 years of age. In 2011, 34% of deaths attributable to CVD occurred before the age of 75 years, which is younger than the current average life expectancy of 78.7 years.

Stroke (Chapter 14)
- From 2001 to 2011, the relative rate of stroke death fell by 35.1% and the actual number of stroke deaths declined by 21.2%. Yet each year, ≥795000 people continue to experience a new or recurrent stroke (ischemic or hemorrhagic). Approximately 610000 of these are first events and 185000 are recurrent stroke events. In 2011, stroke caused ≥1 of every 20 deaths in the United States. On average, every 40 seconds, someone in the United States has a stroke, and someone dies of one approximately every 4 minutes.
- The decline in stroke mortality over the past decades, a major improvement in population health observed for both sexes and all race and age groups, has resulted from reduced stroke incidence and lower case fatality rates. The significant improvements in stroke outcomes are concurrent with cardiovascular risk factor control interventions. The hypertension control efforts initiated in the 1970s appear to have had the most substantial influence on the accelerated decline in stroke mortality, with lower blood pressure distributions in the population. Control of diabetes mellitus and high cholesterol and smoking cessation programs, particularly in combination with hypertension treatment, also appear to have contributed to the decline in stroke mortality.

Atrial Fibrillation (Chapter 16)
- Multiple lines of evidence have increased awareness of the burden of unrecognized AF. In individuals without a history of AF with recent pacemaker or defibrillator implantation, subclinical atrial tachyarrhythmias were detected in 10.1% of patients. Subclinical atrial tachyarrhythmias were associated with a 5.6-fold higher risk of clinical AF and ≥13% of ischemic strokes or embolism. A recent systematic review suggested that one needs to screen 170 community-based individuals at least 65 years of age to detect 1 case of AF.
Sudden Cardiac Arrest (Chapter 17)

- In 2011, ≈326,200 people experienced emergency medical services–assessed out-of-hospital cardiac arrests in the United States. Survival to hospital discharge after nontraumatic EMS-treated cardiac arrest with any first recorded rhythm was 10.6% for patients of any age. Of the 19,300 bystander-witnessed out-of-hospital cardiac arrests in 2011, 31.4% of victims survived.
- Each year, ≈209,000 people are treated for in-hospital cardiac arrest.

Coronary Heart Disease (Chapter 19)

- Coronary heart disease alone caused ≈1 of every 7 deaths in the United States in 2011. In 2011, 375,295 Americans died of coronary heart disease. Each year, an estimated ≈635,000 Americans have a new coronary attack (defined as first hospitalized myocardial infarction or coronary heart disease death) and ≈300,000 have a recurrent attack. It is estimated that an additional 155,000 silent first myocardial infarctions occur each year. Approximately every 34 seconds, 1 American has a coronary event, and approximately every 1 minute 24 seconds, an American will die of one.

Heart Failure (Chapter 20)

- In 2011, 1 in 9 death certificates (284,388 deaths) in the United States mentioned heart failure. Heart failure was the underlying cause in 58,309 of those deaths. The number of any-mention deaths attributable to heart failure was approximately as high in 1995 (287,000) as it was in 2011 (284,000). Additionally, hospital discharges for heart failure remained stable from 2000 to 2010, with first-listed discharges of 1,008,000 and 1,023,000, respectively.

Cardiovascular Quality of Care, Procedure Utilization, and Costs (Chapters 23 to 25)

The Statistical Update provides critical data in several sections on the magnitude of healthcare delivery and costs, as well as the quality of healthcare delivery, related to CVD risk factors and conditions.

Quality-of-Care Metrics for CVD (Chapter 23)

- The Institute of Medicine has identified 6 domains of quality of care, including safety, effectiveness, patient-centered care, timely care, efficiency, and equitable care.
- According to the Medicare Patient Safety Monitoring System, between 2005 and 2011, adverse event rates in hospitalized patients declined for both myocardial infarction (from 5.0% to 3.7%) and congestive heart failure (from 3.7% to 2.7%)
- However, in the American College of Cardiology’s Practice Innovation and Clinical Excellence (PINCACLE) outpatient registry, only 66.5% of eligible patients with coronary artery disease received the optimal evidenced-based combination of medications.
- A randomized trial of post–acute coronary care syndrome that used multiple modalities to enhance adherence to 4 indicated medications (clopidogrel, statins, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, and β-blockers) demonstrated better adherence in the intervention group (89.3% versus 73.9%) at 1 year.
- Similarly, challenges persist in the outpatient setting, in discussion and counseling for PA and dietary habits.

Cardiovascular Procedure Use and Costs (Chapters 24 and 25)

- The total number of inpatient cardiovascular operations and procedures increased 28% between 2000 and 2010, from 5,939,000 to 7,588,000.
- According to the 2012 National Healthcare Cost and Utilization Project statistics, the mean hospital charge for a vascular or cardiac surgery or procedure in 2012 was $78,897: cardiac revascularization cost $149,480, and percutaneous interventions cost $70,027.
- For 2011, the estimated annual costs for CVD and stroke were $320.1 billion, including $195.6 billion in direct costs (hospital services, physicians and other professionals, prescribed medications, home health care, and other medical durables) and $124.5 billion in indirect costs from lost future productivity (cardiovascular and stroke premature deaths). CVD costs more than any other diagnostic group.
- By comparison, in 2009, the estimated cost of all cancer and benign neoplasms was $216.6 billion ($86.6 billion in direct costs and $130 billion in mortality indirect costs).

Conclusions

The AHA, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the Statistical Update. This annual Statistical Update is the product of a full year’s worth of effort by dedicated volunteer physicians and scientists, committed government professionals, and outstanding AHA staff members, without whom publication of this valuable resource would be impossible. Their contributions are gratefully acknowledged.

Dariush Mozaffarian, MD, DrPH, FAHA
Emelia J. Benjamin, MD, ScM, FAHA
Melanie B. Turner, MPH
On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee

Note: Population data used in the compilation of NHANES prevalence estimates are for the latest year of the NHANES survey being used. Extrapolations for NHANES prevalence estimates are based on the census resident population for 2012 because this is the most recent year of NHANES data used in the Statistical Update.

Acknowledgments

We wish to thank Cathleen Gillespie, Sheila Franco, Matthew Ritchey, Lucy Hsu, Michael Wolz, Faisal Rahman, and the staff of the Centers for Disease Control and Prevention and the National Heart, Lung, and Blood Institute for their valuable comments and contributions.

Key Words: AHA Scientific Statements cardiovascular diseases epidemiology risk factors statistics stroke
Writing Group Disclosures

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dariush Mozaffarian</td>
<td>Tufts University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Quaker Oats*; Pollock Institute*; Bunge*; Food Minds*; Nutrition Impact*; Amarin*; AstraZeneca*; Winston and Strawn LLP*; Life Sciences Research Organization*</td>
</tr>
<tr>
<td>Donna K. Arnett</td>
<td>University of Alabama at Birmingham</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Emelia J. Benjamin</td>
<td>Boston University School of Medicine</td>
<td>NIH/NHLBI†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>AHA, Circulation Associate Editor†</td>
</tr>
<tr>
<td>Michael J. Blaha</td>
<td>Johns Hopkins University School of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary Cushman</td>
<td>University of Vermont</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sarah de Ferranti</td>
<td>Children’s Hospital Boston</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jean-Pierre Desprès</td>
<td>Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec</td>
<td>Canadian Institutes of Health Research (CIHR)†; European Foundation for the Study of Diabetes (EFSID)†; Fondation de l’UICPQ†; Fondation de l’UICPQ†; Canadian Partnership Against Cancer (CPAC) and Heart & Stroke Foundation of Canada (HSFC)†; Canadian Institutes of Health Research (CIHR)†; Diabète Québec*; Ministère de la Santé et des Services sociaux du Québec†; Ministère des Finances et de l’Économie du Québec†; Conseil franco-québécois de coopération universitaire (CFCU)†; Heart and Stroke Foundation of Canada (HSFC)†; Heart and Stroke Foundation of Canada (HSFC)†; Heart and Stroke Foundation of Canada (HSFC)†</td>
<td>None</td>
<td>Pfizer Canada†; Merck†</td>
<td>None</td>
<td>None</td>
<td>Abbott Laboratories†; Torrent Pharmaceuticals†</td>
<td></td>
</tr>
<tr>
<td>Heather J. Fullerton</td>
<td>University of California San Francisco</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Alan S. Go</td>
<td>Kaiser Permanente</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Virginia J. Howard</td>
<td>University of Alabama at Birmingham</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark D. Huffman</td>
<td>Northwestern University</td>
<td>World Heart Federation†; JR Alberts Foundation†; Eisenberg Foundation†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Suzanne E. Judd</td>
<td>University of Alabama at Birmingham</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Brett M. Kissela</td>
<td>University of Cincinnati Academic Health Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Daniel T. Lackland</td>
<td>Medical University of South Carolina</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Judith H. Lichtman</td>
<td>Yale School of Public Health</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Lynda D. Lisabeth</td>
<td>University of Michigan</td>
<td>NIH†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Simin Liu</td>
<td>Brown University</td>
<td>Stanford University †</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Rachel H. Mackey</td>
<td>University of Pittsburgh</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David B. Matchar</td>
<td>Duke University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Darren K. McGuire</td>
<td>University of Texas-Southwestern Med Ctr</td>
<td>GlaxoSmithKline*; Takeda†; Orexigen†; Janssen†; Eli Lilly*; Bristol Myers Squibb†; AstraZeneca†; Boehringer Ingelheim†; Merck†; Novo Nordisk†; Lexicon†</td>
<td>None</td>
<td>None</td>
<td>Takeda†</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Emile R. Mohler III</td>
<td>University of Pennsylvania</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Claudia S. Moy</td>
<td>NIH</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Paul Muntner</td>
<td>University of Alabama at Birmingham</td>
<td>Amgen Inc. (research grant to study cardiovascular disease prevention, diagnosis and treatment)†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Michael E. Mussolino</td>
<td>NIH</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Khurram Nasir</td>
<td>Baptist Health Medical Group</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Quest Diagnostic*</td>
</tr>
<tr>
<td>Robert W. Neumar</td>
<td>University of Michigan</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Graham Nichol</td>
<td>University of Washington</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Latha Palaniappan</td>
<td>Stanford University School of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dilip K. Pandey</td>
<td>University of Illinois at Chicago</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mathew J. Reeves</td>
<td>Michigan State University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Carlos J. Rodriguez</td>
<td>Wake Forest University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Paul D. Sorlie</td>
<td>NHLBI</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Joel Stein</td>
<td>Columbia University</td>
<td>Nexstim*; Tyromotion*; Myomo*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Amyitis Towfighi</td>
<td>University of Southern California</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Tanya N. Turan</td>
<td>Medical University of South Carolina</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanie B. Turner</td>
<td>American Heart Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Salim S. Virani</td>
<td>VA Medical Center Health Services Research and Development Center for Innovations, Baylor College of Medicine, Michael E. DeBakey VAMC, Methodist DeBakey Heart and Vascular Center</td>
<td>Department of Veterans Affairs†; American Heart Association†; American Diabetes Association†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Joshua Z. Willey</td>
<td>Columbia University</td>
<td>NIH†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Daniel Woo</td>
<td>University of Cincinnati</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert W. Yeh</td>
<td>Massachusetts General Hospital</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

*Modest.
†Significant.
1. About These Statistics

The AHA works with the CDC’s NCHS, the NHLBI, the NINDS, and other government agencies to derive the annual statistics in this Heart Disease and Stroke Statistical Update. This chapter describes the most important sources and the types of data we use from them. For more details, see Chapter 27 of this document, the Glossary.

The surveys used are the following:

- BRFSS—ongoing telephone health survey system
- GCNKSS—stroke incidence rates and outcomes within a biracial population
- MEPS—data on specific health services that Americans use, how frequently they use them, the cost of these services, and how the costs are paid

Abbreviations Used in Chapter 1

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>AHRO</td>
<td>Agency for Healthcare Research and Quality</td>
</tr>
<tr>
<td>AP</td>
<td>angina pectoris</td>
</tr>
<tr>
<td>ARIC</td>
<td>Atherosclerosis Risk in Communities Study</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>BRFSS</td>
<td>Behavioral Risk Factor Surveillance System</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CHS</td>
<td>Cardiovascular Health Study</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>ED</td>
<td>emergency department</td>
</tr>
<tr>
<td>FHS</td>
<td>Framingham Heart Study</td>
</tr>
<tr>
<td>GCNKSS</td>
<td>Greater Cincinnati/Northern Kentucky Stroke Study</td>
</tr>
<tr>
<td>HD</td>
<td>heart disease</td>
</tr>
<tr>
<td>HF</td>
<td>heart failure</td>
</tr>
<tr>
<td>ICD</td>
<td>International Classification of Diseases</td>
</tr>
<tr>
<td>ICD-9-CM</td>
<td>International Classification of Diseases, Clinical Modification, 9th Revision</td>
</tr>
<tr>
<td>ICD-10</td>
<td>International Classification of Diseases, 10th Revision</td>
</tr>
<tr>
<td>MEPS</td>
<td>Medical Expenditure Panel Survey</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>NAMCS</td>
<td>National Ambulatory Medical Care Survey</td>
</tr>
<tr>
<td>NCHS</td>
<td>National Center for Health Statistics</td>
</tr>
<tr>
<td>NHAMCS</td>
<td>National Hospital Ambulatory Medical Care Survey</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NHDS</td>
<td>National Hospital Discharge Survey</td>
</tr>
<tr>
<td>NHHCSS</td>
<td>National Home and Hospice Care Survey</td>
</tr>
<tr>
<td>NHIS</td>
<td>National Health Interview Survey</td>
</tr>
<tr>
<td>NHLBI</td>
<td>National Heart, Lung, and Blood Institute</td>
</tr>
<tr>
<td>NINDS</td>
<td>National Institute of Neurological Disorders and Stroke</td>
</tr>
<tr>
<td>NNHS</td>
<td>National Nursing Home Survey</td>
</tr>
<tr>
<td>PAD</td>
<td>peripheral artery disease</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>YRBSS</td>
<td>Youth Risk Behavior Surveillance System</td>
</tr>
</tbody>
</table>

See Glossary (Chapter 27) for explanation of terms.

Disease Prevalence

Prevalence is an estimate of how many people have a disease at a given point or period in time. The NCHS conducts health examination and health interview surveys that provide estimates of the prevalence of diseases and risk factors. In this Update, the health interview part of the NHANES is used for the prevalence of CVDs. NHANES is used more than the NHIS because in NHANES, AP is based on the Rose Questionnaire; estimates are made regularly for HF; hypertension is based on BP measurements and interviews; and an estimate can be made for total CVD, including MI, AP, HF, stroke, and hypertension.

A major emphasis of this Statistical Update is to present the latest estimates of the number of people in the United States who have specific conditions to provide a realistic estimate of burden. Many estimates based on NHANES prevalence rates are based on data collected from 2009 to 2012 (in most cases, these are the latest published figures). These are applied to census population estimates for 2012. Differences in population estimates cannot be used to evaluate possible trends in prevalence because these estimates are based on extrapolations of rates beyond the data collection period by use of more recent census population estimates. Trends can only be evaluated by comparing prevalence rates estimated from surveys conducted in different years.

Risk Factor Prevalence

The NHANES 2009 to 2012 data are used in this Update to present estimates of the percentage of people with high lipid values, DM, overweight, and obesity. The NHIS is used for the prevalence of cigarette smoking and physical inactivity. Data for students in grades 9 through 12 are obtained from the YRBSS.

Incidence and Recurrent Attacks

An incidence rate refers to the number of new cases of a disease that develop in a population per unit of time. The unit of time for incidence is not necessarily 1 year, although we often discuss incidence in terms of 1 year. For some statistics, new and recurrent attacks or cases are combined. Our national incidence estimates for various types of CVD are extrapolations to the U.S. population from the FHS, the ARIC study, and the CHS, all conducted by the NHLBI, as well as the GCNKSS, which is funded by the NINDS. The rates...
change only when new data are available; they are not computed annually. Do not compare the incidence or the rates with those in past editions of the Heart Disease and Stroke Statistics Update (also known as the Heart and Stroke Statistical Update for editions before 2005). Doing so can lead to serious misinterpretation of time trends.

Mortality

Mortality data are generally presented according to the underlying cause of death. “Any-mention” mortality means that the condition was nominally selected as the underlying cause or was otherwise mentioned on the death certificate. For many deaths classified as attributable to CVD, selection of the single most likely underlying cause can be difficult when several major comorbidities are present, as is often the case in the elderly population. It is useful, therefore, to know the extent of mortality attributable to a given cause regardless of whether it is the underlying cause or a contributing cause (ie, its “any-mention” status). The number of deaths in 2011 with any mention of specific causes of death was tabulated by the NHLB1 from the NCHS public-use electronic files on mortality.

The first set of statistics for each disease in this Update includes the number of deaths for which the disease is the underlying cause. Two exceptions are Chapter 9 (High Blood Pressure) and Chapter 20 (Cardiomyopathy and Heart Failure). High BP, or hypertension, increases the mortality risks of CVD and other diseases, and HF should be selected as an underlying cause only when the true underlying cause is not known. In this Update, hypertension and HF death rates are presented in 2 ways: (1) As nominally classified as the underlying cause and (2) as any-mention mortality.

National and state mortality data presented according to the underlying cause of death were computed from the mortality tables of the NCHS World Wide Web site or the CDC compressed mortality file. Any-mention numbers of deaths were tabulated from the electronic mortality files of the NCHS World Wide Web site.

Population Estimates

In this publication, we have used national population estimates from the US Census Bureau for 2012 in the computation of morbidity data. NCHS population estimates for 2011 were used in the computation of death rate data. The Census Bureau World Wide Web site contains these data, as well as information on the file layout.

Hospital Discharges and Ambulatory Care Visits

Estimates of the numbers of hospital discharges and numbers of procedures performed are for inpatients discharged from short-stay hospitals. Discharges include those discharged alive, dead, or with unknown status. Unless otherwise specified, discharges are listed according to the first-listed (primary) diagnosis, and procedures are listed according to all listed procedures (primary plus secondary). These estimates are from the NHDS of the NCHS unless otherwise noted. Ambulatory care visit data include patient visits to physician offices and hospital outpatient departments and EDs. Ambulatory care visit data reflect the first-listed (primary) diagnosis. These estimates are from the NAMCS and NHAMCS of the NCHS.

International Classification of Diseases

Morbidity (illness) and mortality (death) data in the United States have a standard classification system: the ICD. Approximately every 10 to 20 years, the ICD codes are revised to reflect changes over time in medical technology, diagnosis, or terminology. Where necessary for comparability of mortality trends across the 9th and 10th ICD revisions, comparability ratios computed by the NCHS are applied as noted. Effective with mortality data for 1999, we are using the 10th revision (ICD-10). It will be a few more years before the 10th revision is systematically used for hospital discharge data and ambulatory care visit data, which are based on ICD-9-CM.

Age Adjustment

Prevalence and mortality estimates for the United States or individual states comparing demographic groups or estimates over time either are age specific or are age adjusted to the 2000 standard population by the direct method. International mortality data are age adjusted to the European standard. Unless otherwise stated, all death rates in this publication are age adjusted and are deaths per 100,000 population.

Data Years for National Estimates

In this Update, we estimate the annual number of new (incidence) and recurrent cases of a disease in the United States by extrapolating to the US population in 2011 from rates reported in a community- or hospital-based study or multiple studies. Age-adjusted incidence rates by sex and race are also given in this report as observed in the study or studies. For US mortality, most numbers and rates are for 2011. For disease and risk factor prevalence, most rates in this report are calculated from the 2009 to 2012 NHANES. Because NHANES is conducted only in the noninstitutionalized population, we extrapolated the rates to the total US population in 2012, recognizing that this probably underestimates the total prevalence, given the relatively high prevalence in the institutionalized population. The numbers and rates of hospital inpatient discharges for the United States are for 2010. Numbers of visits to physician offices, hospital EDs, and hospital outpatient departments are for 2010. Except as noted, economic cost estimates are for 2011.

Cardiovascular Disease

For data on hospitalizations, physician office visits, and mortality, CVD is defined according to ICD codes given in Chapter 27 of the present document. This definition includes all diseases of the circulatory system, as well as congenital CVD. Unless so specified, an estimate for total CVD does not include congenital CVD. Prevalence of CVD includes people with hypertension, HD, stroke, PAD, and diseases of the veins.

Race

Data published by governmental agencies for some racial groups are considered unreliable because of the small sample size in the studies. Because we try to provide data for as many
racial groups as possible, we show these data for informational and comparative purposes.

Contacts
If you have questions about statistics or any points made in this Update, please contact the AHA National Center, Office of Science & Medicine at statistics@heart.org. Direct all media inquiries to News Media Relations at inquiries@heart.org or 214-706-1173.

We do our utmost to ensure that this Update is error free. If we discover errors after publication, we will provide corrections at our World Wide Web site, http://www.heart.org/statistics, and in the journal Circulation.

References
2. Cardiovascular Health

See Tables 2-1 through 2-7 and Charts 2-1 through 2-13.

After achieving its major Impact Goals for 2010, the AHA created a new set of central organizational Impact Goals for the current decade:

By 2020, to improve the cardiovascular health of all Americans by 20%, while reducing deaths from CVDs and stroke by 20%.”¹

These goals introduce a new concept, cardiovascular health, which is characterized by 7 health metrics. Ideal cardiovascular health is defined by the absence of clinically manifest CVD together with the simultaneous presence of optimal levels of all 7 metrics, including 4 health behaviors (not smoking and having

Cardiovascular Health: Current Prevalence

- The most up-to-date data on national prevalence of ideal, intermediate, and poor levels of each of the 7 cardiovascular health metrics are shown for adolescents and teens 12 to 19 years of age (Chart 2-1) and for adults ≥20 years of age (Chart 2-2). For most metrics, the prevalence of ideal levels of health behaviors and health factors is higher in US children than in US adults. Major exceptions are diet and PA, for which prevalence of ideal levels in children is similar to (for PA) or worse (for diet) than in adults.

- Among children (Chart 2-1), the prevalence (unadjusted) of ideal levels of cardiovascular health behaviors and factors currently varies from <1% for the healthy diet pattern (ie, <1 in 100 US children meets at least 4 of the 5 dietary components) to >80% for the smoking, BP, and fasting glucose metrics.

- Among US adults (Chart 2-2), the age-standardized prevalence of ideal levels of cardiovascular health behaviors and factors currently varies from 0.5% for having at least 4 of 5 components of the healthy diet pattern to up to 78% for never having smoked or being a former smoker who has quit for >12 months.
Age-standardized and age-specific prevalence estimates for ideal cardiovascular health and for ideal levels of each of its components are shown for 2011 to 2012 (excluding diet metrics, which are 2009 to 2010) in Table 2-2.

—In 2011 to 2012, the prevalence of ideal levels across 7 health factors and health behaviors decreased dramatically from younger to older age groups. The same trend was seen in 2007 to 2010.

—The prevalence of both children and adults meeting the dietary goals appeared to improve between 2007 to 2008 and 2009 to 2010, although this improvement should be viewed with caution given the challenges of accurately determining time trends across only 2 cycles of NHANES data collection. The improvement was attributable to the greater numbers of children and adults who met the whole grains goal, greater numbers of middle-aged and older adults who met the fruits and vegetables goal, and greater numbers of adults who met the fish goal.

Chart 2-3 displays the prevalence estimates for the population of US children (12–19 years of age) meeting different numbers of criteria for ideal cardiovascular health (out of 7 possible) in 2009 to 2010.

—Few US children (≈5%) meet only 0, 1, or 2 criteria for ideal cardiovascular health.

—Nearly half of US children (45%) meet 3 or 4 criteria for ideal cardiovascular health, and about half meet 5 or 6 criteria (mostly 5 criteria).

—Virtually no children meet all 7 criteria for ideal cardiovascular health.

—Overall distributions are similar in boys and girls.

Charts 2-4 and 2-5 display the age-standardized prevalence estimates of US adults meeting different numbers of criteria for ideal cardiovascular health (out of 7 possible) in 2009 to 2010, overall and stratified by age, sex, and race.

—Approximately 2% of US adults have 0 of the 7 criteria at ideal levels, and another 12% meet only 1 of 7 criteria. This is much worse than among children.

—Most US adults (≈68%) have 2, 3, or 4 criteria at ideal cardiovascular health, with ≈1 in 4 adults within each of these categories.

—Approximately 13% of US adults meet 5 criteria, 5% meet 6 criteria, and 0.1% meet 7 criteria at ideal levels.

—Presence of ideal cardiovascular health is both age and sex related (Chart 2-4). Younger adults are more likely to meet greater numbers of ideal metrics than are older adults. More than 60% of Americans ≥60 years of age have ≥2 metrics at ideal levels. At any age, women tend to have more metrics at ideal levels than do men.

—Race is also related to presence of ideal cardiovascular health (Chart 2-5). Blacks and Mexican Americans tend to have fewer metrics at ideal levels than whites or other races. Approximately 6 in 10 white adults and 7 in 10 black or Mexican American adults have no more than 3 of 7 metrics at ideal levels.

Chart 2-6 displays the age-standardized percentages of US adults and percentages of children who have ≥5 of the metrics (out of 7 possible) at ideal levels.

—Approximately 50% of US children 12 to 19 years of age have ≥5 metrics at ideal levels, with lower prevalence in girls (47%) than in boys (52%).

—In comparison, only 18% of US adults have ≥5 metrics with ideal levels, with lower prevalence in men (11%) than in women (25%).

—All populations have improved since baseline year 2007 to 2008 except for men.

Chart 2-7 displays the age-standardized percentages of US adults meeting different numbers of criteria for both poor and ideal cardiovascular health. Meeting the AHA 2020 Strategic Impact Goals is predicated on reducing the relative percentage of those with poor levels while increasing the relative percentage of those with ideal levels for each of the 7 metrics.

—Approximately 92% of US adults have ≥1 metric at poor levels.

—Approximately 34% of US adults have ≥3 metrics at poor levels.

—Few US adults (≤3%) have ≥5 metrics at poor levels.

—More US adults have 4 to 6 ideal metrics than 4 to 6 poor metrics.

Using data from the BRFSS, Fang and colleagues estimated the prevalence of ideal cardiovascular health by state, which ranged from 1.2% (Oklahoma) to 6.9% (District of Columbia). Southern states tended to have higher rates of poor cardiovascular health, lower rates of ideal cardiovascular health, and lower mean cardiovascular health scores than New England and Western states (Chart 2-8).

Cardiovascular Health: Trends Over Time

The trends over the past decade in each of the 7 cardiovascular health metrics (for diet, trends from 2005–2006 to 2009–2010) are shown in Chart 2-9 (for children 12–19 years of age) and Chart 2-10 (for adults ≥20 years of age).

—Fewer children over time are meeting the ideal BMI metric, whereas more are meeting the ideal smoking and total cholesterol metrics. Other metrics do not show consistent trends over time in children.

—More adults over time are meeting the smoking metric, whereas fewer are meeting the BMI and glucose metrics. Trends for other metrics are not evident over time in adults.

On the basis of NHANES data from 1988 to 2008, if current trends continue, estimated cardiovascular health is projected to improve by 6% between 2010 and 2020, short of the AHA's goal of 20% improvement (Chart 2-11). On the basis of current trends among individual metrics, anticipated declines in prevalence of smoking, high cholesterol, and high BP (in men) would be offset by substantial increases in the prevalence of obesity and DM and small changes in ideal dietary patterns or PA.

On the basis of these projections in cardiovascular health factors and behaviors, CHD deaths are projected to decrease by 30% between 2010 and 2020 because of projected improvements in total cholesterol, SBP, smoking, and PA (≈167 000 fewer deaths), offset by increases in DM and BMI (≈24 000 more deaths).
CVD Mortality
- In 2011, the age-standardized death rate attributable to all CVD was 229.6 per 100,000 (includes congenital CVD, ICD-10 I00–I99, Q20–Q28; Chart 2-12), down 11.5% from 259.4 per 100,000 in 2007 (baseline data for the 2020 Impact Goals on CVD and stroke mortality).5
- Death rates in 2011 attributable to stroke, CHD, and other CVDs were 37.9, 109.2, and 81.5 per 100,000, respectively.6

Relevance of Ideal Cardiovascular Health
Since the AHA announced its 2020 Impact Goals, multiple investigations have confirmed the importance of these metrics of cardiovascular health. Overall, these data demonstrate the relevance of the concept of cardiovascular health to the risk of future risk factors, disease, and mortality, including a strong inverse, stepwise association with all-cause, CVD, and ischemic HD mortality, as well as preclinical measures of atherosclerosis, including carotid IMT, arterial stiffness, and coronary artery calcium prevalence and progression.
- A stepwise association was present between the number of ideal cardiovascular health metrics and risk of all-cause mortality, CVD mortality, and ischemic HD mortality after 14.5 years of follow-up based on NHANES 1988 to 2006 data.7 The HRs for individuals with 6 or 7 ideal health metrics compared with individuals with 0 ideal health metrics were 0.49 (95% CI, 0.33–0.74) for all-cause mortality, 0.24 (95% CI, 0.13–0.47) for CVD mortality, and 0.30 (95% CI, 0.13–0.68) for ischemic HD mortality.7 Ford et al8 demonstrated similar relationships.
- The adjusted population attributable fractions for CVD mortality were as follows:7
 - 40.6% (95% CI, 24.5%–54.6%) for HBP
 - 13.7% (95% CI, 4.8%–22.3%) for smoking
 - 13.2% (95% CI, 3.5%–29.2%) for poor diet
 - 11.9% (95% CI, 1.3%–22.3%) for insufficient PA
 - 8.8% (95% CI, 2.1%–15.4%) for abnormal glucose levels
- The adjusted population attributable fractions for ischemic HD mortality were as follows:7
 - 34.7% (95% CI, 6.6%–57.7%) for HBP
 - 16.7% (95% CI, 6.4%–26.6%) for smoking
 - 20.6% (95% CI, 1.2%–38.6%) for poor diet
 - 7.8% (95% CI, 0.0%–22.2%) for insufficient PA
 - 7.5% (95% CI, 3.0%–14.7%) for abnormal glucose levels
- Data from the REGARDS cohort also demonstrate a stepwise association between cardiovascular health metrics and incident stroke among 22,914 participants free from baseline CVD with a mean follow-up of 4.9 years. Using a cardiovascular health score scale ranging from 0 to 14, every unit increase in cardiovascular health was associated with 8% lower risk of incident stroke (HR, 0.92; 95% CI, 0.88–0.95), with a similar effect size for white (HR, 0.91; 95% CI, 0.86–0.96) and black (HR, 0.93; 95% CI, 0.87–0.98) participants.9
- Data from the Cardiovascular Lifetime Risk Pooling Project indicate that adults with all-optimal risk factor levels (similar to having ideal cardiovascular health factor levels of cholesterol, blood sugar, and BP, as well as nonsmoking status) have substantially longer overall and CVD-free survival than those who have poor levels of ≥1 of these cardiovascular health factor metrics. For example, at an index age of 45 years, men with optimal risk factor profiles lived on average 14 years longer free of all CVD events, and ≥12 years longer overall, than individuals with ≥2 risk factors.10
- Importantly, in many of these analyses, ideal health behaviors and ideal health factors were each independently associated with lower CVD risk in a stepwise fashion (Chart 2-13). Thus, across any levels of health behaviors, health factors were still associated with incident CVD, and across any levels of health factors, health behaviors were still associated with incident CVD.11
- Interestingly, based on NHANES 1999 to 2002, only modest intercorrelations are present between different cardiovascular health metrics. For example, these ranged from a correlation of −0.12 between PA and HbA1c to a correlation of 0.29 between BMI and HbA1c. Thus, although the 7 AHA cardiovascular health metrics appear modestly interrelated, substantial independent variation in each exists, and each is independently related to cardiovascular outcomes.8
- Cardiovascular health has been associated with prevalent cognitive function across the domains of visual-spatial memory, working memory, scanning and tracking, executive function, and the global composite score (P<0.05 for all) in the Maine-Syracuse Longitudinal Study.12 Ideal cardiovascular health is also directly associated with global cognitive performance.
- In REGARDS, black and white adults aged ≥45 years, free of stroke and baseline cognitive impairment, with mid (OR, 0.65; 95% CI, 0.52–0.81) to high (OR, 0.63; 95% CI, 0.51–0.79) cardiovascular health scores at baseline were found to have a lower associated incidence of clinically relevant cognitive impairment (verbal learning, memory, and fluency) than those with low cardiovascular health. No significant difference was seen between the mid and high ranges, which indicates that even when high levels of cardiovascular health are not achieved, intermediate levels are preferable to low levels.13
- The AHA cardiovascular health metrics have also been associated with a lower prevalence of incident depressive symptoms in the REGARDS14 and Aerobics Center Longitudinal Study15 cohorts, respectively.
- Recent analyses from the US Burden of Disease Collaborators demonstrated that each of the 7 health factors and behaviors causes substantial mortality and morbidity in the United States. The top risk factor related to overall disease burden was suboptimal diet, followed by tobacco smoking, high BMI, raised BP, high fasting plasma glucose, and physical inactivity.16

Achieving the 2020 Impact Goals
- Taken together, these data continue to demonstrate both the tremendous relevance of the AHA 2020 Impact Goals for cardiovascular health and the substantial progress that will be needed to achieve these goals over the next decade.
A range of complementary strategies and approaches can lead to improvements in cardiovascular health. These include each of the following:

—Individual-focused approaches, which target lifestyle and treatments at the individual level (Table 2-3)
—Healthcare systems approaches, which encourage, facilitate, and reward efforts by providers to improve health behaviors and health factors (Table 2-4)
—Population approaches, which target lifestyle and treatments in schools or workplaces, local communities, and states, as well as throughout the nation (Table 2-5)

Such approaches can focus on both (1) improving cardiovascular health among those who currently have less than optimal levels and (2) preserving cardiovascular health among those who currently have ideal levels (in particular, children, adolescents, and young adults) as they age.

The metrics with the greatest potential for improvement are health behaviors, including diet quality, PA, and body weight. However, each of the cardiovascular health metrics can be improved and deserves major focus.

Table 2-1. Definitions of Poor, Intermediate, and Ideal Cardiovascular Health for Each Metric in the AHA 2020 Goals

<table>
<thead>
<tr>
<th>Level of Cardiovascular Health for Each Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor</td>
</tr>
<tr>
<td>Intermediate</td>
</tr>
<tr>
<td>Ideal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current smoking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults ≥20 y of age</td>
</tr>
<tr>
<td>Current smoking: Yes</td>
</tr>
<tr>
<td>Former ≥12 mo</td>
</tr>
<tr>
<td>Never or quit >12 mo</td>
</tr>
<tr>
<td>Children 12–19 y of age</td>
</tr>
<tr>
<td>Tried during the prior 30 d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BMI*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults ≥20 y of age</td>
</tr>
<tr>
<td>≥30 kg/m²</td>
</tr>
<tr>
<td>25–29.9 kg/m²</td>
</tr>
<tr>
<td><25 kg/m²</td>
</tr>
<tr>
<td>Children 2–19 y of age</td>
</tr>
<tr>
<td>>95th percentile</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults ≥20 y of age</td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>1–149 min/wk moderate or ≥150 min/wk vigorous</td>
</tr>
<tr>
<td>≥150 min/wk moderate or ≥75 min/wk vigorous +2×vigorous</td>
</tr>
<tr>
<td>Children 12–19 y of age</td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>>0 and <60 min of moderate or vigorous every day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Healthy diet pattern, No. of components†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults ≥20 y of age</td>
</tr>
<tr>
<td>0–1</td>
</tr>
<tr>
<td>2–3</td>
</tr>
<tr>
<td>4–5</td>
</tr>
<tr>
<td>Children 5–19 y of age</td>
</tr>
<tr>
<td>0–1</td>
</tr>
<tr>
<td>2–3</td>
</tr>
<tr>
<td>4–5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total cholesterol, mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults ≥20 y of age</td>
</tr>
<tr>
<td>≥240</td>
</tr>
<tr>
<td>200–239 or treated to goal</td>
</tr>
<tr>
<td><200</td>
</tr>
<tr>
<td>Children 6–19 y of age</td>
</tr>
<tr>
<td>≥200</td>
</tr>
<tr>
<td>170–199</td>
</tr>
<tr>
<td><170</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blood pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults ≥20 y of age</td>
</tr>
<tr>
<td>SBP ≥140 mm Hg or DBP ≥90 mm Hg</td>
</tr>
<tr>
<td>SBP 120–139 mm Hg or DBP 80–89 mm Hg or treated to goal</td>
</tr>
<tr>
<td><120 mm Hg/<80 mm Hg</td>
</tr>
<tr>
<td>Children 8–19 y of age</td>
</tr>
<tr>
<td>>95th percentile</td>
</tr>
<tr>
<td>90th–95th percentile or SBP ≥120 mm Hg or DBP ≥80 mm Hg</td>
</tr>
<tr>
<td><90th percentile</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fasting plasma glucose, mg/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults ≥20 y of age</td>
</tr>
<tr>
<td>≥126</td>
</tr>
<tr>
<td>100–125 or treated to goal</td>
</tr>
<tr>
<td><100</td>
</tr>
<tr>
<td>Children 12–19 y of age</td>
</tr>
<tr>
<td>≥126</td>
</tr>
<tr>
<td>100–125</td>
</tr>
<tr>
<td><100</td>
</tr>
</tbody>
</table>

AHA indicates American Heart Association; BMI, body mass index; DBP, diastolic blood pressure; ellipses (. . .), data not available; PA, physical activity; and SBP, systolic blood pressure.
*Represents appropriate energy balance, that is, appropriate dietary quantity and PA to maintain normal body weight.
†In the context of a healthy dietary pattern that is consistent with a Dietary Approaches to Stop Hypertension (DASH)–type eating pattern, to consume ≥4.5 cups/d of fruits and vegetables, ≥2 servings/wk of fish, and ≥3 servings/d of whole grains and no more than 36 oz/wk of sugar-sweetened beverages and 1500 mg/d of sodium. Reprinted from Lloyd-Jones et al. with permission. Copyright © 2010, American Heart Association, Inc.
Table 2-2. Prevalence of Ideal Cardiovascular Health and Its Components in the US Population in Selected Age Strata, From NHANES 2011 to 2012

<table>
<thead>
<tr>
<th>Ideal cardiovascular health profile (7/7)</th>
<th>NHANES Cycle</th>
<th>Age 12–19 y</th>
<th>Age ≥20 y*</th>
<th>Age 20–39 y</th>
<th>Age 40–59 y</th>
<th>Age ≥60 y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009–2010</td>
<td>0.0 (0.0)</td>
<td>0.1 (0.1)</td>
<td>0.3 (0.3)</td>
<td>0.0 (0.0)</td>
<td>0.0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>≥6 Ideal</td>
<td>2009–2010</td>
<td>19.3 (2.6)</td>
<td>4.6 (0.6)</td>
<td>8.2 (1.5)</td>
<td>2.9 (0.9)</td>
<td>0.8 (0.5)</td>
</tr>
<tr>
<td>≥5 Ideal</td>
<td>2009–2010</td>
<td>49.5 (2.5)</td>
<td>17.6 (1.3)</td>
<td>30.3 (2.6)</td>
<td>11.1 (1.6)</td>
<td>5.8 (1.4)</td>
</tr>
<tr>
<td>Ideal health factors (4/4)</td>
<td>2011–2012</td>
<td>47.8 (2.1)</td>
<td>16.7 (1.1)</td>
<td>32.1 (2.3)</td>
<td>8.8 (1.1)</td>
<td>2.5 (1.2)</td>
</tr>
<tr>
<td>Total cholesterol <200 mg/dL</td>
<td>2011–2012</td>
<td>75.7 (1.9)</td>
<td>46.6 (0.7)</td>
<td>70.4 (1.7)</td>
<td>34.2 (1.7)</td>
<td>23.9 (1.1)</td>
</tr>
<tr>
<td>SBP <120 and DBP <80 mm Hg</td>
<td>2011–2012</td>
<td>82.3 (1.6)</td>
<td>42.2 (1.3)</td>
<td>64.4 (2.1)</td>
<td>34.4 (1.5)</td>
<td>15.7 (1.6)</td>
</tr>
<tr>
<td>Not current smoker</td>
<td>2011–2012</td>
<td>87.1 (1.1)</td>
<td>77.8 (1.3)</td>
<td>75.2 (2.1)</td>
<td>74.3 (1.7)</td>
<td>87.1 (1.3)</td>
</tr>
<tr>
<td>Fasting blood glucose <100 mg/dL</td>
<td>2011–2012</td>
<td>85.3 (2.8)</td>
<td>56.5 (1.4)</td>
<td>74.7 (1.7)</td>
<td>52.4 (2.7)</td>
<td>31.3 (2.3)</td>
</tr>
<tr>
<td>PA at goal</td>
<td>2011–2012</td>
<td>36.5 (2.6)</td>
<td>44.0 (1.8)</td>
<td>53.0 (2.2)</td>
<td>41.0 (2.4)</td>
<td>35.2 (2.3)</td>
</tr>
<tr>
<td>Not current smoker</td>
<td>2011–2012</td>
<td>87.1 (1.1)</td>
<td>77.8 (1.3)</td>
<td>75.2 (2.1)</td>
<td>74.3 (1.7)</td>
<td>87.1 (1.3)</td>
</tr>
<tr>
<td>BMI <25 kg/m²</td>
<td>2011–2012</td>
<td>64.7 (2.1)</td>
<td>31.3 (1.4)</td>
<td>39.7 (2.8)</td>
<td>24.7 (1.4)</td>
<td>28.4 (2.1)</td>
</tr>
<tr>
<td>4–5 Diet goals met†</td>
<td>2009–2010</td>
<td>0.1 (0.1)</td>
<td>0.5 (0.2)</td>
<td>0.7 (0.4)</td>
<td>0.5 (0.3)</td>
<td>0.3 (0.1)</td>
</tr>
<tr>
<td>Fruits and vegetables ≥4.5 cups/d</td>
<td>2009–2010</td>
<td>7.5 (1.7)</td>
<td>13.7 (0.8)</td>
<td>11.5 (1.4)</td>
<td>13.8 (1.4)</td>
<td>17.0 (1.0)</td>
</tr>
<tr>
<td>Fish ≥2 servings/wk</td>
<td>2009–2010</td>
<td>8.5 (1.2)</td>
<td>23.6 (1.6)</td>
<td>21.8 (2.1)</td>
<td>24.3 (2.4)</td>
<td>26.0 (1.8)</td>
</tr>
<tr>
<td>Sodium <1500 mg/d</td>
<td>2009–2010</td>
<td>0.2 (0.1)</td>
<td>0.2 (0.1)</td>
<td>0.2 (0.1)</td>
<td>0.3 (0.2)</td>
<td>0.3 (0.2)</td>
</tr>
<tr>
<td>Sugar-sweetened beverages <36 oz/wk</td>
<td>2009–2010</td>
<td>29.5 (2.4)</td>
<td>55.1 (1.0)</td>
<td>41.9 (2.5)</td>
<td>58.1 (1.0)</td>
<td>73.5 (1.2)</td>
</tr>
<tr>
<td>Whole grains ≥3 1-oz equivalents/d</td>
<td>2009–2010</td>
<td>5.7 (1.0)</td>
<td>11.0 (0.7)</td>
<td>10.8 (1.2)</td>
<td>10.2 (1.1)</td>
<td>11.9 (1.3)</td>
</tr>
<tr>
<td>Secondary diet metrics</td>
<td>2009–2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuts/legumes/seeds ≥4 servings/wk</td>
<td>2009–2010</td>
<td>12.2 (1.5)</td>
<td>23.6 (1.1)</td>
<td>21.3 (1.2)</td>
<td>25.3 (1.9)</td>
<td>24.8 (1.4)</td>
</tr>
<tr>
<td>Processed meats <2 servings/wk</td>
<td>2009–2010</td>
<td>53.3 (2.5)</td>
<td>57.7 (1.5)</td>
<td>53.9 (2.0)</td>
<td>58.6 (2.2)</td>
<td>62.3 (1.9)</td>
</tr>
<tr>
<td>Saturated fat <7% total kcal</td>
<td>2009–2010</td>
<td>8.2 (1.8)</td>
<td>11.8 (0.7)</td>
<td>13.8 (1.3)</td>
<td>10.2 (0.9)</td>
<td>11.3 (0.9)</td>
</tr>
</tbody>
</table>

Values are mean percentage (SE).
BMI indicates body mass index; DBP, diastolic blood pressure; NHANES, National Health and Nutrition Examination Survey; PA, physical activity; and SBP, systolic blood pressure.
*Standardized to the age distribution of the 2000 US Standard population.
†Scaled to 2000 kcal/d and in the context of appropriate energy balance and a DASH (Dietary Approaches to Stop Hypertension)–type eating pattern.
Table 2-3. Evidence-Based Individual Approaches for Improving Health Behaviors and Health Factors in the Clinic Setting

- Set specific goals (*Class I; Level of Evidence A*). Set specific, proximal goals with the patient, including a personalized plan to achieve the goals (e.g., over the next 3 mo, increase fish by 1 serving/wk, reduce smoking by half a pack per day, or walk 30 min 3 times/wk).
- Establish self-monitoring (*Class I; Level of Evidence A*). Develop a strategy for self-monitoring, such as a dietary or physical activity diary or Web-based or mobile applications.
- Schedule follow-up (*Class I; Level of Evidence A*). Schedule regular follow-up (in-person, telephone, written, and/or electronic), with clear frequency and duration of contacts, to assess success, reinforce progress, and set new goals as necessary.
- Provide feedback (*Class I; Level of Evidence A*). Provide feedback on progress toward goals, including using in-person, telephone, and/or electronic feedback.
- Increase self-efficacy (*Class I; Level of Evidence A*). Increase the patient’s perception that they can successfully change their behavior.*
- Use motivational interviewing† (*Class I; Level of Evidence A*). Use motivational interviewing when patients are resistant or ambivalent about behavior change.
- Provide long-term support (*Class I; Level of Evidence B*). Arrange long-term support from family, friends, or peers for behavior change, such as in other workplace, school, or community-based programs.
- Use a multicomponent approach (*Class I; Level of Evidence A*). Combine 2 or more of the above strategies into the behavior change efforts.

*Examples of approaches include mastery experiences (set a reasonable, proximal goal that the person can successfully achieve); vicarious experiences (have the person see someone with similar capabilities performing the behavior, such as walking on a treadmill or preparing a healthy meal); physiological feedback (explain to the patient when a change in their symptoms is related to worse or improved behaviors); and verbal persuasion (persuade the person that you believe in their capability to perform the behavior).
†Motivational interviewing represents use of individual counseling to explore and resolve ambivalence toward changing behavior. Major principles include fostering the person’s own awareness and resolution of their ambivalence, as well as their own self-motivation to change, in a partnership with the counselor or provider.

Modified from Artinian et al18 with permission. Copyright © 2010, American Heart Association, Inc.

Table 2-4. Evidence-Based Healthcare Systems Approaches to Support and Facilitate Improvements in Health Behaviors and Health Factors19–23

- Electronic systems for scheduling and tracking initial visits and regular follow-up contacts for behavior change and treatments.
- Electronic medical records systems to help assess, track, and report on specific health behaviors (diet, PA, tobacco, body weight) and health factors (BP, cholesterol, glucose), as well as to provide feedback and the latest guidelines to providers.
- Practical paper or electronic toolkits for assessment of key health behaviors and health factors, including during, before, and after provider visits.
- Electronic systems to facilitate provision of feedback to patients on their progress during behavior change and other treatment efforts.
- Education and ongoing training for providers on evidence-based behavior change strategies, as well as the most relevant behavioral targets, including training on relevant ethnic and cultural issues.
- Integrated systems to provide coordinated care by multidisciplinary teams of providers, including physicians, nurse practitioners, dietitians, PA specialists, and social workers.
- Reimbursement guidelines and incentives that reward efforts to change health behaviors and health factors. Restructuring of practice goals and quality benchmarks to incorporate health behavior (diet, PA, tobacco, body weight) and health factor (BP, cholesterol, glucose) interventions and targets for both primary and secondary prevention.

BP indicates blood pressure; and PA, physical activity.
<table>
<thead>
<tr>
<th>Source</th>
<th>Details</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schools</td>
<td>Multicomponent interventions focused on improving both diet and physical activity, including specialized educational curricula, trained teachers, supportive school policies, a formal PE program, healthy food and beverage options, and a parental/family component (Class I; Level of Evidence A†)</td>
<td>Class IIa; Level of Evidence A</td>
</tr>
<tr>
<td></td>
<td>School garden programs, including nutrition and gardening education and hands-on gardening experiences (Class Ia; Level of Evidence A†)</td>
<td>Class IIa; Level of Evidence A</td>
</tr>
<tr>
<td></td>
<td>Fresh fruit and vegetable programs that provide free fruits and vegetables to students during the school day (Class Ia; Level of Evidence A†)</td>
<td>Class IIa; Level of Evidence A</td>
</tr>
<tr>
<td>Workplaces</td>
<td>Comprehensive worksite wellness programs with nutrition, physical activity, and tobacco cessation/prevention components (Class Ia; Level of Evidence A†)</td>
<td>Class IIa; Level of Evidence A</td>
</tr>
<tr>
<td></td>
<td>Increased availability of healthier food/beverage options and/or strong nutrition standards for foods and beverages served, in combination with vending machine prompts, labels, or icons to make healthier choices (Class Ia; Level of Evidence B†)</td>
<td>Class IIa; Level of Evidence B</td>
</tr>
<tr>
<td>Local environment</td>
<td>Increased availability of supermarkets near homes (Class Ia; Level of Evidence B†)</td>
<td>Class IIa; Level of Evidence B</td>
</tr>
<tr>
<td>Restrictions and mandates</td>
<td>Restrictions on advertising and marketing of less healthful foods or beverages near schools and public places frequented by youths (Class Ia; Level of Evidence B†)</td>
<td>Class IIa; Level of Evidence B</td>
</tr>
<tr>
<td></td>
<td>General nutrition standards for foods and beverages marketed and advertised to children in any fashion, including on-package promotion (Class Ia; Level of Evidence B†)</td>
<td>Class IIa; Level of Evidence B</td>
</tr>
<tr>
<td></td>
<td>Regulatory policies to reduce specific nutrients in foods (eg, trans fats, salt, certain fats) (Class I; Level of Evidence B†)</td>
<td>Class I; Level of Evidence B</td>
</tr>
<tr>
<td>Physical activity</td>
<td>Point-of-decision prompts to encourage use of stairs (Class Ia; Level of Evidence A†)</td>
<td>Class IIa; Level of Evidence A</td>
</tr>
<tr>
<td>Economic incentives</td>
<td>Increased gasoline taxes to increase active transport/commuting (Class Ia; Level of Evidence B†)</td>
<td>Class IIa; Level of Evidence B</td>
</tr>
<tr>
<td>Schools</td>
<td>Multicomponent interventions focused on improving both diet and physical activity, including specialized educational curricula, trained teachers, supportive school policies, a formal PE program, serving of healthy food and beverage options, and a parental/family component (Class Ia; Level of Evidence A†)</td>
<td>Class IIa; Level of Evidence A</td>
</tr>
<tr>
<td></td>
<td>Increased availability and types of school playground spaces and equipment (Class I; Level of Evidence B†)</td>
<td>Class IIa; Level of Evidence B</td>
</tr>
<tr>
<td></td>
<td>Increased number of PE classes, revised PE curricula to increase time in at least moderate activity, and trained PE teachers at schools (Class Ia; Level of Evidence A/Class Ib; Level of Evidence A†)</td>
<td>Class IIa; Level of Evidence A</td>
</tr>
<tr>
<td>Workplaces</td>
<td>Regular classroom physical activity breaks during academic lessons (Class Ia; Level of Evidence A†)</td>
<td>Class IIa; Level of Evidence A</td>
</tr>
<tr>
<td>Local environment</td>
<td>Improving accessibility of recreation and exercise spaces and facilities (eg, building of parks and playgrounds, increasing operating hours, use of school facilities during nonschool hours) (Class Ia; Level of Evidence B†)</td>
<td>Class IIa; Level of Evidence B</td>
</tr>
<tr>
<td></td>
<td>Improved land-use design (eg, integration and interrelationships of residential, school, work, retail, and public spaces) (Class Ia; Level of Evidence B†)</td>
<td>Class IIa; Level of Evidence B</td>
</tr>
<tr>
<td>Local environment</td>
<td>Improved sidewalk and street design to increase active commuting (walking or bicycling) to school by children (Class Ia; Level of Evidence B†)</td>
<td>Class IIa; Level of Evidence B</td>
</tr>
<tr>
<td></td>
<td>Improved traffic safety (Class Ia; Level of Evidence B†)</td>
<td>Class IIa; Level of Evidence B</td>
</tr>
<tr>
<td></td>
<td>Improved neighborhood aesthetics (to increase activity in adults) (Class Ia; Level of Evidence B†)</td>
<td>Class IIa; Level of Evidence B</td>
</tr>
<tr>
<td></td>
<td>Improved walkability, a composite indicator that incorporates aspects of land-use mix, street connectivity, pedestrian infrastructure, aesthetics, traffic safety, and/or crime safety (Class Ia; Level of Evidence B†)</td>
<td>Class IIa; Level of Evidence B</td>
</tr>
</tbody>
</table>

(Continued)
Table 2-5. Continued

<table>
<thead>
<tr>
<th>Smoking, continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media and education</td>
</tr>
<tr>
<td>Labeling and information</td>
</tr>
<tr>
<td>Economic incentives</td>
</tr>
<tr>
<td>Schools and workplaces</td>
</tr>
<tr>
<td>Local environment</td>
</tr>
<tr>
<td>Medical care and treatments</td>
</tr>
<tr>
<td>Restrictions and mandates</td>
</tr>
<tr>
<td>Local workplace-specific restrictions on smoking (Class I; Level of Evidence A)†‡§</td>
</tr>
<tr>
<td>Local school-specific restrictions on smoking (Class Ila; Level of Evidence B)†</td>
</tr>
<tr>
<td>Local residence-specific restrictions on smoking (Class Ila; Level of Evidence B)†§</td>
</tr>
<tr>
<td>Partial or complete restrictions on advertising and promotion of tobacco products (Class I; Level of Evidence B)†</td>
</tr>
</tbody>
</table>

PE indicates physical education.

*The specific population interventions listed here are either a Class I or IIa recommendation with a Level of Evidence grade of either A or B.
†At least some evidence from studies conducted in high-income Western regions and countries (eg, North America, Europe, Australia, New Zealand).
‡At least some evidence from studies conducted in high-income non-Western regions and countries (eg, Japan, Hong Kong, South Korea, Singapore).
§At least some evidence from studies conducted in low- or middle-income regions and countries (eg, Africa, China, Pakistan, India).
║Based on cross-sectional studies only; only 2 longitudinal studies have been performed, with no significant relations seen.
¶Class Ila; Level of Evidence A for improving physical activity; Class Iib; Level of Evidence B for reducing adiposity.

Reprinted from Mozaffarian et al19 with permission. Copyright © 2012, American Heart Association, Inc.

Table 2-6. Reduction in BP Required to Increase Prevalence of Ideal BP Among Adults ≥20 Years, NHANES 2011 to 2012

Percent BP ideal among adults, 2011–2012	42.17
20% Relative increase	50.60
Percent whose BP would be ideal if population mean BP were lowered by*	
2 mmHg	53.62
3 mmHg	57.42
4 mmHg	59.39
5 mmHg	63.40

Values are percentages. Data are standardized to the age distribution of the 2000 US standard population.
BP indicates blood pressure; and NHANES, National Health and Nutrition Examination Survey.
*Reduction in BP=(observed average systolic−X mm Hg) AND (observed average diastolic−X mm Hg).
Table 2-7. AHA Advocacy and Policy Strategies Related to the 2020 Impact Goals for Ideal Cardiovascular Health

<table>
<thead>
<tr>
<th>Measure of Cardiovascular Health</th>
<th>Advocacy/Policy Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking status</td>
<td></td>
</tr>
<tr>
<td>Children</td>
<td></td>
</tr>
<tr>
<td>Ideal: Never tried or never smoked a whole cigarette</td>
<td>Increase excise taxes, including federal tobacco tax parity (state and federal)</td>
</tr>
<tr>
<td>Intermediate: Quit <12 mo</td>
<td>Support comprehensive clean indoor air laws/regulations (state/community level/multiunit housing/hospitals/college campuses, and federal office buildings)</td>
</tr>
<tr>
<td>Poor: Current smoker</td>
<td>Ensure comprehensive tobacco cessation benefits in private and public insurance plans with minimal copay (federal level with Center for Medicare and Medicaid Services and implementation of the ACA and state level with Medicaid and state healthcare plans)</td>
</tr>
<tr>
<td>Adults</td>
<td></td>
</tr>
<tr>
<td>Ideal: Never smoked or quit >1 y ago</td>
<td>Increase funding for tobacco cessation and prevention programs that meet or exceed the CDC recommended levels (state)</td>
</tr>
<tr>
<td>Intermediate: Quit <12 mo</td>
<td>Ensure FDA regulation of tobacco including cigars and e-cigarettes (federal)</td>
</tr>
<tr>
<td>Poor: Current smoker</td>
<td>Monitor the role of mobile technologies to improve cessation therapy (federal/state)</td>
</tr>
</tbody>
</table>

Physical activity	
Children	
Ideal: ≥60 min of moderate to vigorous physical activity per day	Increase quality and quantity of physical education in schools (federal/state/local)
Intermediate: 1–59 min of moderate to vigorous physical activity per day	Increase the quantity of other physical activity opportunities during the school day, such as ● Recess ● Classroom breaks/activity between classes ● Physical activity integrated into the curriculum (state/local)
Poor: No physical activity	Support the creation and implementation, through legislation and regulation (including licensing), of physical activity standards for preschool, day care, and other out-of-school care programs (state/local)
Adults	
Ideal: At least 150 min of moderate or 75 min of vigorous physical activity each week	Increase funding for and implementation of Safe Routes to School (federal/state/local)
Intermediate: 1–149 min/wk moderate or 1–74 min/wk vigorous activity	Improve implementation of local wellness policies in schools (federal/state/local)
Poor: No physical activity	Promote robust physical activity policies in early childcare (state/local)

(Continued...
Physical activity, continued

Ensure regular revision and update of the Physical Activity Guidelines for Americans (federal)

Target funding for physical activity environments, policy implementation, and program to communities with high need; high need could be defined as low-income, high rates of CVD, shorter lifespans (federal/state/local)

Target technical assistance and support for grant preparation for physical activity–related grants to low-resource communities (federal/state/local)

Screen for physical activity in the clinical environment as a vital sign and incorporate quality measure into electronic health records (federal/state)

BMI

Adults

Ideal: BMI between 18.5 and 25 kg/m²
Intermediate: 25–29.9 kg/m²
Poor: >30 kg/m²

Children

Ideal: BMI between the 15th and 85th percentile
Intermediate: BMI between 85th and 95th percentile
Poor: >95th percentile

Healthy diet

Adults and Children

Ideal for cardiovascular health: In the context of a DASH-type dietary pattern, adults and children should achieve at least 4 of the 5 following key components of a healthy diet:
- Fruits and vegetables: >4.5 cups/d
- Fish: More than two, 3.5-oz servings/wk (preferably oily fish)
- Fiber-rich whole grains (>1.1 g of fiber per 10 g of carbohydrates); three 1-oz-equivalent servings/d
- Sodium: <1500 mg/d
- Sugar-sweetened beverages: <450 kcal (36 oz)/wk

Children/adults

Ideal: Diet Score 4–5
Intermediate: Diet Score 2–3
Poor: Diet Score 0–1

Reduce sodium in the food supply:

Finalize voluntary FDA standards for reduction of sodium across all food and beverage categories (federal)

Improve food labeling
- Update of the Nutrition Facts Panel
- On-package symbols
- Health claims
- Structure/function claims (federal)

Help shape the Dietary Guidelines for Americans through regulatory means (federal)

Robust implementation of school nutrition standards for meals and competitive foods (federal/state)

Implement procurement standards for food service and purchasing across federal and state agencies (federal/state)

Increase fruit and vegetable consumption:

Promote and protect the implementation of robust nutrition standards for school meals and competitive foods (federal/state/local)

Promote robust nutrition policies in early child care (state/local)

Promote nutrition standards, nutrition education, and physical activity standards in before-school and after-school programs (federal/state/local)

Eliminate unhealthy food marketing and advertising to children Increase healthy food marketing and advertising (state/local)

Promote procurement, meeting, and vending standards for foods purchased by governments and employers (federal/state/local)

Improve access to healthy affordable foods in the community:
- Healthy food financing
- Farmers’ markets
- School/community gardens
- SNAP education
- Fresh fruit and vegetable program (federal/state/local)
Healthy diet, continued
Continue to improve nutrition standards and nutrition education in government feeding programs such as:

- WIC
- SNAP
- CACFP (federal)

Reduce sugar-sweetened beverage consumption:
Support sugar-sweetened beverage taxes (state/local)
Increase water subsidies (state/local)
Provide funding for placement and maintenance of water fountains or dispensers in public places (federal/state/local)
Other disincentives/incentives for healthy beverages within government feeding programs, healthy vending, restaurants, hospital systems, schools, healthy food financing initiatives, and procurement standards (federal/state/local)

Blood pressure

Adults
- Ideal: BP <120/<80 mm Hg
- Intermediate: SBP 120–139 mm Hg or DBP 80–89 mm Hg, or treated <140/<90 mm Hg
- Poor: Treated BP >140/>90 mm Hg or untreated >140/>90 mm Hg

Children
- Ideal: <90th percentile
- Intermediate: 90th-95th percentile or SBP ≥120 or DBP ≥80 mm Hg
- Poor: >95th percentile

Blood glucose

Children and adults
- Ideal: <100 mg/dL
- Intermediate: 100–125 mg/dL or treated to goal
- Poor: ≥126 mg/dL

Cholesterol

Adults
- Ideal: <200 mg/dL
- Intermediate: 200–239 mg/dL or treated to goal
- Poor: ≥240 mg/dL

Children
- Ideal: <170 mg/dL
- Intermediate: 170–199 mg/dL
- Poor: ≥200 mg/dL

Reduce CVD mortality by 20% by 2020
Acute event: Improve systems of care (acute response and acute care)

- EMS
 - Support strengthening 9-1-1 systems
 - Emergency medical dispatch
 - Support the establishment of quality community CPR/AED programs
 - Support the establishment of quality school-based programs to promote CPR, AED, and first aid
 - Promote credentialing for professionals to support strong EMS systems
 - Support and protect funding for NEMSIS
- STEMI
- Stroke
- Out-of-hospital cardiac arrest
- Telehealth (reimbursement/ease licensing/credentialing) (federal/state/local)
Table 2-7. Continued

<table>
<thead>
<tr>
<th>Measure of Cardiovascular Health</th>
<th>Advocacy/Policy Solutions</th>
</tr>
</thead>
</table>
| Reduce CVD mortality by 20% by 2020, continued | Improve care coordination models:
- Medical homes
- Other delivery systems reforms (federal/state/local)
Ensure optimal use of health information technology (federal)
Explore evidence-based opportunities for integration with mobile health technologies in delivery systems of care (federal)
Improve the quality and comprehensiveness of healthcare data reporting (federal/state/local)
Increase the use of clinical registries (federal/state)
Ensure implementation of pulse oximetry screening for newborns (state/local)
Integrate the AHA’s principles for palliative care within delivery of care (federal) |
| Postevent rehabilitation: Increase referral for, use of, adequate reimbursement for, and completion of cardiac rehabilitation and stroke rehabilitation | Ensure adequate insurance coverage for cardiac rehabilitation and establish a national coverage determination for cardiac rehabilitation for heart failure patients (federal)
Support funding for demonstration projects that expand access to and increase use of cardiac rehabilitation in different settings (federal/state)
Ensure adequate coverage/reimbursement for comprehensive stroke rehabilitation (federal/state)
Broadly implement automatic and coordinated referral strategies (federal/state/local) |

For AHA advocacy resources, including fact sheets, policy briefs, published papers, and position statements, go to http://www.heart.org/HEARTORG/Advocate/PolicyResources/Policy-Resources_UCM_001135_SubHomePage.jsp.

ACA indicates Affordable Care Act; AED, automated external defibrillator; AHA, American Heart Association; BMI, body mass index; BP, blood pressure; CACFP, Child and Adult Care Food Program; CDC, Centers for Disease Control and Prevention; CPR, cardiopulmonary resuscitation; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; DBP, diastolic blood pressure; EMS, emergency medical services; FDA, US Food and Drug Administration; NEMSIS, National Emergency Medical Services Information System; PA, physical activity; SBP, systolic blood pressure; SNAP, Supplemental Nutrition Assistance Program; STEMI, ST-segment-elevation myocardial infarction; and WIC, Women, Infants, and Children program.

Chart 2-3. Proportion (unadjusted) of US children aged 12 to 19 years meeting different numbers of criteria for ideal cardiovascular health, overall and by sex, National Health and Nutrition Examination Survey 2009 to 2010.

Chart 2-4. Age-standardized prevalence estimates of US adults aged ≥20 years meeting different numbers of criteria for ideal cardiovascular health, overall and by age and sex subgroups, National Health and Nutrition Examination Survey 2009 to 2010.
Chart 2-5. Age-standardized prevalence estimates of US adults aged ≥20 years meeting different numbers of criteria for ideal cardiovascular health, overall and in selected race subgroups, National Health and Nutrition Examination Survey 2009 to 2010.

Chart 2-6. Prevalence for meeting ≥5 criteria for ideal cardiovascular health among US adults aged ≥20 years (age standardized) and US children aged 12 to 19 years, overall and by sex, National Health and Nutrition Examination Survey 2005 to 2006 and 2009 to 2010.
Chart 2-7. Age-standardized prevalence estimates of US adults meeting different numbers of criteria for ideal and poor cardiovascular health, for each of the 7 metrics of cardiovascular health in the American Heart Association 2020 goals among US adults aged ≥20 years, National Health and Nutrition Examination Survey 2009 to 2010.
A, Age-standardized prevalence of population with ideal cardiovascular health by states. B, Age-standardized percentage of population with 0 to 2 cardiovascular health metrics by states. C, Age-standardized mean score of cardiovascular health metrics by states. Reprinted from Fang et al.³
Chart 2-9. Trends in prevalence (unadjusted) of meeting criteria for ideal cardiovascular health for each of the 7 metrics of cardiovascular health in the American Heart Association 2020 goals among US children aged 12 to 19 years, National Health and Nutrition Examination Survey (NHANES) 1999 to 2000 through 2011 to 2012. *Because of changes in the physical activity questionnaire between different cycles of the NHANES, trends over time for this indicator should be interpreted with caution, and statistical comparisons should not be attempted. †Data for the Healthy Diet Score, based on a 2-day average intake, were only available for the 2005 to 2006, 2007 to 2008, and 2009 to 2010 NHANES cycles at the time of this analysis.

Chart 2-10. Age-standardized trends in prevalence of meeting criteria for ideal cardiovascular health for each of the 7 metrics of cardiovascular health in the American Heart Association 2020 goals among US adults aged ≥20 years, National Health and Nutrition Examination Survey (NHANES) 1999 to 2000 through 2011 to 2012. *Because of changes in the physical activity questionnaire between different cycles of the NHANES, trends over time for this indicator should be interpreted with caution, and statistical comparisons should not be attempted. †Data for the Healthy Diet Score, based on a 2-day average intake, were only available for the 2005 to 2006, 2007 to 2008, and 2009 to 2010 NHANES cycles at the time of this analysis.
Chart 2-12. US age-standardized death rates* from cardiovascular diseases, 2000 to 2012. CHD indicates coronary heart disease; and CVD, cardiovascular disease. *Directly standardized to the age distribution of the 2000 US standard population. †Total CVD: International Classification of Diseases, 10th Revision (ICD-10) I00 to I99, Q20 to Q28. §Stroke (all cerebrovascular disease): ICD-10 I60 to I69. ¶CHD: ICD-10 I20 to I25. **Other CVD: ICD-10 I00 to I15, I26 to I51, I70 to I78, I80 to I89, I95 to I99. Source: Centers for Disease Control and Prevention, National Center for Health Statistics.24

Chart 2-13. Incidence of cardiovascular disease according to the number of ideal health behaviors and health factors. Reprinted from Folsom et al.11 Copyright © 2011, with permission from the American College of Cardiology Foundation.
3. Smoking/Tobacco Use

See Table 3-1 and Charts 3-1 through 3-3.

Smoking is a major risk factor for CVD and stroke. The AHA has identified never tried or never smoked a whole cigarette (for children) and never smoking or quitting ≥12 months ago (for adults) as 1 of the 7 components of ideal cardiovascular health. According to NHANES 2011 to 2012 data, 87.1% of adolescents and 77.8% of adults met these criteria.

Prevalence

Youth

(See Charts 3-1 and 3-2.)

- In 2013, in grades 9 through 12:
 - 15.7% of students reported current cigarette use (on ≥1 day during the 30 days before the survey), 12.6% of students reported current use of cigarettes, and 8.8% of students reported current smokeless tobacco use. Overall, 22.4% of students reported any current tobacco use (YRBS).
 - Male students were more likely than female students to report current cigarette use (16.4% compared with 15.0%). Male students were also more likely than female students to report current cigarette use (16.5% compared with 8.7%) and current smokeless tobacco use (14.7% compared with 2.9%; YRBS).4
 - Non-Hispanic white students were more likely than Hispanic or non-Hispanic black students to report any current tobacco use, which includes cigarettes, cigars, or smokeless tobacco (26.9% compared with 18.0% for Hispanic students and 14.3% for non-Hispanic black students; YRBS).
 - Among youths 12 to 17 years of age in 2012, 2.2 million (8.6%) used a tobacco product (cigarettes, cigars, or smokeless tobacco) in the past month, down from 10.0% in 2003.

Adults

(See Table 3-1 and Charts 3-2 and 3-3.)

- In 2013, among adults ≥18 years of age:
 - 20.4% of men and 15.5% of women were current cigarette smokers (NHIS).5
 - The percentage of current cigarette smokers (17.9%) declined 26% since 1998 (24.1%).6,7

- In 2012, the states with the highest percentage of current cigarette smokers were Kentucky (28.3%), West Virginia (28.2%), and Arkansas (25.0%). Utah had the lowest percentage of smokers (10.6%) (BRFSS).8

- In 2012, an estimated 69.5 million Americans ≥12 years of age were current cigarette smokers. The rate of current use of any tobacco product in this age range declined from 2007 to 2012 (from 28.6% to 26.7%; NSDUH).5

- From 1998 to 2007, cigarette smoking prevalence among adults ≥18 years of age decreased in 44 states and the District of Columbia. Six states had no substantial changes in prevalence after controlling for age, sex, and race/ethnicity (BRFSS).9

- On the basis of age-adjusted estimates in 2010 to 2012, among people ≥65 years of age, 9.2% of men and 8.0% of women were current smokers. In this age group, men were more likely than women to be former smokers (52.4% compared with 31.5%) (NHIS).10

- In 2013, among adults ≥18 years of age, Asian men (14.7%) and Hispanic men (16.6%) were less likely to be current cigarette smokers than non-Hispanic white men (21.7%), non-Hispanic black men (21.1%), and American Indian or Alaska Native men (25.7%) on the basis of age-adjusted

Click here to go to the Table of Contents

Abbreviations Used in Chapter 3

AHA	American Heart Association
ANSI	American Indian or Alaska Native
AMI	acute myocardial infarction
BRFSS	Behavioral Risk Factor Surveillance System
CHD	coronary heart disease
CI	confidence interval
CVD	cardiovascular disease
DM	diabetes mellitus
FDA	US Food and Drug Administration
NH	non-Hispanic
NHANES	National Health and Nutrition Examination Survey
NHS	National Health Interview Survey
NSDUH	National Survey on Drug Use and Health
RR	relative risk
WHO	World Health Organization
YRBS	Youth Risk Behavior Survey
estimates (NHIS). Similarly, in 2013, Asian women (4.8%) and Hispanic women (6.7%) were less likely to be current cigarette smokers than non-Hispanic black women (15.0%), non-Hispanic white women (18.7%), and American Indian or Alaska Native women (16.7%; NHIS).

- Smoking among 18- to 44-year-old males declined from 27.9% in 2003 to 22.9% in 2013, and for 18- to 44-year-old females, smoking declined from 22.5% to 16.6% over the same time period (NHIS).

- In 2011 to 2012, among women 15 to 44 years of age, past-month cigarette use was lower among those who were pregnant (15.9%) than among those who were not pregnant (24.6%). Rates were higher among women 18 to 25 years of age (20.9% versus 28.2% for pregnant and nonpregnant women, respectively) than among women 26 to 44 years of age (12.5% versus 25.2%, respectively; NSDUH).

Incidence

- In 2012:
 - Approximately 2.3 million people ≥12 years of age smoked cigarettes for the first time within the past 12 months, which was similar to the estimate in 2011. The 2012 estimate averages out to ≈6300 new cigarette smokers every day. Half of new smokers (51.4%) in 2012 were <18 years of age when they first smoked cigarettes (NSDUH).
 - The number of new smokers <18 years of age (1.2 million) was similar to that in 2002 (1.3 million); however, new smokers ≥18 years of age increased from ≈600000 in 2002 to 1.1 million in 2012 (NSDUH).
 - Among people 12 to 49 years of age who had started smoking within the past 12 months, the average age of first cigarette use was 17.8 years, similar to the average in 2011 (17.2 years).

Morbidity

- A 2010 report of the US Surgeon General on how tobacco causes disease summarized an extensive body of literature on smoking and CVD and the mechanisms through which smoking is thought to cause CVD. There is a sharp increase in CVD risk with low levels of exposure to cigarette smoke, including secondhand smoke, and a less rapid further increase in risk as the number of cigarettes per day increases.

- Smoking is an independent risk factor for CHD and appears to have a multiplicative effect with other major risk factors for CHD: high serum levels of lipids, untreated hypertension, and DM.

- A meta-analysis comparing pooled data of ≈2.4 million smokers and nonsmokers found the RR ratio of smokers to nonsmokers for developing CHD was 25% higher in women than in men (95% CI, 1.12–1.39).

- Current smokers have a 2 to 4 times increased risk of stroke compared with nonsmokers or those who have quit for >10 years.

- Tobacco exposure is a top risk factor for disability in the United States, second only to dietary risks.

Mortality

- Annually from 2005 to 2009, smoking was responsible for ≥480,000 premature deaths in the United States among those ≥35 years of age. Furthermore, almost one third of deaths of CHD are attributable to smoking and secondhand smoke exposure.

- Each year from 2005 to 2009, an estimated 41,000 US deaths were attributable to exposure to secondhand smoke among those ≥35 years of age.

- In 2009, smoking was estimated to cause 3.3 million years of potential life lost for males and 2.2 million years for females, excluding deaths attributable to smoking-attributable residential fires and adult deaths attributable to secondhand smoke.

- From 2005 to 2009, smoking during pregnancy resulted in an estimated 970 infant deaths annually.

- On average, male smokers die 13.2 years earlier than male nonsmokers, and female smokers die 14.5 years earlier than female nonsmokers.

- In 2010, tobacco smoking was the second-leading risk factor for death in the United States, after dietary risks.

- Overall mortality among US smokers is 3 times higher than that for never-smokers.

- If current smoking trends continue, 5.6 million U.S. children will die prematurely during adulthood of smoking.

Smoking Cessation

- Smoking cessation reduces the risk of cardiovascular morbidity and mortality for smokers with and without CHD.
 - There is no convincing evidence to date that reducing the amount smoked by smoking fewer cigarettes per day reduces the risk of CVD, although in several studies a dose-response relationship has been seen among current smokers between the number of cigarettes smoked per day and CVD incidence.

- Quitting smoking at any age significantly lowers mortality from smoking-related diseases, and the risk declines more the longer the time since quitting smoking. Cessation appears to have both short-term (weeks to months) and long-term (years) benefits for lowering CVD risk. Overall, risk appears to approach that of nonsmokers after ≥10 years of cessation.

- Smokers who quit smoking at 25 to 34 years of age gained 10 years of life compared with those who continued to smoke. Those aged 35 to 44 years gained 9 years and those aged 45 to 54 years gained 6 years of life, on average, compared with those who continued to smoke.

- In 2010, 48.3% of adult current smokers ≥18 years of age who had a health checkup during the preceding year reported that they had been advised to quit. Smokers between 18 and 24 (31%) and 24 to 44 (44%) years of age were less likely to be advised to quit than those at older ages (57%; NHIS).

- Cessation medications (including sustained-release bupropion, varenicline, and nicotine gum, lozenge, nasal spray, and patch) are effective for helping smokers quit.

- In addition to medications, smoke-free policies, increases in tobacco prices, cessation advice from healthcare
professionals, and quitlines and other counseling have contributed to smoking cessation.19

- In 2010, 52.4% of adult smokers reported trying to quit smoking in the past year; 6.2% reported they recently quit smoking. Of those who tried to quit smoking, 30.0% used cessation medications.19

Electronic Cigarettes

- Electronic nicotine delivery systems, more commonly called electronic cigarettes or e-cigarettes, are battery-operated devices that deliver nicotine, flavors, and other chemicals to the user in an aerosol. Although e-cigarettes were introduced less than a decade ago, there are currently >250 e-cigarette brands on the market, and sales in the United States were projected to be $1.7 billion in 2013.21,22

- Because these products have not been well studied, their risks and benefits are not fully understood. Specifically, the health risks from the inhaled nicotine and other chemicals in e-cigarettes are not entirely known. E-cigarettes may play a beneficial role in helping smokers reduce or eliminate their conventional cigarette habit. However, there are concerns that e-cigarettes may be a gateway to tobacco use by nonsmokers, especially teenagers. Furthermore, many public health advocates are worried that e-cigarettes will reverse decades of efforts to denormalize smoking, which contributed to the decline in smoking.16,21,22

- The answers to some of these questions may become clearer as the regulatory oversight of e-cigarettes becomes more defined.16 Currently, only e-cigarettes that are marketed for therapeutic purposes are regulated by the FDA, but in April 2014, the FDA proposed extending its tobacco product authorities to include e-cigarettes.23

Secondhand Smoke

- Data from the US Surgeon General on the consequences of secondhand smoke indicate the following:
 - Nonsmokers who are exposed to secondhand smoke at home or at work increase their risk of developing CHD by 25% to 30%.11
 - Short exposures to secondhand smoke can cause blood platelets to become stickier, damage the lining of blood vessels, and decrease coronary flow velocity reserves, potentially increasing the risk of an AMI.11
 - Exposure to secondhand smoke increases the risk of stroke by 20% to 30%.11
 - Nearly 34,000 premature deaths of heart disease occur each year in the United States among nonsmokers.16

- In 2008, data from 11 states showed that the majority of people surveyed in each state reported having smoke-free home rules, ranging from 68.8% in West Virginia to 85.6% in Arizona (BRFSS).24

- As of January 2, 2014, 25 states and the District of Columbia had laws that prohibited smoking in indoor areas of worksites, restaurants, and bars; no states had such laws in 2000. As of January 2, 2014, an additional 12 states had laws that prohibited smoking in 1 or 2 but not all 3 venues.25

- In 2012, 30 of the 50 largest US cities prohibited indoor smoking in private workplaces, either through state or local ordinances.26

- Pooled data from 17 studies in North America, Europe, and Australasia suggest that smoke-free legislation can reduce the incidence of acute coronary events by 10%.21

- The percentage of the US nonsmoking population with serum cotinine ≥0.05 ng/mL declined from 52.5% in 1999 to 2000 to 40.1% in 2007 to 2008, with declines occurring for both children and adults. During 2007 to 2008, the percentage of nonsmokers with detectable serum cotinine was 53.6% for those 3 to 11 years of age, 46.5% for those 12 to 19 years of age, and 36.7% for those ≥20 years of age. The percentage was also higher for non-Hispanic blacks (55.9%) than for non-Hispanic whites (40.1%) and Mexican Americans (28.5%; NHANES).28

Cost

- Each year from 2005 to 2009, US smoking-attributable economic costs were between $289 billion and $333 billion, including $133 billion to $176 billion for direct medical care of adults and $151 billion for lost productivity related to premature death.16

- In 2008, $9.94 billion was spent on marketing cigarettes in the United States.29

- Cigarette prices in the United States have increased 283% between the early 1980s and 2011, in large part because of excise taxes on tobacco products. Higher taxes have decreased cigarette consumption, which fell from ≈30 million packs sold in 1982 to ≈14 million packs sold in 2011.29

Global Burden of Smoking

- Worldwide, tobacco smoking (including secondhand smoke) was 1 of the top 3 leading risk factors for disease and contributed to an estimated 6.2 million deaths in 2010.30

- To help combat the global problem of tobacco exposure, in 2003 the WHO adopted the Framework Convention on Tobacco Control treaty. The WHO Framework Convention on Tobacco Control contains a set of universal standards to limit tobacco supply and demand worldwide. These standards include the use of tax policies to reduce tobacco consumption, a ban on the indoor use of tobacco products, implementation of educational programs about the dangers of tobacco use, and restrictions of the sale of tobacco products to international travelers. Since it came into force in 2005, >175 countries have ratified the WHO Framework Convention on Tobacco Control.31

References

Table 3-1. Cigarette Smoking

<table>
<thead>
<tr>
<th>Population Group</th>
<th>Prevalence, 2013 Age ≥18 y<sup>+</sup></th>
<th>Cost<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes</td>
<td>43,415,000 (17.9%)</td>
<td>$289 Billion per year</td>
</tr>
<tr>
<td>Males</td>
<td>24,080,000 (20.4%)</td>
<td>...</td>
</tr>
<tr>
<td>Females</td>
<td>19,298,000 (15.5%)</td>
<td>...</td>
</tr>
<tr>
<td>NH white males</td>
<td>21.7%</td>
<td>...</td>
</tr>
<tr>
<td>NH white females</td>
<td>18.7%</td>
<td>...</td>
</tr>
<tr>
<td>NH black males</td>
<td>21.1%</td>
<td>...</td>
</tr>
<tr>
<td>NH black females</td>
<td>15.0%</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic or Latino males</td>
<td>16.6%</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic or Latino females</td>
<td>6.7%</td>
<td>...</td>
</tr>
<tr>
<td>Asian males</td>
<td>14.7%</td>
<td>...</td>
</tr>
<tr>
<td>Asian females</td>
<td>4.8%</td>
<td>...</td>
</tr>
<tr>
<td>American Indian/Alaska Native males</td>
<td>25.7%</td>
<td>...</td>
</tr>
<tr>
<td>American Indian/Alaska Native females</td>
<td>16.7%</td>
<td>...</td>
</tr>
</tbody>
</table>

Percentages are age adjusted. Estimates for Asian only and American Indian/Alaska Native only include non-Hispanic and Hispanic people.

Ellipses (. . .) indicate data not available; and NH, non-Hispanic.

^aRounded to the nearest thousand; based on total resident population.

Chart 3-3. Prevalence (%) of current smoking for adults ≥18 years of age by race/ethnicity and sex (National Health Interview Survey: 2010–2012). All percentages are age adjusted. AIAN indicates American Indian or Alaska Native; NH, non-Hispanic. *Includes both Hispanics and non-Hispanics. Data derived from the Centers for Disease Control and Prevention/National Center for Health Statistics, Health Data Interactive.10
4. Physical Inactivity

See Table 4-1 and Charts 4-1 through 4-5.

Physical inactivity is a major risk factor for CVD and stroke. 1 PA is 1 of the AHA's 7 components of ideal cardiovascular health for both children and adults. 2 The AHA and 2008 federal guidelines on PA recommend that children get at least 60 minutes of PA daily (including aerobic and muscle- and bone-strengthening activity). The guidelines recommend that adults get at least 150 minutes of moderate-intensity or 75 minutes of vigorous-intensity aerobic activity (or an equivalent combination) per week and perform muscle-strengthening activities at least 2 days per week (US Department of Health and Human Services). In 2011 to 2012, on the basis of survey interviews, 36.5% of children and 44.0% of adults met these criteria.

Not only does being physically active improve health, but being inactive is unhealthy. 3 PA reduces premature mortality. In addition, PA improves risk factors for CVD (such as HBP and high cholesterol) and reduces the likelihood of diseases related to CVD, including CHD, stroke, type 2 DM, and sudden heart attacks (US Department of Health and Human Services). Benefits from PA are seen for all ages and groups, including older adults, pregnant women, and people with disabilities and chronic conditions. Therefore, the federal guidelines recommend being as physically active as abilities and conditions allow and increasing PA gradually.

There are 4 dimensions of PA (mode or type, frequency, duration, and intensity) and 4 common domains (occupational, domestic, transportation, and leisure time). Historically, recommendations on PA for health purposes have focused on leisure-time activity. However, because all domains of PA could have an impact on health, and because an increase in 1 domain may sometimes be compensated for by a decrease in another domain, it is important to generate data on all dimensions and domains of PA. There are 2 broad categories of methods to assess PA: (1) subjective methods that use questionnaires and diaries/logs and (2) objective methods that use wearable monitors (pedometers, accelerometers, etc.). It is very important to keep in mind that the bulk of the data available linking inactivity/PA to cardiovascular outcomes has been obtained with the use of questionnaires. Thus, prevalence data on inactivity/PA must be interpreted with an understanding of the limitations of the tools that have been used to generate such data. Although any activity is better than none, the federal guidelines specify the suggested frequency, duration, and intensity of activity.

Studies that used both subjective and objective methods (such as wearable monitors, like pedometers or accelerometers) have found that there is marked discordance between reported and measured PA. 4,5 Therefore, PA estimates based on participant report may overstate the level of PA. Furthermore, surveys often ask only about leisure-time PA; however, PA may also come from occupational, domestic, and transportation responsibilities. People who get a lot of PA from these other responsibilities may be less like to engage in leisure-time PA, and yet they may meet the federal PA guidelines.

Chronic physical inactivity contributes to a poor level of cardiorespiratory (or aerobic) fitness, which is a stronger predictor of adverse cardiometabolic and cardiovascular outcomes than traditional risk factors. Although both PA and cardiorespiratory fitness are inversely related to the risk of CVD and other clinical outcomes, they are in part distinct measures in the assessment of CVD risk. 6 PA is a behavior that can potentially improve cardiorespiratory fitness. Although many studies have shown that increasing the amount and quality of PA can improve cardiorespiratory fitness, other factors can contribute, such as a genetic predisposition to perform aerobic exercise. Because cardiorespiratory fitness is directly measured and reflects both participation in PA and the state of physiological systems affecting performance, the relationship between cardiorespiratory fitness and clinical outcomes is stronger than the relationship of PA to a series of clinical outcomes. 6 Unlike health behaviors such as PA and risk factors that are tracked by federally funded programs, there are no national data on cardiorespiratory fitness, and the development of a national cardiorespiratory fitness registry has been proposed. 6 Such additional data on the cardiorespiratory fitness levels of Americans may give a fuller and more accurate picture of physical fitness levels. 6
Prevalence

Youth

Inactivity

(See Chart 4-1.)

In 2013:

- Nationwide, 15.2% of adolescents reported that they were inactive during the previous 7 days, as indicated by their response that they did not participate in ≥60 minutes of any kind of PA that increased their heart rate and made them breathe hard on any 1 of the previous 7 days.
- Girls were more likely than boys to report inactivity (19.2% versus 11.2%).
- The prevalence of inactivity was highest among black (27.3%) and Hispanic (20.3%) girls, followed by white girls (16.1%), black boys (15.2%), Hispanic boys (12.1%), and white boys (9.2%).

Television/Video/Computers

(See Chart 4-2.)

In 2013:

- Nationwide, 41.3% of adolescents used a computer for activities other than school work (eg, videogames or other computer games) for ≥3 hours per day.
- The prevalence of using computers ≥3 hours per day was highest among black boys (51.9%) and black girls (46.6%), followed by Hispanic girls (44.8%), Hispanic boys (42.0%), white boys (39.1%), and white girls (35.6%).
- 32.5% of adolescents watched television for ≥3 hours per day.
- The prevalence of watching television ≥3 hours per day was highest among black boys (55.3%) and girls (52.2%), followed by Hispanic girls (39.0%) and boys (36.5%) and white boys (25.7%) and girls (24.3%).
- Increased television time has significant nutritional associations with weight gain (refer to Chapter 5, Nutrition).

Activity Recommendations

(See Chart 4-3.)

In 2013:

- The proportion of students who met activity recommendations of ≥60 minutes of PA on 7 days of the week was 27.1% nationwide and declined from 9th (30.4%) to 12th (24.3%) grades. At each grade level, the proportion was higher in boys than in girls.
- More high school boys (36.6%) than girls (17.7%) self-reported having been physically active ≥60 minutes per day on all 7 days; self-reported rates of activity were higher in white (28.2%) than in black (26.3%) or Hispanic (25.5%) adolescents.
- The proportion of students who participated in muscle-strengthening activities on ≥3 days of the week was 51.7% nationwide and declined from 9th (54.8%) to 12th (47.7%) grades. At each grade level, the proportion was higher in boys than in girls.
- More high school boys (61.8%) than girls (41.6%) self-reported having participated in muscle-strengthening activities on ≥3 days of the week; self-reported rates were higher in Hispanic (53.3%) than in white (52.4%) or black (48.8%) adolescents.
- There was a marked discrepancy between the proportion of youth (ages 6–11 years) who reported engaging in ≥60 minutes of moderate to vigorous PA on most days of the week and those who actually engaged in moderate to vigorous PA for ≥60 minutes when activity was measured objectively with accelerometers (ie, portable motion sensors that record and quantify the duration and intensity of movements) in the NHANES 2003 to 2004 survey.4
- On the basis of accelerometer counts per minute ≥2020, 42% of 6- to 11-year-olds accumulated ≥260 minutes of moderate to vigorous PA on ≥5 days per week, whereas only 8% of 12- to 15-year-olds and 7.6% of 16- to 19-year-olds achieved similar counts.4
- More boys than girls met PA recommendations (≥60 minutes of moderate to vigorous activity on most days of the week) as measured by accelerometry.4

Structured Activity Participation

- Despite recommendations from the National Association for Sport and Physical Education that schools should require daily physical education for students in kindergarten through 12th grade,6 only 29.4% of students attended physical education classes in school daily (34.9% of boys and 24.0% of girls).7
- Physical education class participation declined from the 9th grade (47.8% for boys, 36.5% for girls) through the 12th grade (24.4% for boys, 16.1% for girls).7
- Little more than half (54.0%) of high school students played on at least 1 school or community sports team in the previous year: 48.5% of girls and 59.6% of boys.7

Adults

Inactivity

According to 2013 data from the NHIS, in adults ≥18 years of age6:

- 30.5% do not engage in leisure-time PA (“no leisure-time PA/inactivity” refers to no sessions of light/moderate or vigorous PA of ≥10 minutes’ duration).
- Inactivity was higher among women than men (32.3% versus 28.6%, age adjusted) and increased with age from 25.1% to 32.8%, 35.7%, and 51.9% among adults 18 to 44, 45 to 64, 65 to 74, and ≥75 years of age, respectively.
- Non-Hispanic black and Hispanic adults were more likely to be inactive (38.8% and 39.7%, respectively) than were non-Hispanic white adults (27.0%) on the basis of age-adjusted estimates.

Activity Recommendations

(See Table 4-1 and Chart 4-4.)

According to 2013 data from the NHIS, in adults ≥18 years of age6:

- 20.9% met the 2008 federal PA guidelines for both aerobic and strengthening activity, an important component of overall physical fitness.
- The age-adjusted proportion who reported engaging in moderate or vigorous PA that met the 2008 aerobic PA guidelines for Americans (≥150 minutes of
By guest on November 6, 2017

Accelerometry data from NHANES 2003 to 2006 showed that men engaged in 35 minutes of moderate activity per day, whereas for women, it was 21 minutes. More than 75% of moderate activity was accumulated in 1-minute bouts.

Levels of activity declined sharply after the age of 50 years in all groups.

In a review examining self-reported versus actual measured PA (eg, accelerometers, pedometers, indirect calorimetry, doubly labeled water, heart rate monitor), 60% of respondents self-reported higher values of activity than what was measured by use of direct methods.

Among men, self-reported PA was 44% greater than actual measured values; among women, self-reported activity was 138% greater than actual measured PA.

The discrepancy between reported versus measured PA activity clearly indicates that the proportion of sufficiently active individuals is overestimated and that there is a need to monitor nationwide levels of measured PA.

Trends

Youth

(See Chart 4-5.)

- In 2013:
 - Among adolescents, a significant decrease occurred overall in the prevalence of having watched television for ≥3 hours per day compared with 1999 (42.8% versus 32.5%); however, the prevalence did not change from 2011 (32.4%) to 2013 (32.5%).
 - Among students nationwide, there was a significant increase in the prevalence of having participated in muscle-strengthening activities on ≥3 days per week, from 47.8% in 1991 to 51.7%; however, the prevalence decreased from 2011 (55.6%) to 2013 (51.7%).
 - A significant increase occurred in the prevalence of having used computers for ≥3 hours per day compared with 2003 (22.1% versus 41.3%). The prevalence increased from 2003 to 2009 (22.1% versus 24.9%) and then increased more rapidly from 2009 to 2013 (24.9% versus 41.3%). Even more recently, the prevalence increased to 31.1% in 2011.
 - Among adolescents nationwide, the prevalence of attending physical education classes at least once per week did not increase significantly, from 25.4% in 1995 to 29.4%.
 - The prevalence of adolescents playing ≥1 team sport in the past year decreased from 58.4% in 2011 to 54.0%.

In 2012, the prevalence of adolescents aged 12 to 15 years with adequate levels of cardiorespiratory fitness (based on age- and sex-specific standards) was 42.2% in 2012, down from 52.4% in 1999 to 2000.

Adults

- Between NHANES III (1988–1994) and NHANES 2001 to 2006, the non-age-adjusted proportion of adults who reported engaging in ≥12 bouts of PA per month declined from 57.0% to 43.3% in men and from 49.0% to 43.3% in women.
- The proportion of US adults who meet criteria for muscle strength has improved between 1998 and 2011. Annual estimates of the percentage of US adults who met the
muscle-strengthening criteria increased from 17.7% in 1998 to 24.5% in 2011, and estimates of the percentage who met both the muscle-strengthening and aerobic criteria increased from 14.4% in 1998 to 21.0% in 2011.\(^\text{10,17}\)

- A 2.3% decline in physical inactivity between 1980 and 2000 was estimated to have prevented or postponed $\approx 17,445$ deaths ($\approx 5\%$) attributable to CHD in the United States.\(^\text{18}\)

CVD and Metabolic Risk Factors

Youth

- In 2011, more girls (67.9%) than boys (55.7%) reported having exercised to lose weight or to keep from gaining weight. White girls (72.2%) were more likely than black (54.2%) and Hispanic (66.3%) girls to report exercising to lose weight or to keep from gaining weight.\(^\text{19}\)
- Total and vigorous PA are inversely correlated with body fat and the prevalence of obesity.\(^\text{20}\)
- Among children 4 to 18 years of age, increased time in moderate to vigorous PA was associated with improvements in waist circumference, SBP, fasting triglycerides, HDL cholesterol, and insulin. These findings were significant regardless of the amount of the children’s sedentary time.\(^\text{21}\)
- Among children aged 4 to 18 years, both higher activity levels and lower sedentary time measured by accelerometry were associated with more favorable metabolic risk factor profiles.\(^\text{21}\)

Adults

- Participants in the Diabetes Prevention Program randomized trial who met the PA goal of 150 minutes of PA per week were 44% less likely to develop DM after 3.2 years of follow-up, even if they did not meet the weight-loss target.\(^\text{22}\)
- Exercise for weight loss, without dietary interventions, was associated with significant reductions in DBP (–2 mm Hg; 95% CI, –4 to –1 mm Hg), triglycerides (–0.2 mmol/L; 95% CI, –0.3 to –0.1 mmol/L), and fasting glucose (–0.2 mmol/L; 95% CI, –0.3 to –0.1 mmol/L).\(^\text{23}\)
- A total of 120 to 150 minutes per week of moderate-intensity activity, compared with none, can reduce the risk of developing metabolic syndrome.\(^\text{24}\)
- In CARDIA, women who maintained high activity through young adulthood gained 6.1 fewer kilograms of weight and 3.8 fewer centimeters in waist circumference in middle age than those with lower activity. Highly active men gained 2.6 fewer kilograms and 3.1 fewer centimeters than their lower-activity counterparts.\(^\text{25}\)
- Self-reported low lifetime recreational activity has been associated with increased PAD.\(^\text{26}\)
- In 3 US cohort studies, men and women who increased their PA over time gained less weight in the long term, whereas those who decreased their PA over time gained more weight and those who maintained their current PA had intermediate weight gain.\(^\text{27}\)
- Among US men and women, every hour per day of increased television watching was associated with 0.3 lb of greater weight gain every 4 years, whereas every hour per day of decreased television watching was associated with a similar amount of relative weight loss.\(^\text{27}\)
- In a sample of 466,605 participants in the China Kadoorie Biobank study, a 1-SD (1.5 h/d) increase in sedentary time was associated with a 0.19-unit higher BMI, a 0.57-cm larger waist circumference, and 0.44% more body fat. Both sedentary leisure time and lower PA were independently associated with an increased BMI.\(^\text{28}\)

Morbidity and Mortality

- Physical inactivity is responsible for 12.2% of the global burden of MI after accounting for other CVD risk factors such as cigarette smoking, DM, hypertension, abdominal obesity, lipid profile, no alcohol intake, and psychosocial factors.\(^\text{29}\)
- In a meta-analysis of longitudinal studies among women, RRs of incident CHD were 0.83 (95% CI, 0.69–0.99), 0.77 (95% CI, 0.64–0.92), 0.72 (95% CI, 0.59–0.87), and 0.57 (95% CI, 0.41–0.79) across increasing quintiles of PA compared with the lowest quintile.\(^\text{30}\)
- A 2003 meta-analysis of 23 studies on the association of PA with stroke indicated that compared with low levels of activity, high (RR, 0.79; 95% CI, 0.69–0.91) and moderate (RR, 0.91; 95% CI, 0.80–1.05) levels of activity were inversely associated with the likelihood of developing total stroke (ischemic and hemorrhagic).\(^\text{31}\)
- With television watching as a sedentary activity, 2 hours of television per day is associated with an RR for type 2 DM of 1.20 (95% CI, 1.14–1.27), an RR for fatal or nonfatal CVD of 1.15 (95% CI, 1.06–1.23), and an RR for all-cause mortality of 1.13 (95% CI, 1.07–1.18). The risk for all-cause mortality further increases with >3 hours of television daily.\(^\text{32}\)
- Longitudinal studies commonly report a graded, inverse association of PA amount and duration (ie, dose) with incident CHD and stroke.\(^\text{33}\)
- The PA guidelines for adults cite evidence that ≈ 150 minutes per week of moderate-intensity aerobic activity, compared with none, can reduce the risk of CVD.\(^\text{34}\)
- Adherence to PA guidelines for both aerobic and muscle-strengthening activities is associated with 27% lower all-cause mortality among adults without existing chronic conditions such as DM, cancer, MI, angina, CVD, stroke, or respiratory diseases and with 46% lower mortality among people with chronic comorbidities.\(^\text{34}\)
- In the Health Professionals Follow-Up Study, for every 3-hour-per-week increase in vigorous-intensity activity, the multivariate RR of MI was 0.78 (95% CI, 0.61–0.98) for men. This 22% reduction of risk can be explained in part by beneficial effects of PA on HDL cholesterol, vitamin D, apolipoprotein B, and HbA$_1$\(^\text{c}\).\(^\text{35}\)
- In a 20-year study of older male veterans, an inverse, graded, and independent association between impaired exercise capacity and all-cause mortality risk was found. For each increase of 1 metabolic equivalent tasks in exercise capacity, mortality risk was 12% lower (HR, 0.88; 95% CI, 0.86–0.90). Unfit individuals who improved their fitness status had a 35% lower mortality risk (HR, 0.65; 95% CI, 0.46–0.93) than those who remained unfit.\(^\text{36}\)
- In the EPIC-Norfolk study, men and women with abdominal obesity with features of the metabolic syndrome who reported themselves to be physically very active were
characterized by a lower (=50%) risk of CHD than sedentary abdominally obese subjects with the metabolic syndrome.37

● In the WHI observational study (n=71,018), sitting for ≥10 h/d compared with ≤5 h/d was associated with increased CVD risk (HR, 1.18) in multivariable models that included PA. Low PA was also associated with higher CVD risk. It was concluded that both low PA and prolonged sitting augment CVD risk.38

● In a study that prospectively assessed the association of continuous inactivity and of changes in sitting time for 2 years with subsequent long-term all-cause mortality, it was found that compared with people who remained consistently sedentary, the HRs for mortality were 0.91 in those who were newly sedentary, 0.86 in formerly sedentary individuals, and 0.75 in those who remained consistently nonsedentary. Thus, subjects who reduced their sitting time over 2 years experienced an immediate reduction in mortality.39

● A meta-analysis of 17 eligible studies on PA in patients with DM revealed that the highest PA category in each study was associated with a lower RR (0.61) for all-cause mortality and CVD (0.71) than the lowest PA category. Although more PA was associated with larger reductions in future all-cause mortality and CVD, in patients with DM, any amount of habitual PA was better than inactivity.40

● In a special issue of The Lancet on PA, it was reported that the prevalence of physical inactivity (35%) worldwide is now greater than the prevalence of smoking (26%). On the basis of the HRs associated with these 2 behaviors (1.57 for smoking and 1.28 for inactivity), it was concluded that the PAR was greater for inactivity (9%) than for smoking (8.7%). Thus, inactivity was estimated to be responsible for 5.3 million deaths compared with 5.1 million deaths for smoking.41

Secondary Prevention

● PA improves inflammatory markers in people with existing stable CHD. After a 6-week training session, CRP levels declined by 23.7% (P<0.001), and plasma vascular cell adhesion molecule-1 levels declined by 10.23% (P<0.05); there was no difference in leukocyte count or levels of intercellular adhesion molecule-1.42

● In a randomized trial of patients with PAD, supervised treadmill exercise training and lower-extremity resistance training were each associated with significant improvements in functional performance and quality of life compared with a usual-care control group. Exercise training was additionally associated with improved brachial artery FMD, whereas resistance training was associated with better stair-climbing ability versus control.43

● On the basis of a meta-analysis of 34 randomized controlled trials, exercise-based cardiac rehabilitation after MI was associated with lower rates of reinfarction, cardiac mortality, and overall mortality.44

● The benefit of intense exercise training for cardiac rehabilitation in people with HF was tested in a trial of 27 patients with stable, medically treated HF. Intense activity (an aerobic interval-training program 3 times per week for 12 weeks) was associated with a significant 35% improvement in LV EF and decreases in pro-BNP (40%), LV end-diastolic volume (18%), and LV end-systolic volume (25%) compared with control and endurance-training groups.45

● Exercise training in patients with HF with preserved EF was associated with improved exercise capacity and favorable changes in diastolic function.46

Costs

● The economic consequences of physical inactivity are substantial. In a summary of WHO data sources, the economic costs of physical inactivity were estimated to account for 1.5% to 3.0% of total direct healthcare expenditures in developed countries such as the United States.47

● Interventions and community strategies to increase PA have been shown to be cost-effective in terms of reducing medical costs48:

—Nearly $3 in medical cost savings is realized for every $1 invested in building bike and walking trails.

—Incremental cost and incremental effectiveness ratios range from $14,000 to $69,000 per quality-adjusted life-year gained from interventions such as pedometer or walking programs compared with no intervention, especially in high-risk groups.

References

48. Weintraub WS, Daniels SR, Burke LE, Franklin BA, Goff DC, Jr., Hay-
man LL, Lloyd-Jones D, Pandey DK, Sanchez EJ, Schram AP, Whitsel
LP; on behalf of the American Heart Association Advocacy Coordinat-
ing Committee, Council on Cardiovascular Disease in the Young, Council
on the Kidney in Cardiovascular Disease, Council on Epidemiology and
Prevention, Council on Cardiovascular Nursing, Council on Arterioscle-
rosis, Thrombosis, and Vascular Biology, Council on Clinical Cardiology,
and Stroke Council. Value of primordial and primary prevention for car-
diovascular disease: a policy statement from the American Heart Associa-

Table 4-1. Met 2008 Federal Aerobic and Strengthening PA
Guidelines for Adults

<table>
<thead>
<tr>
<th>Population Group</th>
<th>Prevalence, 2013 (Age ≥18 y), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes</td>
<td>20.9</td>
</tr>
<tr>
<td>Males</td>
<td>24.9</td>
</tr>
<tr>
<td>Females</td>
<td>17.0</td>
</tr>
<tr>
<td>NH white only</td>
<td>22.7</td>
</tr>
<tr>
<td>NH black only</td>
<td>17.7</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>16.6</td>
</tr>
<tr>
<td>Asian only</td>
<td>18.2</td>
</tr>
<tr>
<td>American Indian/Alaska Native only</td>
<td>16.6</td>
</tr>
</tbody>
</table>

“Met 2008 federal PA guidelines for adults” is defined as engaging in ≥150 minutes of moderate or 75 minutes of vigorous aerobic leisure-time physical activity per week (or an equivalent combination) and engaging in leisure-time strengthening physical activity at least twice a week.

Data are age adjusted for adults ≥18 years of age.

NH indicates non-Hispanic; and PA, physical activity.

Source: National Health Interview Survey 2013 (National Center for Health Statistics).9

Chart 4-1. Prevalence of students in grades 9 to 12 who did not participate in ≥60 minutes of physical activity on any day in the past 7 days by race/ethnicity and sex (Youth Risk Behavior Surveillance: 2013). NH indicates non-Hispanic. Data derived from MMWR Surveillance Summaries.7
Chart 4-2. Percentage of students in grades 9 to 12 who used a computer for ≥3 hours on an average school day by race/ethnicity and sex (Youth Risk Behavior Surveillance: 2013). NH indicates non-Hispanic. Data derived from MMWR Surveillance Summaries.7

Chart 4-3. Prevalence of students in grades 9 to 12 who met currently recommended levels of physical activity during the past 7 days by race/ethnicity and sex (Youth Risk Behavior Surveillance: 2013). “Currently recommended levels” was defined as activity that increased their heart rate and made them breathe hard some of the time for a total of ≥60 minutes per day on 5 of the 7 days preceding the survey. NH indicates non-Hispanic. Data derived from MMWR Surveillance Summaries.7
Chart 4-4. Prevalence of meeting the aerobic guidelines of the 2008 Federal Physical Activity Guidelines among adults ≥18 years of age by race/ethnicity and sex (National Health Interview Survey: 2013). NH indicates non-Hispanic. Percentages are age adjusted. The aerobic guidelines of the 2008 Federal Physical Activity Guidelines recommend engaging in moderate leisure-time physical activity for ≥150 minutes per week or vigorous activity ≥75 minutes per week or an equivalent combination. Source: National Health Interview Survey 2013 (National Center for Health Statistics).9

Chart 4-5. Prevalence of children 12 to 15 years of age who had adequate levels of cardiorespiratory fitness, by sex and age (National Health and Nutrition Examination Survey, National Youth Fitness Survey: 2012). Source: Gahche et al.15
5. Nutrition

See Tables 5-1 and 5-2 and Charts 5-1 through 5-3.

This chapter of the Update highlights national dietary consumption data, focusing on key foods, nutrients, dietary patterns, and other dietary factors related to cardiometabolic health. It is intended to examine current intakes, trends and changes in intakes, and estimated effects on disease to support and further stimulate efforts to monitor and improve dietary habits in relation to cardiovascular health.

Prevalence of Specific Dietary Habits

Foods and Nutrients: Adults
(See Table 5-1 and Chart 5-1; NHANES 2009–2010.)

The dietary consumption by US adults of selected foods and nutrients related to cardiometabolic health is detailed in Table 5-1 according to sex and race or ethnic subgroups. Compared to prior AHA Statistical Updates, the calculations for foods now utilize the USDA Food Patterns Equivalent Database on composition of various mixed dishes, which incorporates partial amounts of various foods (eg, vegetables, nuts, processed meats, etc) in mixed dishes. In addition, the characterization of whole grains is now derived from the USDA database instead of the ratio of carbohydrate to fiber.

- Average consumption of whole grains was 0.9 to 1.0 servings per day by white men and women and 0.8 servings per day by black men and women, and 0.5 to 0.6 servings by Mexican American men and women. For each of these groups, less than 6% of adults meet guidelines of ≥3 servings per day.
- Average fruit consumption ranged from 1.1 to 1.8 servings per day in these sex and race or ethnic subgroups: 10% to 12% of whites, 5% to 6% of blacks, and 10% to 11% of Mexican Americans met guidelines of ≥2 cups per day. When 100% fruit juices were included, the number of servings increased, and the proportions of adults consuming ≥2 cups per day approximately doubled in whites and Mexican Americans and tripled in blacks.
- Average vegetable consumption ranged from 1.7 to 2.7 servings per day; 9% to 11% of whites, 2% to 6% of blacks, and 4 to 9% of Mexican Americans consumed ≥2.5 cups per day; with intakes higher in women than in men in each race/ethnicity subgroup. The inclusion of vegetable juices and sauces produced only modest increases in these consumption patterns.
- Average consumption of fish and shellfish was lowest among Mexican American and white women (1.0 and 1.2 servings per week, respectively) and highest among black women and Mexican American men (1.6 and 1.7 servings per week, respectively); less than 1 in 4 of all adults in each sex and race or ethnic subgroup consumed at least 2 servings per week. Approximately 9% to 10% of whites, 10% to 12% of blacks, and 7% to 13% of Mexican Americans consumed ≥250 mg of eicosapentaenoic acid and docosahexaenoic acid per day.
- Average consumption of nuts, seeds, and beans was 4.0 servings per week among whites, 3.0 servings per week among blacks, and 4 to 6 servings per week among Mexican Americans. Approximately 1 in 3 whites, 1 in 4 blacks, and 2 in 5 Mexican Americans met guidelines of ≥4 servings per week.
- Average consumption of processed meats was lowest among Mexican American women (0.9 servings per week) and highest among white men (2.6 servings per week). Between 54% (white men) and 82% (Mexican American women) of adults consumed 2 or fewer servings per week.
- Average consumption of sugar-sweetened beverages ranged from 6.5 servings per week among white women to nearly 14 servings per week among Mexican American men. Women generally consumed less than men. From 28% (Mexican American men) to 65% (white women) of adults consumed no more than 36 oz per week.
- Average consumption of sweets and bakery desserts ranged from 4.5 servings per day (Mexican Americans) to 7 servings per day (white women). Approximately one third of white women and up to half of all other sex and race groups consumed no more than 2.5 servings per week.
● Between 35% and 58% of adults in each sex and race or ethnic subgroup consumed <10% of total calories from saturated fat, and between 56% and 72% consumed <300 mg of dietary cholesterol per day.

● Only 6% to 12% of whites, 2% to 5% of blacks, and 13% of Mexican Americans consumed ≥28 g of dietary fiber per day.

● Only 5% to 7% of whites, 6% to 12% of blacks, and 10% of Mexican Americans consumed <2.3 g of sodium per day.

● Average daily caloric intake in the United States was ~2500 calories in adult men and 1800 calories in adult women.

● Sodium is widespread in the US food supply, with diverse sources (Chart 5-1).

Foods and Nutrients: Children and Teenagers
(See Table 5-2; NHANES 2009–2010.)
The dietary consumption by US children and teenagers of selected foods and nutrients related to cardiometabolic health is detailed in Table 5-2:

● Average whole grain consumption was low, between 0.6 to 0.8 servings per day in all age and sex groups, with <4% of all children in different age and sex subgroups meeting guidelines of ≥2 servings per day.

● Average fruit consumption was low and decreased with age: 1.5 to 1.7 servings per day in younger boys and girls (5–9 years of age), 1.2 servings per day in adolescent boys and girls (10–14 years of age), and 0.9 to 1.2 servings per day in preteen boys and girls (15–19 years of age). The proportion meeting guidelines of ≥2 cups per day was also low and decreased with age: about 8% to 9% in those 5 to 9 years of age, 5% to 7% in those 10 to 14 years of age, and 5% in those 15 to 19 years of age. When 100% fruit juices were included, the number of servings consumed approximately doubled, and proportions consuming ≥2 cups per day increased to nearly 1 in 5 of those 5 to 9 years of age and 1 in 7 of those 10 to 14 years and 15 to 19 years of age.

● Average vegetable consumption was low, ranging from 1.1 to 1.7 servings per day, with <5% (and often <1%) of children in different age and sex subgroups meeting guidelines of ≥2.5 cups per day.

● Average consumption of fish and shellfish was low, ranging between 0.3 and 0.8 servings per week in all age and sex groups. Among all ages, only 4% to 11% of youth consumed ≥2 servings per week.

● Average consumption of nuts, seeds, and beans ranged from 2.3 to 3.0 servings per week among different age and sex groups. The distribution of consumption tended to be skewed to the right, and only between 1 in 4 and 1 in 5 of children in different age and sex subgroups consumed ≥4 servings per week.

● Average consumption of processed meats ranged from 1.4 to 2.4 servings per week and was up to 10 fold higher than the average consumption of fish and shellfish. The distribution of consumption tended to be skewed to the right, and the majority of children consumed no more than 2 servings per week.

● Average consumption of sugar-sweetened beverages was higher in boys than in girls and increased with age, from ≥7 to 8 servings (8 fl oz) per week in 5- to 9-year-olds, 9 to 11 servings per week in 10- to 14-year-olds, and 14 to 17 servings per week in 15- to 19-year-olds (each energy adjusted to 2000 kcal/d). This was generally considerably higher than the average consumption of whole grains, fruits, vegetables, fish and shellfish, or nuts, seeds, and beans. Less than half of children 5 to 9 years of age and only 1 in 5 boys 15 to 19 years of age consumed <4.5 servings per week.

● Average consumption of sweets and bakery desserts was highest (≥9 servings per week) in 5- to 9-year-olds, about 8 servings per week in 10- to 14-year-olds, and 5 to 8 servings per week in 15- to 19-year-olds. Only about 1 in 4 children 5 to 14 years of age, and 1 in 3 youths 15 to 19 years of age, consumed no more than 2.5 servings per week.

● Average consumption of eicosapentaenoic acid and docosahexaenoic acid was low, ranging from 39 to 63 mg/d in boys and girls at all ages. Fewer than 6% of children and teenagers at any age consumed ≥250 mg/d.

● Average consumption of saturated fat was ≥11% of calories, and average consumption of dietary cholesterol ranged from 225 to 250 mg/d. Approximately 30% to 40% of youth consumed <10% energy from saturated fat, and >75% consumed <300 mg of dietary cholesterol per day.

● Average consumption of dietary fiber ranged from 14 to 15 g/d. Less than 2% of children in all age and sex subgroups consumed ≥28 g/d.

● Average consumption of sodium ranged from 3.3 to 3.5 g/d. Only between 2% and 9% of children in different age and sex subgroups consumed ≥2.3 g/d.

● In children and teenagers, average daily caloric intake is higher in boys than in girls and increases with age in boys.

Dietary Patterns
In addition to individual foods and nutrients, overall dietary patterns can be used to assess more global dietary quality. Different dietary patterns have been defined, including the HEI, Alternative HEI, Western versus prudent dietary patterns, Mediterranean dietary pattern, and DASH-type diet. The higher-mono-unsaturated-fat DASH-type diet is generally similar to a traditional Mediterranean dietary pattern.1

● In 1999 to 2004, only 19.4% of hypertensive US adults were following a DASH-type diet (based on intake of fiber, magnesium, calcium, sodium, potassium, protein, total fat, saturated fat, and cholesterol). This represented a decrease from 26.7% of hypertensive US adults in 1988 to 1994.2

● Among older US adults (≥60 years of age) in 1999 to 2002, 72% met guidelines for dietary cholesterol intake, but only between 18% and 32% met guidelines for the HEI food groups (meats, dairy, fruits, vegetables, and grains). On the basis of the HEI score, only 17% of older US adults consumed a good-quality diet. Higher HEI scores were seen in white adults and individuals with greater education; lower HEI scores were seen in black adults and smokers.3

Dietary Supplements
Use of dietary supplements is common in the United States among both adults and children:

● Approximately half of US adults in 2007 to 2010 used ≥1 dietary supplement, with the most common supplement being multivitamin-multimineral products (32% of men and women reporting use).4 It has been shown that most supplements are taken daily and for ≥2 years.5 Supplement use is associated with older age, higher education, greater PA, moderate alcohol consumption, lower BMI, abstinence

e77
from smoking, having health insurance, and white race. Previous research also suggests that supplement users have higher intakes of most vitamins and minerals from their food choices alone than nonusers. The primary reasons US adults in 2007 to 2010 reported for using dietary supplements were to “improve overall health” (45%) and to “maintain health” (33%).

- One third (32%) of US children (birth to 18 years of age) used dietary supplements in 1999 to 2002, with the highest use (48.5%) occurring among 4- to 8-year-olds. The most common supplements were multivitamins and multiminerals (58% of supplement users). The primary nutrients supplemented (either by multivitamins or individual vitamins) included vitamin C (29% of US children), vitamin A (26%), vitamin D (26%), calcium (21%), and iron (19%). Supplement use was associated with higher family income, a smoke-free home environment, lower child BMI, and less screen time (television, video games, or computers).

- In a 2005 to 2006 telephone survey of US adults, 41.3% were making or had made in the past a serious weight-loss attempt. Of these, one third (33.9%) had used a dietary supplement for weight loss, with such use being more common in women (44.9%) than in men (19.8%) and in blacks (48.7%) or Hispanics (41.6%) than in whites (31.2%); in those with high school education or less (38.4%) than in those with some college or more (31.1%); and in those with household income <$40,000 per year (41.8%) than in those with higher incomes (30.3%).

- Multiple trials of most dietary supplements, including folate, vitamin C, and vitamin E, have generally shown no significant benefits for CVD risk, and even potential for harm. For example, a multicenter randomized trial in patients with diabetic nephropathy found that B vitamin supplementation (folic acid 2.5 mg/d, vitamin B₆ 25 mg/d, and vitamin B₁₂ 1 mg/d) decreased GFR and increased risk of MI and stroke compared with placebo.

- Fish oil supplements at doses of 1 to 2 g/d have shown CVD benefits in 2 large randomized, open-label trials and 1 large randomized, placebo-controlled trial (GISSI-Prevenzione, Japan Eicosapentaenoic Acid Lipid Intervention Study, and GISSI-HF), but several other trials of fish oil have not shown significant effects on CVD risk. A meta-analysis of all randomized controlled clinical trials demonstrated a significant reduction for cardiac mortality but no statistically significant effects on other CVD end points.

Trends in Energy Balance and Adiposity
(See Chapter 6 on Overweight and Obesity.)

- The average US adult gains ~1 lb per year. Energy balance, or consumption of total calories appropriate for needs, is determined by the balance of average calories consumed versus expended. This balance depends on multiple factors, including calories consumed, PA, body size, age, sex, and underlying basal metabolic rate. Thus, one individual may consume relatively high calories but have negative energy balance (as a result of even greater calories expended), whereas another individual may consume relatively few calories but have positive energy balance (because of low calories expended). Given such variation, the most practical and reasonable method to assess energy balance in populations is to assess changes in weight over time. Growing evidence indicates that, calorie for calorie, certain foods may be more highly obesogenic; others, modestly obesogenic; others, relatively neutral; and still others, actually protective against weight gain when their consumption is increased. These varying effects appear to relate to complex physiological responses to different foods and drinks, including responses related to hunger, satiety, brain reward, hepatic de novo lipogenesis, visceral adiposity, interactions with the intestinal inflammasome and microbiome, and metabolic expenditure (calories expended). This evidence is detailed below.

- The US obesity epidemic began in approximately 1980, with dramatic increases in ensuing years in obesity compared to prior decades among both children and adults across broad cross sections of sex, race/ethnicity, geographic residence, and socioeconomic status. In more recent years, rates of obesity and overweight among both US adults and children have begun to level off. Examination of trends in diet, activity, and other factors from 1980 to the present is important to elucidate the drivers of this remarkably recent epidemic.

- Until 1980, total energy intake remained relatively constant. Data from NHANES indicate that between 1971 and 2004, average total energy consumption among US adults increased by 22% in women (from 1542 to 1886 kcal/d) and by 10% in men (from 2450 to 2693 kcal/d). These increases are supported by data from 2 older surveys, the Nationwide Food Consumption Survey (1977–1978) and the Continuing Surveys of Food Intake (1989–1998). However, recent data show that energy intake appeared relatively stable among US adults during 1999 to 2008.

- Another analysis of national data estimated that increases in energy intake between 1980 and 1997 were primarily attributable to increases in dietary carbohydrate. Specifically, nearly 80% of the increase in total energy came from carbohydrates, 12% from protein, and only 8% from fat. These increases in calories were primarily attributable to greater refined carbohydrate intake, particularly of starches, refined grains, and sugars (see Trends in Specific Dietary Habits).

- Other specific changes related to increased caloric intake in the United States since 1980 include larger portion sizes, greater food quantity and calories per meal, and increased consumption of sugar-sweetened beverages, snacks, and commercially prepared (especially fast-food) meals. In more recent years, intakes of sugar-sweetened beverages are decreasing nationally.

- Between 1977 and 1996, the average portion sizes for many foods increased at fast-food outlets, other restaurants, and home. Based on one study, these included a 33% increase in the average portion of Mexican food (from 408 to 541 calories), a 34% increase in the average portion of cheeseburgers (from 397 to 533 calories), a 36% increase in the average portion of french fries (from 188 to 256 calories), and a 70% increase in the average portion of salty snacks such as crackers, potato chips, pretzels, puffed rice cakes, and popcorn (from 132 to 225 calories).

- In one analysis, among US children 2 to 7 years of age, an estimated energy imbalance of only 110 to 165 kcal/d (the equivalent of one 12- to 16-oz bottle of soda/cola) was sufficient to account for the excess weight gain between 1988 and 1994 and 1999 and 2002.
In a quantitative analysis using various US surveys between 1977 and 2010, the relations of national changes in energy density, portion sizes, and number of daily eating/dinking occasions to changes in total energy intake were assessed. Changes in energy density were not consistently linked to energy intake over time, whereas increases in both portion size and number of eating occasions were linked to greater energy intake.

Among US children 2 to 18 years of age, increases in energy intake between 1977 and 2006 (179 kcal/d) were entirely attributable to substantial increases in energy eaten away from home (255 kcal/d). The percentage of energy eaten away from home increased from 23.4% to 33.9% during this time, with a shift toward energy from fast food as the largest contributor to foods away from home for all age groups.

A county-level investigation based on BRFSS and NHANES data found that prevalence of sufficient PA in the United States actually increased from 2001 to 2009 but that this was matched by increases in obesity in almost all counties during the same time period, with low correlation between level of PA and obesity in US counties.

Determinants: Nutrients

- For weight loss among overweight and obese individuals, low-carbohydrate, higher-fat diets achieve greater weight loss than low-fat, higher-carbohydrate diets.
- In ad libitum (not energy restricted) diets, intake of dietary sugars is positively linked to weight gain. However, isocaloricatic exchange of dietary sugars with other carbohydrates had no relationship with body weight, which suggests that all refined carbohydrates may be similarly obesogenic.
- In pooled analyses across 3 prospective cohort studies of US men and women, increased glycemic index and glycemic load were independently associated with greater weight gain over time.
- At the individual food level, energy density (total calories per gram of food) is not consistently linked with weight gain or obesity. For example, nuts have relatively high energy density and are inversely linked to weight gain, whereas sugar-sweetened beverages have low energy density and increase obesity. National changes in energy density over time are not consistently linked to changes in energy intake.

Determinants: Foods

- In an analysis of >120000 US men and women in 3 separate US cohorts followed up for up to 20 years, changes in intakes of different foods and beverages were linked to long-term weight gain in different ways. Foods and beverages most positively linked to weight gain included refined grains, starches, and sugars, including potatoes, white bread, white rice, low-fiber breakfast cereals, sweets/desserts, and sugar-sweetened beverages, as well as red and processed meats. In contrast, increased consumption of several other foods, including nuts, whole grains, fruits, vegetables, and yogurt, was linked to relative weight loss over time. These findings indicate that attention to dietary quality, not simply counting total calories, is crucial for energy balance.

- In both adults and children, intake of sugar-sweetened beverages has been linked to weight gain and obesity. Randomized trials in children demonstrate reductions in obesity when sugar-sweetened beverages are replaced with noncaloric beverages.

Determinants: Mechanisms

- Diet quality influences activation of brain reward centers, such as the nucleus accumbens. Isocaloric meals richer in rapidly digestible carbohydrate increased hunger and stimulated brain regions associated with reward and craving compared with isocaloric meals that had identical macro-nutrient content, palatability, and sweetness but were lower in rapidly digestible carbohydrate.
- Dietary factors that stimulate hepatic de novo lipogenesis, such as rapidly digestible grains, starches, and sugars, as well as trans fat, appear more strongly related to weight gain.
- In animal experiments, probiotics in yogurt alter gut immune responses and protect against obesity and nonalcoholic fatty acid liver disease.
- Diet quality may also influence energy expenditure. After intentional weight loss, isocaloric diets higher in fat and lower in rapidly digestible carbohydrates produced significantly smaller declines in total energy expenditure than low-fat, high-carbohydrate diets, with a mean difference of >300 kcal/d.
- Other possible nutritional determinants of positive energy balance (more calories consumed than expended), as determined by adiposity or weight gain, include larger portion sizes, skipping breakfast, consumption of fast food, and eating foods prepared outside the home, but evidence for relevance of these factors has been inconsistent.

Determinants: Other

- Although sedentary activity has been hypothesized to be linked to weight gain because of changes in metabolism, the strongest and most consistent associations are seen for television watching as opposed to other sedentary activities. In 2 randomized controlled trials, the effects of television watching on obesity were mediated by changes in diet rather than by changes in PA, which may be related to greater snacking/eating in front of the television, as well as the influence of television advertising on poor food choices overall.
- PA influences adiposity, as covered in Chapter 4 of this update.
- Lower average sleep duration is consistently linked to greater adiposity in both children and adults, and short-term trials demonstrate effects of insufficient sleep on hunger, food choices, and leptin/ghrelin concentrations.
- Societal and environmental factors independently associated with diet quality, adiposity, and/or weight gain include education, income, race/ethnicity, and (at least cross-sectionally) availability of supermarkets.
- Other local food-environment characteristics, such as availability of grocery stores (ie, smaller stores than supermarkets), convenience stores, and fast food restaurants, are not consistently associated with diet quality or adiposity.
In contrast, between 1999 and 2010, sugar-sweetened beverage consumption among children and teenagers (2–19 years of age) declined, with an average decrease of 19.9 fl oz per person. Starting in 1977 and continuing until the most recent dietary guidelines revision in 2010, a major focus of US dietary guidelines was reduction of dietary fat.57 During this time, average total fat consumption declined as a percent of calories from 36.9% to 33.4% in men and from 36.1% to 33.8% in women.20 However, more recent analyses show that there were no significant trends in total fat intake among US adults from 1999 to 2008.22

Dietary guidelines during this time also emphasized carbohydrate consumption as the base of one’s dietary pattern18 and more recently specified the importance of complex rather than refined carbohydrates (eg, as the base of the Food Guide Pyramid).57 From 1971 to 2004, total carbohydrate intake increased from 42.4% to 48.2% of calories in men and from 45.4% to 50.6% of calories in women.20 Evaluated as absolute intakes, the increase in total calorie consumption during this period was attributable primarily to the greater consumption of carbohydrates, both as foods (starches and grains) and as beverages.59,60 However, more recent analyses show that there has been a decrease in carbohydrate intake (expressed as percentage of energy) among US adults from 1999 to 2008.22

Trends in Sugar-Sweetened Beverages
(See Chart 5-2.)

- Between 1965 and 2002, the average percentage of total calories consumed from beverages in the United States increased from 11.8% to 21.0% of energy, which represents an overall absolute increase of 222 kcal/d per person.24 This increase was largely caused by increased consumption of sugar-sweetened beverages and alcohol: Average consumption of fruit juices went from 20 to 39 kcal/d; of milk, from 125 to 94 kcal/d; of alcohol, from 26 to 99 kcal/d; of sweetened fruit drinks, from 13 to 38 kcal/d; and of soda/coke, from 35 to 143 kcal/d.18

- In addition to increased overall consumption, the average portion size of a single sugar-sweetened beverage increased by >50% between 1977 and 1996, from 13.1 to 19.9 fl oz.21

- Among children and teenagers (2–19 years of age), the largest increases in consumption of sugar-sweetened beverages between 1988 to 1994 and 1999 to 2004 were seen among black and Mexican American youths compared with white youths.29

- In contrast, between 1999 and 2010, sugar-sweetened beverage intake decreased among both youth and adults in the United States, consistent with increased attention to their importance as a cause of obesity. In 2009 to 2010, youth and adults consumed a daily average of 155 and 151 kcal from sugar-sweetened beverages, respectively, a decrease from 1999 to 2000 of 68 and 45 kcal/d, respectively.42 This reduction parallels the plateau of the obesity epidemic in US youth.17

Trends in Fruits and Vegetables

- Between 1994 and 2005, the average consumption of fruits and vegetables declined slightly, from a total of 3.4 to 3.2 servings per day. The proportions of men and women consuming combined fruits and vegetables ≥5 times per day were low (≈20% and 29%, respectively) and did not change during this period.62

Morbidity and Mortality

Effects on Cardiovascular Risk Factors and Type 2 DM
Dietary habits affect multiple cardiovascular risk factors, including both established risk factors (SBP, DBP, LDL cholesterol levels, HDL cholesterol levels, glucose levels, and obesity/weight gain) and novel risk factors (eg, inflammation, cardiac arrhythmias, endothelial cell function, triglyceride levels, lipoprotein(a) levels, and heart rate):

- A DASH dietary pattern with low sodium reduced SBP by 7.1 mm Hg in adults without hypertension and by 11.5 mm Hg in adults with hypertension.65

- Compared with the low-fat DASH diet, DASH-type diets that increased consumption of either protein or unsaturated fat had similar or greater beneficial effects on CVD risk factors. Compared with a baseline usual diet, each of the DASH-type diets, which included various percentages (27%–37%) of total fat and focused on whole foods such as fruits, vegetables, whole grains, and fish, as well as potassium and other minerals and low sodium, reduced SBP by 8 to 10 mm Hg, DBP by 4 to 5 mm Hg, and LDL cholesterol by 12 to 14 mg/dL. The diets that had higher levels of protein and unsaturated fat also lowered triglyceride levels by 16 and 9 mg/dL, respectively.64 The DASH-type diet higher in unsaturated fat also improved glucose-insulin homeostasis compared with the low-fat/high-carbohydrate DASH diet.65

- In a meta-analysis of 60 randomized controlled feeding trials, consumption of 1% of calories from saturated fat in place of carbohydrate raised LDL cholesterol concentrations but also raised HDL cholesterol and lowered triglycerides, with no significant effects on apolipoprotein B concentrations.66

- In a meta-analysis of randomized controlled trials, consumption of 1% of calories from trans fat in place of saturated fat, monounsaturated fat, or polyunsaturated fat, respectively, increased the ratio of total to HDL cholesterol by 0.031, 0.054, and 0.67; increased apolipoprotein B levels by 3, 10, and 11 mg/L; decreased apolipoprotein A-I levels by 7, 5, and 3 mg/L; and increased lipoprotein(a) levels by 3.8, 1.4, and 1.1 mg/L.67

- In meta-analyses of randomized controlled trials, consumption of eicosapentaenoic acid and docosahexaenoic acid for 212 weeks lowered SBP by 2.1 mm Hg68 and lowered resting heart rate by 2.5 beats per minute.69

- In a pooled analysis of 25 randomized trials totaling 583 men and women both with and without hypercholesterolemia, nut consumption significantly improved blood lipid levels.70 For a mean consumption of 67 g of nuts per day, total cholesterol was reduced by 10.9 mg/dL (5.1%), LDL cholesterol by 10.2 mg/dL (7.4%), and the ratio of total cholesterol to HDL cholesterol by 0.24 (5.6% change; P<0.001 for each). Triglyceride levels were also reduced by 20.6 mg/dL (10.2%) in subjects with high triglycerides (2150 mg/dL). Different types of nuts had similar effects.70
A review of cross-sectional and prospective cohort studies suggests that higher intake of sugar-sweetened beverages is associated with greater visceral fat and higher risk of type 2 DM.71

In a randomized controlled trial, compared with a low-fat diet, 2 Mediterranean dietary patterns that included either virgin olive oil or mixed nuts lowered SBP by 5.9 and 7.1 mm Hg, plasma glucose by 7.0 and 5.4 mg/dL, fasting insulin by 16.7 and 20.4 pmol/L, the homeostasis model assessment index by 0.9 and 1.1, and the ratio of total to HDL cholesterol by 0.38 and 0.26 and raised HDL cholesterol by 2.9 and 1.6 mg/dL, respectively. The Mediterranean dietary patterns also lowered levels of CRP, interleukin-6, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1.72

Among 24 prospective cohort studies, greater consumption of refined carbohydrates and sugars, as measured by higher glycemic load, was positively associated with risk of type 2 DM: for each 100-g increment, 45% higher risk was seen (95% CI, 1.31–1.61) for a 100-g increment in glycemic load (P<0.001; n=24 studies, 7.5 million person-years of follow-up).73

In one meta-analysis of observational studies and trials, greater consumption of nuts was linked to lower incidence of type 2 DM (RR per 4 weekly 1-oz servings, 0.87; 95% CI, 0.81–0.94).74

Effects on Cardiovascular Outcomes

Because dietary habits affect a broad range of established and novel risk factors, estimation of the impact of nutritional factors on cardiovascular health by considering only a limited number of pathways (eg, only effects on lipids, BP, and obesity) will systematically underestimate or even misconstrue the actual total impact on cardiovascular health. Randomized controlled trials and prospective observational studies have been used to quantify the total effects of dietary habits on clinical outcomes.

Fats and Carbohydrates

In the WHI randomized clinical trial (n=48,835), reduction of total fat consumption from 37.8% energy (baseline) to 24.3% energy (at 1 year) and 28.8% energy (at 6 years) had no effect on incidence of CHD (RR, 0.98; 95% CI, 0.88–1.09), stroke (RR, 1.02; 95% CI, 0.90–1.15), or total CVD (RR, 0.98; 95% CI, 0.92–1.05) over an average of 8.1 years.75 This was consistent with null results of 4 prior randomized clinical trials and multiple large prospective cohort studies that indicated little effect of total fat consumption on CVD risk.76

In 3 separate meta-analyses of prospective cohort studies, the largest of which included 21 studies with up to 2 decades of follow-up, saturated fat consumption overall had no significant association with incidence of CHD, stroke, or total CVD.77–79 In comparison, in a pooled individual-level analysis of 11 prospective cohort studies, the specific exchange of polyunsaturated fat consumption in place of saturated fat was associated with lower CHD risk, with 13% lower risk for each 5% energy exchange (RR, 0.87; 95% CI, 0.70–0.97).80 These findings are consistent with a meta-analysis of randomized controlled trials in which increased polyunsaturated fat consumption in place of saturated fat reduced CHD events, with 10% lower risk for each 5% energy exchange (RR, 0.90; 95% CI, 0.83–0.97).81

In a pooled analysis of individual-level data from 11 prospective cohort studies in the United States, Europe, and Israel that included 344,696 participants, each 5% higher energy consumption of carbohydrate in place of saturated fat was associated with a 7% higher risk of CHD (RR, 1.07; 95% CI, 1.01–1.14).80 Each 5% higher energy consumption of monounsaturated fat in place of saturated fat was not significantly associated with CHD risk.89 A more recent meta-analysis of prospective cohort studies found that increased intake of polyunsaturated fats was associated with lower risk of CHD, whether replacing saturated fat or carbohydrate.89a

Together these findings suggest that reducing saturated fat without specifying the replacement may have minimal effects on CHD risk, whereas increasing polyunsaturated fats from vegetable oils will reduce CHD, whether replacing saturated fat or carbohydrate.1

In a meta-analysis of prospective cohort studies, each 2% of calories from trans fat was associated with a 23% higher risk of CHD (RR, 1.23; 95% CI, 1.11–1.37).82

In meta-analyses of prospective cohort studies, greater consumption of refined complex carbohydrates, starches, and sugars, as assessed by glycemic index or load, was associated with significantly higher risk of CHD and DM. When the highest category was compared with the lowest category, risk of CHD was 36% greater (glycemic load: RR, 1.36; 95% CI, 1.13–1.63), and risk of DM was 40% greater (glycemic index: RR, 1.40; 95% CI, 1.23–1.59).83,84

Foods and Beverages

In meta-analyses of prospective cohort studies, each daily serving of fruits or vegetables was associated with a 4% lower risk of CHD (RR, 0.96; 95% CI, 0.93–0.99) and a 5% lower risk of stroke (RR, 0.95; 95% CI, 0.92–0.97).85,86

In a meta-analysis of prospective cohort studies, greater whole grain intake (2.5 compared with 0.2 servings per day) was associated with a 21% lower risk of CVD events (RR, 0.79; 95% CI, 0.73–0.85), with similar estimates in men and women and for various outcomes (CHD, stroke, and fatal CVD). In contrast, refined grain intake was not associated with lower risk of CVD (RR, 1.07; 95% CI, 0.94–1.22).87

In a meta-analysis of 16 prospective cohort studies that included 326,572 generally healthy individuals in Europe, the United States, China, and Japan, fish consumption was associated with significantly lower risk of CHD mortality.88 Compared with no consumption, an estimated 250 mg of long-chain omega-3 fatty acids per day was associated with 35% lower risk of CHD death (P<0.001).

In a meta-analysis of prospective cohort and case-control studies from multiple countries, consumption of unprocessed red meat was not significantly associated with incidence of CHD. In contrast, each 50-g serving per day of processed meats (eg, sausage, bacon, hot dogs, deli meats) was associated with a higher incidence of CHD (RR, 1.42; 95% CI, 1.07–1.89).89

In a meta-analysis of prospective cohort studies that included 442,101 participants and 28,228 DM cases, unprocessed red meat consumption was associated with a higher risk of DM (RR, 1.19; 95% CI, 1.04–1.37, per 100 g/d). On a per g/d basis, risk of DM was nearly 7-fold higher for processed meat consumption (RR, 1.51; 95% CI, 1.25–1.83, per 50 g/d).90
In a meta-analysis of 6 prospective observational studies, nut consumption was associated with lower incidence of fatal CHD (RR per 4 weekly 1-oz servings, 0.76; 95% CI, 0.69–0.84) and nonfatal CHD (RR, 0.78; 95% CI, 0.67–0.92). Nut consumption was not significantly associated with stroke risk based on 4 studies.74

In a meta-analysis of 6 prospective observational studies, consumption of legumes (beans) was associated with lower incidence of CHD (RR per 4 weekly 100-g servings, 0.86; 95% CI, 0.78–0.94).74

Higher consumption of dairy or milk products is associated with lower incidence of DM and trends toward lower risk of stroke.70,83,84 The inverse associations with DM appear strongest for both yogurt and cheese.91

Dairy consumption is not significantly associated with higher or lower risk of CHD.78,92

Among 88,520 generally healthy women in the Nurses’ Health Study who were 34 to 59 years of age in 1980 and were followed up from 1980 to 2004, regular consumption of sugar-sweetened beverages was independently associated with higher incidence of CHD, with 23% and 35% higher risk with 1 and ≥2 servings per day, respectively, compared with <1 per month.93 Among the 15,745 participants in the ARIC study, the OR for developing CHD was 2.59 for participants who had a serum uric acid level >9.0 mg/dL and who drank >1 sugar-sweetened soda per day.94

Sodium and Potassium

Lower estimated consumption of dietary sodium was not associated with lower CVD mortality among adults 30 years of age and older with no history of CVD events in NHANES,95 although such findings may be limited by changes in behaviors that could result from underlying risk (reverse causation). In a post hoc analysis of the Trials of Hypertension Prevention, participants randomized to low-sodium interventions had a 25% lower risk of CVD (RR, 0.75; 95% CI, 0.57–0.99) after 10 to 15 years of follow-up after the original trials.96

In a meta-analysis of small randomized trials of sodium reduction of ≥6 months’ duration, nonsignificant trends were seen toward fewer CVD events in subjects with normal BP (RR, 0.71; 95% CI, 0.42–1.20; n=200 events) or hypertension (RR, 0.84; 95% CI, 0.57–1.23; n=93 events), but findings were not statistically significant, with relatively low statistical power because of the small numbers of events. Sodium restriction increased total mortality in trials of patients with CHF (RR, 2.59; 95% CI, 1.04–6.44), but these data were based on very few events (n=21 deaths).97

In a meta-analysis of 13 prospective cohorts that included 177,025 participants and >11,000 vascular events, higher sodium consumption was associated with greater risk of stroke (pooled RR, 1.23; 95% CI, 1.06–1.43; P=0.007) and a trend toward higher risk of CVD (1.14; 95% CI, 0.99–1.32; P=0.07). These associations were greater with larger differences in sodium intake and longer follow-up.98

In a meta-analysis of 15 prospective cohort studies that included 247,510 participants and 7066 strokes, 3058 CHD events, and 2497 total CVD events, each 1.64-g/d (42 mmol/d) higher potassium intake was associated with a 21% lower risk of stroke (RR, 0.79; 95% CI, 0.68–0.90) and trends toward lower risk of CHD and total CVD.99

Dietary Patterns

In a cohort of 380,296 US men and women, greater versus lower adherence to a Mediterranean dietary pattern, characterized by higher intakes of vegetables, legumes, nuts, fruits, whole grains, fish, and unsaturated fat and lower intakes of red and processed meat, was associated with a 22% lower cardiovascular mortality (RR, 0.78; 95% CI, 0.69–0.87).100 Similar findings have been seen for the Mediterranean dietary pattern and risk of incident CHD and stroke101 and for the DASH-type dietary pattern.102

In a cohort of 72,113 US female nurses, a dietary pattern characterized by higher intakes of vegetables, fruits, legumes, fish, poultry, and whole grains was associated with a 28% lower cardiovascular mortality (RR, 0.72; 95% CI, 0.60–0.87), whereas a dietary pattern characterized by higher intakes of processed meat, red meat, refined grains, french fries, and sweets/desserts was associated with a 22% higher cardiovascular mortality (RR, 1.22; 95% CI, 1.01–1.48).103 Similar findings have been seen in other cohorts and for other outcomes, including development of DM and metabolic syndrome.104–110

The observational findings for benefits of a healthy food–based dietary pattern have been confirmed in 2 randomized clinical trials, including a small secondary prevention trial in France among patients with recent MI111 and a large primary prevention trial in Spain among patients with CVD risk factors.112 The latter trial, PREDIMED, demonstrated a 30% reduction in the risk of stroke, MI, and death attributable to cardiovascular causes in those patients randomized to Mediterranean-style diets.

Impact on US Mortality

One report used consistent and comparable risk assessment methods and nationally representative data to estimate the impact of all major modifiable risk factors on mortality and morbidity in the United States in 1990 and in 2010.113 Suboptimal dietary habits were the leading cause of both mortality and DALY lost, exceeding even tobacco. In 2010, a total of 678,000 deaths of all causes were attributable to suboptimal diet.

A previous investigation reported the estimated mortality effects of several specific dietary risk factors in 2005 in the United States. High dietary salt consumption was estimated to be responsible for 102,000 annual deaths, low dietary omega-3 fatty acids for 84,000 annual deaths, high dietary trans fatty acids for 82,000 annual deaths, and low consumption of fruits and vegetables for 55,000 annual deaths.114

Cost

(See Chart 5-3.)

The US Department of Agriculture forecast that the Consumer Price Index for all food would increase 3.0% to 4.0% in 2013 as retailers continued to pass on higher commodity and energy costs to consumers in the form of higher retail prices. The Consumer Price Index for food increased 3.7% in 2011. Prices for foods eaten at home increased 4.8% in 2011, whereas prices for foods eaten away from home increased by 1.9%.115
• The proportion of total US food expenditures for meals outside the home, as a share of total food dollars, increased from 27% in 1961 to 40% in 1981 to 49% in 2011.1,5

• The proportion of sales of meals and snacks from fast-food restaurants compared with total meals and snacks away from home increased from 5% in 1958 to 29% in 1982 to 36% in 2011.11

• As a proportion of income, food has become less expensive over time in the United States. As a share of personal disposable income, average (mean) total food expenditures for families and individuals have decreased from 22.3% (1949) to 18.1% (1961) to 14.9% (1981) to 11.3% (2011). For any given year, the share of disposable income spent on food is inversely proportional to absolute income. The share increases as absolute income levels decline.11,13

• Among 153 forms of fruits and vegetables priced with 2008 Nielsen Homescan data, price and calorie per portion of 20 fruits and vegetables were compared with 20 common snack foods such as cookies, chips, pastries, and crackers. Average price per portion of fruits and vegetables was 31 cents with an average of 57 calories per portion, compared with 33 cents and 183 calories per portion for snack foods.11,15

• An overview of the costs of various strategies for primary prevention of CVD determined that the estimated costs per year of life gained were between $9800 and $18000 for statin therapy, $=1500 for nurse screening and lifestyle advice, $500 to $1250 for smoking cessation, and $20 to $900 for population-based healthy eating.116

• Each year, >$33 billion in medical costs and $9 billion in lost productivity resulting from HD, cancer, stroke, and DM are attributed to poor nutrition.117–120

• Two separate cost-effectiveness analyses estimated that population reductions in dietary salt would not only be cost-effective but actually cost-saving.121,122 In 1 analysis, a 1.2-g/d reduction in dietary sodium was projected to reduce US annual cases of incident CHD by 60000 to 120000, stroke by 32000 to 66000, and total mortality by 44000 to 92000.121 If accomplished through a regulatory intervention, estimated savings in healthcare costs would be $10 to $24 billion annually.122 Such an intervention would be more cost-effective than using medications to lower BP in all people with hypertension.

References

Table 5-1. Dietary Consumption in 2009 to 2010 Among US Adults ≥20 Years of Age of Selected Foods and Nutrients Related to Cardiometabolic Health

<table>
<thead>
<tr>
<th>Foods</th>
<th>NH White Men</th>
<th>NH White Women</th>
<th>NH Black Men</th>
<th>NH Women</th>
<th>Mexican American Men</th>
<th>Mexican American Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole grains, servings/d</td>
<td>0.9±0.7</td>
<td>1.0±0.7</td>
<td>0.8±1.0</td>
<td>0.8±0.8</td>
<td>0.6±0.2</td>
<td>0.5±0.5</td>
</tr>
<tr>
<td>Total fruits, servings/d</td>
<td>1.5±1.6</td>
<td>1.7±1.4</td>
<td>1.1±1.4</td>
<td>1.2±1.1</td>
<td>1.6±1.3</td>
<td>1.8±2.0</td>
</tr>
<tr>
<td>Total vegetables (starchy up to 3 cups/wk), servings/d</td>
<td>2.4±1.6</td>
<td>2.7±1.6</td>
<td>1.7±0.9</td>
<td>1.9±1.0</td>
<td>2.0±1.0</td>
<td>2.4±1.4</td>
</tr>
<tr>
<td>Fish and shellfish, servings/wk</td>
<td>1.3±0.5</td>
<td>1.2±1.3</td>
<td>1.4±1.5</td>
<td>1.6±1.3</td>
<td>1.7±1.3</td>
<td>1.0±1.3</td>
</tr>
<tr>
<td>Nuts, seeds, and beans, servings/wk</td>
<td>4.1±4.3</td>
<td>4.0±3.8</td>
<td>2.8±4.0</td>
<td>3.2±3.3</td>
<td>5.9±4.1</td>
<td>4.4±2.3</td>
</tr>
<tr>
<td>Processed meats, servings/wk</td>
<td>2.6±1.1</td>
<td>1.7±1.3</td>
<td>2.4±0.6</td>
<td>1.7±1.1</td>
<td>1.5±1.2</td>
<td>0.9±1.2</td>
</tr>
<tr>
<td>Sugar-sweetened beverages, servings/wk</td>
<td>9.3±11.7</td>
<td>6.5±10.4</td>
<td>13.5±9.7</td>
<td>13.0±9.4</td>
<td>13.7±8.8</td>
<td>11.3±10.6</td>
</tr>
<tr>
<td>Sweets and bakery desserts, servings/wk</td>
<td>5.9±3.9</td>
<td>6.7±4.3</td>
<td>6.1±3.6</td>
<td>5.9±3.9</td>
<td>4.1±1.1</td>
<td>4.5±3.2</td>
</tr>
<tr>
<td>Total calories, kcal/d</td>
<td>2532±705</td>
<td>1766±414</td>
<td>2365±699</td>
<td>1785±476</td>
<td>2367±664</td>
<td>1690±502</td>
</tr>
<tr>
<td>EPA/DHA, g/d</td>
<td>0.10±0.052</td>
<td>0.095±0.052</td>
<td>0.116±0.069</td>
<td>0.110±0.064</td>
<td>0.138±0.064</td>
<td>0.083±0.064</td>
</tr>
<tr>
<td>ALA, g/d</td>
<td>1.44±0.31</td>
<td>1.60±0.37</td>
<td>1.43±0.25</td>
<td>1.49±0.17</td>
<td>1.19±0.33</td>
<td>1.41±0.33</td>
</tr>
<tr>
<td>n-6 PUFA, % energy</td>
<td>7.4±1.5</td>
<td>7.6±1.4</td>
<td>7.4±1.2</td>
<td>7.6±1.0</td>
<td>6.3±1.4</td>
<td>7.1±1.5</td>
</tr>
<tr>
<td>Saturated fat, % energy</td>
<td>11.1±2.3</td>
<td>10.9±2.1</td>
<td>10.2±2.2</td>
<td>10.5±1.8</td>
<td>9.7±1.8</td>
<td>9.7±1.6</td>
</tr>
<tr>
<td>Dietary cholesterol, mg/d</td>
<td>263±106</td>
<td>260±104</td>
<td>311±83</td>
<td>306±83</td>
<td>293±75</td>
<td>300±60</td>
</tr>
<tr>
<td>Total fat, % energy</td>
<td>33.9±5.3</td>
<td>33.3±4.4</td>
<td>32.5±4.5</td>
<td>33.1±3.4</td>
<td>29.8±5.4</td>
<td>30.6±4.0</td>
</tr>
<tr>
<td>Carbohydrate, % energy</td>
<td>47.2±7.3</td>
<td>50.1±6.6</td>
<td>48.8±6.2</td>
<td>51.5±5.4</td>
<td>51.9±3.9</td>
<td>54.3±5.6</td>
</tr>
<tr>
<td>Dietary fiber, g/d</td>
<td>16.3±6.1</td>
<td>18.3±6.3</td>
<td>11.7±6.3</td>
<td>12.4±4.3</td>
<td>15.0±5.2</td>
<td>19.2±5.9</td>
</tr>
<tr>
<td>Sodium, g/d</td>
<td>3.4±0.6</td>
<td>3.6±0.5</td>
<td>3.3±0.6</td>
<td>3.5±0.4</td>
<td>3.2±0.5</td>
<td>3.4±0.5</td>
</tr>
</tbody>
</table>

Data from the National Health and Nutrition Examination Survey 2009 to 2010, derived from two 24-hour dietary recalls per person, with population SDs adjusted for within-person vs between-person variation. All values are energy adjusted by individual regressions or percent energy, and for comparability, means and proportions are reported for a 2000-kcal/d diet. To obtain actual mean consumption levels, the group means for each food or nutrient can be multiplied by the group-specific total calories (kcal/d) divided by 2000 kcal/d. Compared to prior AHA Statistical Updates, the calculations for foods now utilize the USDA Food Patterns Equivalent Database on composition of various mixed dishes, which incorporates partial amounts of various foods (eg, vegetables, nuts, processed meats, etc) in mixed dishes; in addition, the characterization of whole grains is now derived from the USDA database instead of the ratio of carbohydrate to fiber (analyses courtesy of Dr. Colin Rehm, Tufts University).

ALA indicates α-linolenic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; NA, not available; NH, non-Hispanic; and n-6 PUFA, α-ω-6-polyunsaturated fatty acid.

*All intakes and guidelines adjusted to 2000 kcal/d diet. Servings defined as follows: whole grains (1-oz equivalents), fruits and vegetables (1/2 cup equivalents), fish/shellfish (3.5 oz or 100 g), nuts/seeds/beans (50 g), processed meat (3.5 oz or 100 g), sugar-sweetened beverages (8 fl oz), sweets and bakery desserts (50 g). Foods and guidelines defined as follows: whole grains, 3 or more 1-oz equivalent (eg, 21 g whole wheat bread, 82 g cooked brown rice, 31 g Cheerios) servings per day (Dietary Guidelines for Americans119; fish or shellfish, 2 or more 100-g (3.5-oz) servings/wk; vegetables, 2 or more 1/2 cup/s/d, including up to 3 cups/wk of starchy vegetables119; nuts, seeds, and beans, 4 or more 50-g servings/wk processed meats (bacon, hot dogs, sausage, processed deli meats), 2 or fewer 100-g (3.5-oz) servings/wk (1/4 of discretionary calories119); sugar-sweetened beverages (defined as ≥50 cal/8 oz, excluding whole 100% fruit juices), ≤36 oz/wk (1/4 of discretionary calories119); and sweets and bakery desserts, 2.5 or fewer 50-g servings/wk (1/4 of discretionary calories119). EPA/DHA, ≥0.250 g/d119; ALA, ≥1.6/1.1 g (men/women)119; saturated fat, <10% energy; dietary cholesterol, <300 mg/d119; total fat, 20 to 35% energy119; dietary fiber, ≥28/g119; and sodium, <2.3 g/d.119
Table 5-2. Dietary Consumption in 2009 to 2010 Among US Children and Teenagers of Selected Foods and Nutrients Related to Cardiometabolic Health

<table>
<thead>
<tr>
<th>Foods</th>
<th>Boys (5–9 y)</th>
<th>Girls (5–9 y)</th>
<th>Boys (10–14 y)</th>
<th>Girls (10–14 y)</th>
<th>Boys (15–19 y)</th>
<th>Girls (15–19 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Consumption (Mean±SD)</td>
<td>% Meeting Guidelines*</td>
<td>Average Consumption (Mean±SD)</td>
<td>% Meeting Guidelines*</td>
<td>Average Consumption (Mean±SD)</td>
<td>% Meeting Guidelines*</td>
</tr>
<tr>
<td>Whole grains, servings/d</td>
<td>0.8±0.5</td>
<td>1.7</td>
<td>0.6±0.3</td>
<td>0.5</td>
<td>0.7±0.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Total Fruits, servings/d</td>
<td>1.5±1.2</td>
<td>8.6</td>
<td>1.7±0.9</td>
<td>8.5</td>
<td>1.2±1.7</td>
<td>6.6</td>
</tr>
<tr>
<td>Total fruit including 100% fruit juice, servings/d</td>
<td>2.4±1.5</td>
<td>18.0</td>
<td>2.5±1.1</td>
<td>18.6</td>
<td>2.0±1.9</td>
<td>13.8</td>
</tr>
<tr>
<td>Total vegetables (starchy up to 3 cups/wk), servings/d</td>
<td>1.1±0.7</td>
<td>0.4</td>
<td>1.2±0.5</td>
<td>0.9</td>
<td>1.0±0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Fish and shellfish, servings/wk</td>
<td>0.3±0.8</td>
<td>8.5</td>
<td>0.5±0.8</td>
<td>8.5</td>
<td>0.4±0.8</td>
<td>7.7</td>
</tr>
<tr>
<td>Nuts, seeds, and beans, servings/wk</td>
<td>2.4±2.1</td>
<td>23.2</td>
<td>2.5±1.1</td>
<td>21.3</td>
<td>2.3±1.7</td>
<td>22.0</td>
</tr>
<tr>
<td>Processed meats, servings/wk</td>
<td>1.9±1.1</td>
<td>63.7</td>
<td>1.4±0.2</td>
<td>71.1</td>
<td>2.4±1.4</td>
<td>57.7</td>
</tr>
<tr>
<td>Sugar-sweetened beverages, servings/wk</td>
<td>8.0±4.3</td>
<td>45.0</td>
<td>7.5±5.2</td>
<td>40.4</td>
<td>11.0±6.1</td>
<td>27.8</td>
</tr>
<tr>
<td>Sweets and bakery desserts, servings/wk</td>
<td>8.5±4.4</td>
<td>24.5</td>
<td>9.4±4.4</td>
<td>22.5</td>
<td>7.2±2.5</td>
<td>25.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Boys (5–9 y)</th>
<th>Girls (5–9 y)</th>
<th>Boys (10–14 y)</th>
<th>Girls (10–14 y)</th>
<th>Boys (15–19 y)</th>
<th>Girls (15–19 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total calories, kcal/d</td>
<td>1828±276</td>
<td>NA</td>
<td>1757±312</td>
<td>NA</td>
<td>2163±560</td>
<td>NA</td>
</tr>
<tr>
<td>EPA/DHA, g/d</td>
<td>0.045±0.049</td>
<td>3.2</td>
<td>0.051±0.048</td>
<td>4.6</td>
<td>0.048±0.049</td>
<td>2.5</td>
</tr>
<tr>
<td>ALA, g/d</td>
<td>1.19±0.16</td>
<td>10.7</td>
<td>1.24±0.17</td>
<td>57.1</td>
<td>1.17±0.24</td>
<td>12.9</td>
</tr>
<tr>
<td>n-6 PUFAs, % energy</td>
<td>6.6±1.2</td>
<td>NA</td>
<td>6.8±1.2</td>
<td>NA</td>
<td>6.7±0.9</td>
<td>NA</td>
</tr>
<tr>
<td>Saturated fat, % energy</td>
<td>11.3±1.7</td>
<td>31.0</td>
<td>11.2±1.1</td>
<td>33.2</td>
<td>11.3±0.9</td>
<td>37.8</td>
</tr>
<tr>
<td>Dietary cholesterol, mg/d</td>
<td>225±46</td>
<td>80.6</td>
<td>234±64</td>
<td>75.3</td>
<td>234±90</td>
<td>82.9</td>
</tr>
<tr>
<td>Carbohydrate, % energy</td>
<td>54.4±2.4</td>
<td>NA</td>
<td>54.8±2.2</td>
<td>NA</td>
<td>53.1±3.3</td>
<td>NA</td>
</tr>
<tr>
<td>Dietary fiber, g/d</td>
<td>14.7±3.5</td>
<td>1.9</td>
<td>15.4±3.5</td>
<td>1.5</td>
<td>13.9±2.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Sodium, g/d</td>
<td>3.3±0.4</td>
<td>5.5</td>
<td>3.3±0.4</td>
<td>4.8</td>
<td>3.4±0.3</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Data from the National Health and Nutrition Examination Survey 2009 to 2010, derived from two 24-hour dietary recalls per person, with population SDs adjusted for within-person versus between-person variation. All values are energy adjusted by individual regressions or percent energy, and for comparability, means and proportions are reported for a 2000-kcal/d diet. To obtain actual mean consumption levels, the group means for each food or nutrient can be multiplied by the group-specific total calories (kcal/d) divided by 2000 kcal/d. Compared to prior AHA Statistical Updates, the calculations for foods now utilize the USDA Food Patterns Equivalent Database on composition of various mixed dishes, which incorporates partial amounts of various foods (eg, vegetables, nuts, processed meats, etc) in mixed dishes; in addition, the characterization of whole grains is now derived from the USDA database instead of the ratio of carbohydrate to fiber (analyses courtesy of Dr. Colin Rehm, Tufts University).

ALA indicates α-linolenic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; NA, not available; and n-6 PUFAs, ω-6-polyunsaturated fatty acid.

*All intakes and guidelines adjusted to 2000 kcal/d diet. Servings defined as follows: whole grains (1-oz equivalents), fruits and vegetables (1/2 cup equivalents), fish/shellfish (3.5 oz or 100 g), nuts/seeds/beans (50 g, processed meat (3.5 oz or 100 g), sugar-sweetened beverages (8 fl oz), sweets and bakery desserts (50 g). Foods and guidelines defined as follows: whole grains, 3 or more 1-oz equivalent (eg, 21 g whole wheat bread, 62 g cooked brown rice, 31 g Cheerios) servings per day (Dietary Guidelines for Americans[2]; fruits, 2 or more cups/d[7]; vegetables, 2 1/2 or more cups/d; including up to 3 cups/wk of starchy vegetables[7]; nuts, seeds, and beans, 4 or more 50-g servings/wk[2]; processed meats (bacon, hot dogs, sausage, processed deli meats), 2 or fewer 100-g (0.5-oz) servings/wk [1/4 of discretionary calories] [2]; sugar-sweetened beverages (defined as ≥50 cal/8 oz, excluding whole 100% fruit juices), ≤38 oz/wk (≤1/4 of discretionary calories) [2]; sweets and bakery desserts, 2.5 or fewer 50-g servings/wk (≤1/4 of discretionary calories) [2]; EPA/DHA, ≥0.250 g/d [2]; ALA, ≥16/1.1 g (men/women) [2]; saturated fat, <10% energy; dietary cholesterol, <300 mg/d[10]; total fat, 20% to 35% energy [10]; dietary fiber, ≥28 g/d[10]; and sodium, ≤2.3 g/d[10].

Chart 5-2. Per capita calories consumed from different beverages by US adults (≥19 years of age), 1965 to 2010. Source: Nationwide Food Consumption Surveys (1965, 1977–1978) and National Health and Nutrition Examination Survey (1988–2010), based on data from Duffey and Popkin18 and Kit et al.61 Data from 2010 were only analyzed for soda/cola and sweetened fruit drinks.
Chart 5-3. Total US food expenditures away from home and at home, 1977 and 2007. Data derived from Davis et al.58
6. Overweight and Obesity

See Table 6-1 and Charts 6-1 through 6-3.

Overweight and obesity are typically classified by use of BMI cutoffs, but variations in body fat distribution (eg, larger waist circumference) are also associated with increased cardiovascular risk.1 Overweight and obesity are major risk factors for CVD, including CHD, stroke,2,3 AF,4 VTE,5 and CHF. The AHA has identified BMI <85th percentile (for children) and <25 kg/m² (for adults aged ≥20 years) as 1 of the 7 components of ideal cardiovascular health.6 In 2011 to 2012, 64.7% of children and 31.3% of adults met these criteria (Chapter 2, Cardiovascular Health).

Prevalence

Youth

(See Table 6-1 and Chart 6-1.)

- According to 2011 to 2012 data from NHANES (NCHS), the overall prevalence of overweight and obesity in children aged 2 to 19 years is 31.8% based on a BMI-for-age value ≥85th percentile of the 2000 CDC growth charts. The overall prevalence of overweight and obesity in children aged 2 to 5 years of age was 21.8% for non-Hispanic white boys and 19.9% for non-Hispanic white girls, 22.2% for non-Hispanic black boys and 21.6% for non-Hispanic black girls, 8.3% for Asian boys and 9.7% for Asian girls, and 31.4% for Hispanic boys and 28.1% for Hispanic girls.7

 In children 6 to 11 years of age, the prevalence was 26.5% for non-Hispanic white boys and 32.7% for non-Hispanic white girls, 39.3% for non-Hispanic black boys and 36.9% for non-Hispanic black girls, 24.5% for Asian boys and 14.9% for Asian girls, and 48.7% for Hispanic boys and 43.6% for Hispanic girls. For those 12 to 19 years of age, the prevalence was 31.5% for non-Hispanic white boys and 31.0% for non-Hispanic white girls, 37.3% for non-Hispanic black boys and 42.5% for non-Hispanic black girls, 33.9% for Asian boys and 15% for Asian girls, and 39.6% for Hispanic boys and 36.5% for Hispanic girls.7

- According to 2011 to 2012 data from NHANES (NCHS), the overall prevalence of obesity in children aged 2 to 19 years was 16.9% based on a BMI-for-age value ≥85th percentile of the 2000 CDC growth charts. Among children aged 2 to 5 years of age, the prevalence of obesity was 6.3% for non-Hispanic white boys and 0.6% for non-Hispanic white girls, 9.0% for non-Hispanic black boys and 13.9% for non-Hispanic black girls, 1.9% for Asian boys and 4.7% for Asian girls, and 18.0% for Hispanic boys and 15.2% for Hispanic girls.7

 In children 6 to 11 years of age, the prevalence was 26.5% for Asian boys and 3.7% for Asian girls, and 28.6% for Hispanic boys and 21.7% for non-Hispanic black boys and 17.9% for non-Hispanic white boys and 17.9% for non-Hispanic white girls, 25.9% for non-Hispanic black boys and 21.7% for non-Hispanic black girls, 13.2% for Asian boys and 3.7% for Asian girls, and 28.6% for Hispanic boys and 23.4% for Hispanic girls. For those 12 to 19 years of age, the prevalence was 18.3% for non-Hispanic white boys and 20.9% for non-Hispanic white girls, 21.4% for non-Hispanic black boys and 22.7% for non-Hispanic black girls, 14.8% for Asian boys and 7.3 for Asian girls, and 23.9% for Hispanic boys and 21.3% for Hispanic girls.7

- Childhood sociodemographic factors may contribute to sex disparities in obesity prevalence. A study of data from the National Longitudinal Study of Adolescent Health (Add Health) found that parental education consistently modified sex disparity in blacks. The sex gap was largest in those with low parental education (16.7% of men compared with 45.4% of women were obese) and smallest in those with high parental education (28.5% of men compared with 31.4% of women were obese). In whites, there was little overall sex difference in obesity prevalence.8
The obesity epidemic is disproportionately more rampant among children living in low-income, low-education, and higher-unemployment households, according to data from the National Survey of Children’s Health.\(^9\) Data from 2011 show that among low-income preschool children, American Indians/Alaskan Natives have an obesity rate of 17.7%, whereas rates are 14.7% for Hispanics, 10.6% for non-Hispanic blacks, 10.3% for non-Hispanic whites, and 9.3% for Asian/Pacific Islanders.\(^9\) According to 1999 to 2008 NHANES survey data, lowest-income girls had an obesity prevalence of 17.9% compared with 13.1% among those with higher income; similar observations were observed for boys (20.6% versus 15.6%, respectively).\(^11\)

- NHANES 2003 to 2004 and 2005 to 2006 data were used to determine overweight and obesity prevalence in rural versus urban youth; the results showed that 39% of rural versus 32% of urban children had BMI ≥85th percentile.\(^12\)

- A recent AHA Scientific Statement regarding severe obesity in children and adolescents recommended that for children and adolescents, the definition of severe obesity should include class II obesity, defined as BMI ≥120% of the 95th percentile for age and sex, or BMI ≥35 kg/m\(^2\).\(^13\) By this definition, in NHANES 1999 to 2006, the prevalence of severe obesity for those aged 2 to 19 years was 5.1% in boys and 4.7% in girls.\(^14\) According to NHANES data from 2011 to 2012, 5.9% of children aged 2 to 19 had class II obesity, defined as BMI ≥120% of the 95th percentile for age and sex, or BMI ≥35 kg/m\(^2\), and 2.1% had class III obesity, defined as BMI ≥140% of the 95th percentile for age and sex, or BMI ≥40 kg/m\(^2\).\(^15\)

- According to the National Longitudinal Study of Adolescent Health, compared with those with normal weight or those who were overweight, obese adolescents had a 16-fold increased risk of having severe obesity (BMI ≥40 kg/m\(^2\)) as adults. Furthermore, the majority (70.5%) of adolescents with severe obesity maintained this weight status into adulthood.\(^16\)

Adults

(See Table 6-1 and Chart 6-2.)

- According to NHANES 2009 to 2012 (unpublished NHLBI tabulations of measured height and weight):
 - Overall, 69% of US adults were overweight or obese (73% of men and 65% of women).
 - Among men, Hispanics (80%) and non-Hispanic whites (73%) were more likely to be overweight or obese than non-Hispanic blacks (69%).
 - Among women, non-Hispanic blacks (82%) and Hispanics (76%) were more likely to be overweight or obese than non-Hispanic whites (61%).
 - Among US adults, 35% were obese (34% of men and 36% of women).
 - Among men, Hispanics and non-Hispanic blacks (38%) were more likely to be obese than non-Hispanic whites (34%).
 - Among women, non-Hispanic blacks (58%) and Hispanics (43%) were more likely to be obese than non-Hispanic whites (33%).
- On the basis of self-reported weights and heights from the 2013 NHIS\(^17\):
 - Blacks ≥18 years of age (27.6%), American Indians or Alaska Natives (23.2%), and whites (35.8%) were less likely than Asians (57.4%) to be at a healthy weight. Blacks ≥18 years of age (36.3%) and American Indians or Alaska Natives (46.5%) were more likely to be obese than were whites (27.9%) and Asians (10.8%).
- In 2004 to 2006, most adults in Asian subgroups were in the healthy weight range, with rates ranging from 51% for Filipino adults to 68% for Chinese adults. Although the prevalence of obesity is low within the Asian adult population, Filipino adults (14%) were more than twice as likely to be obese (BMI ≥30 kg/m\(^2\)) as Asian Indian (6%), Vietnamese (5%), or Chinese (4%) adults.\(^18\)
- As estimated from self-reported height and weight in the BRFSS/CDC survey in 2013, the prevalence of obesity ranged from 21.3% in Colorado to 35.3% in West Virginia and Mississippi.\(^19\) Additionally, no state met the Healthy People 2010 goal of reducing obesity to 15% of adults.\(^20\)
- According to NHANES 2007 to 2010 data, 35% of US adults ≥65 years of age were obese, which represents 13 million individuals.\(^21\)
 - Approximately 64.8% of obese adults were told by a doctor or health professional that they were overweight.
 - The proportion of obese adults told that they were overweight was significantly lower for non-Hispanic blacks (60.5%) and Mexican Americans (57.1%) than for non-Hispanic whites (66.4%), for middle-income people than for high-income people (62.4% versus 70.6%), and for adults with less than a high school education than for those with any college education (59.2% versus 70.3%).

Trends

Youth

(See Chart 6-3.)

- Among infants and children between 6 and 23 months of age, the prevalence of high weight for recumbent length was 7% in 1976 to 1980, 12% in 2003 to 2006 (NHANES, NCHS),\(^23\) and 8.1% in 2011 to 2012 (NHANES).\(^7\)
- According to NHANES data, overall obesity prevalence in youth between 2003 to 2004 and 2011 to 2012 was unchanged, although for children aged 2 to 5 years, the prevalence of obesity was decreased.\(^7\) Among adolescents, a socioeconomic gradient has been reported, in which the prevalence of obesity is decreasing among adolescents with high socioeconomic status but continues to increase among adolescents with low socioeconomic status.\(^24\) Furthermore, according to NHANES data, among children aged 2 to 19 years, the prevalence of severe obesity has increased during the past decade, particularly among adolescent boys.\(^15\)

Adults

- Forecasts through 2030 using the BRFSS 1990 to 2008 data set suggest that by 2030, 51% of the population will be
obese, with 11% with severe obesity, an increase of 33% for obesity and 130% for severe obesity.25

- According to NHANES data, there have been no overall changes in obesity prevalence in adults between 2003 to 200426 and 2011 to 2012.7 However, among women aged ≥60 years, the prevalence of obesity increased 6.6% from 2003–2004 to 2011–2012.7

Morbidity

Youth

- Overweight children and adolescents are at increased risk for future adverse health effects, including the following27:
 - Increased prevalence of traditional cardiovascular risk factors such as hypertension, hyperlipidemia, and DM.
 - Poor school performance, tobacco use, alcohol use, premature sexual behavior, and poor diet.
 - Other associated health conditions, such as asthma, hepatic steatosis, sleep apnea, stroke, some cancers (breast, colon, and kidney), renal insufficiency, musculoskeletal disorders, and gallbladder disease.

- Data from 4 Finnish cohort studies examining childhood and adult BMI with a mean follow-up of 23 years found that overweight or obese children who remained obese in adulthood had increased risks of type 2 DM, hypertension, dyslipidemia, and carotid atherosclerosis; however, those who achieved normal weight by adulthood had risks comparable to individuals who were never obese.28

- The CARDIA study showed that young adults who were overweight or obese had lower health-related quality of life than normal-weight participants 20 years later.29

Adults

- Data from the FHS indicate that obesity is driving the doubling in the incidence of DM over the past 30 years, most dramatically during the 1990s and primarily among individuals with a BMI ≥30 kg/m².30

- Among 68,070 participants across multiple NHANES surveys, the decline in BP in recent birth cohorts is slowing, mediated by BMI.31

- Cardiovascular risks may be even higher with severe obesity (class III, BMI ≥40 kg/m²) than with class I or class II obesity.32 Among 156,775 postmenopausal women in the WHI, for severe obesity versus normal BMI, HRs (95% CIs) for mortality were 1.97 (1.77–2.20) in white women, 1.55 (1.20–2.00) in African American women, and 2.59 (1.55–4.31) in Hispanic women; for CHD, HRs were 2.05 (1.80–2.35), 2.24 (1.57–3.19), and 2.95 (1.60–5.41) respectively; and for CHF, HRs were 5.01 (4.33–5.80), 3.60 (2.30–5.62), and 6.05 (2.49–14.69). However, CHD risk was strongly related to CVD risk factors across BMI categories, even in severe obesity, and CHD incidence was similar by race/ethnicity when adjusted for differences in BMI and CVD risk factors.32

- In a meta-analysis from 58 cohorts, representing 221,934 people in 17 developed countries with 14,297 incident CVD outcomes, BMI, waist circumference, and waist-to-hip ratio were strongly associated with intermediate risk factors of SBP, DM, and total and HDL cholesterol. These risk factors, along with age, sex and smoking status, accounted for almost all of the association of BMI, waist circumference, and waist-to-hip ratio with CVD outcomes, so that they were only minimally associated with CVD outcomes after adjustment for those intermediate risk factors. Measures of adiposity also did not improve risk discrimination or reclassification when data on intermediate risk factors were included.33

- Obesity is associated with subclinical atherosclerosis including CAC and carotid IMT, and this association persists after adjustment for CVD risk factors, as shown in MESA.34

- The population attributable fraction for CHD associated with reducing current population mean BMI to 21 kg/m² in the Asia-Pacific region ranged from 2% in India to 58% in American Samoa; the population attributable fraction for ischemic stroke ranged from 3% in India to 64% in American Samoa. These data from 15 countries show the proportion of CVD that would be prevented if the population mean BMI were reduced below the current overweight cut point.35

- Obesity is also a strong predictor of sleep-disordered breathing, itself strongly associated with the development of CVD, as well as with myriad other health conditions, including numerous cancers, nonalcoholic fatty liver disease, gallbladder disease, musculoskeletal disorders, and reproductive abnormalities.36

- A systematic review of prospective studies examining overweight and obesity as predictors of major stroke subtypes in ≥2 million participants over ≥4 years found an adjusted RR for ischemic stroke of 1.22 (95% CI, 1.05–1.41) in overweight individuals and an RR of 1.64 (95% CI, 1.36–1.99) for obese individuals relative to normal-weight individuals. RRs for hemorrhagic stroke were 1.01 (95% CI, 0.88–1.17) and 1.24 (95% CI, 0.99–1.54) for overweight and obese individuals, respectively. These risks were graded with increasing BMI and were independent of age, lifestyle, and other cardiovascular risk factors.37

- A recent report from ARIC showed that VTE risk over 15.5 years (237,375 person-years) was associated with higher BMI (and current smoking) but not with other CVD risk factors.38

- A recent meta-analysis of 15 prospective studies demonstrated the increased risk for Alzheimer disease or vascular dementia and any dementia was 1.35 and 1.26 for overweight, respectively, and 2.04 and 1.64 for obesity, respectively.39 The inclusion of obesity in dementia forecast models increases the estimated prevalence of dementia through 2050 by 9% in the United States and 19% in China.39

- Ten-year follow-up data from the Swedish Obese Subjects intervention study indicated that to maintain a favorable effect on cardiovascular risk factors, more than the short-term goal of 5% weight loss is needed to overcome secular trends and aging effects.40

- A randomized clinical trial of 130 severely obese adult individuals randomized to either 12 months of diet and PA or only 6 months of PA resulted in 12.1 and 9.9 kg, respectively, of weight loss at 1 year, with improvements in waist circumference, visceral fat, BP, and insulin resistance.41
Mortality

- Elevated childhood BMIs in the highest quartile were associated with premature death as an adult in a cohort of 4857 American Indian children during a median follow-up of 23.9 years.42
- According to NHIS data, among young adults aged 18 to 39 years, the HR for all-cause mortality was 1.07 (95% CI, 0.91–1.26) for overweight individuals, 1.41 (95% CI, 1.16–1.73) for obese individuals, and 2.46 for extremely obese individuals (95% CI, 1.91–3.16).43
- Among adults, obesity was associated with nearly 112,000 excess deaths (95% CI, 53,754–170,064) relative to normal weight in 2000. Grade 1 obesity (BMI 30 to <35 kg/m²) was associated with almost 30,000 of these excess deaths (95% CI, 8,534–68,220) and grade 2 to 3 obesity (BMI ≥35 kg/m²) with >82,000 (95% CI, 44,483–192,829). Underweight was associated with nearly 34,000 excess deaths (95% CI, 15,726–51,766). As other studies have found,44 overweight (BMI 25 to <30 kg/m²) was not associated with excess deaths.45
- A recent systematic review (2.88 million individuals and >270,000 deaths) showed that relative to normal BMI (18.5 to <25 kg/m²), all-cause mortality was lower for overweight (HR, 0.94; 95% CI, 0.91–0.96) but was not elevated for grade 1 obesity (HR, 0.95; 95% CI, 0.88–1.01). All-cause mortality was higher for obesity (all grades; HR, 1.18; 95% CI, 1.12–1.25) and grades 2 and 3 obesity (HR, 1.29; 95% CI, 1.18–1.41).46
- In a collaborative analysis of data from almost 900,000 adults in 57 prospective studies, mostly in western Europe and North America, overall mortality was lowest at a BMI of ≈22.5 to 25 kg/m² in both sexes and at all ages, after exclusion of early follow-up and adjustment for smoking status. Above this range, each 5-kg/m²-higher BMI was associated with ≈30% higher all-cause mortality, and no specific cause of death was inversely associated with BMI. Below 22.5 to 25 kg/m², the overall inverse association with BMI was predominantly related to strong inverse associations for smoking-related respiratory disease, and the only clearly positive association was for ischemic heart disease.47
- In a meta-analysis of 1.46 million white adults, over a mean follow-up period of 10 years, all-cause mortality was lowest at BMI levels of 20.0 to 24.9 kg/m². Among women, compared with a BMI of 22.5 to 24.9 kg/m², the HRs for death were as follows: BMI 15.0 to 18.4 kg/m², 1.47; 18.5 to 19.9 kg/m², 1.14; 20.0 to 22.4 kg/m², 1.0; 25.0 to 29.9 kg/m², 1.13; 30.0 to 34.9 kg/m², 1.44; 35.0 to 39.9 kg/m², 1.88; and 40.0 to 49.9 kg/m², 2.51. Similar estimates were observed in men.48
- Overweight was associated with significantly increased mortality resulting from DM or kidney disease and was not associated with increased mortality resulting from cancer or CVD in an analysis of 2004 data from NHANES. Obesity was associated with significantly increased mortality caused by CVD, some cancers, and DM or kidney disease. Obesity was associated with 13% of CVD deaths in 2004.49
- A BMI paradox has been reported, with higher-BMI patients demonstrating favorable outcomes in CHF, hypertension, peripheral vascular disease, and CAD; similar findings have been seen for percent body fat. In AFFIRM, a multicenter trial of AF, obese patients had lower all-cause mortality (HR, 0.77; P=0.01) than normal-weight patients after multivariable adjustment over a 3-year follow-up period.50
- Interestingly, among 2625 participants with new-onset DM, rates of total, CVD, and non-CVD mortality were higher among normal-weight people compared with overweight/obese participants, with adjusted HRs of 2.08 (95% CI, 1.52–2.85), 1.52 (95% CI, 0.89–2.58), and 2.32 (95% CI, 1.55–3.48), respectively.51
- Calculations based on NHANES data from 1978 to 2006 suggest that the gains in life expectancy from smoking cessation are beginning to be outweighed by the loss of life expectancy related to obesity.52
- Because of the increasing prevalence of obesity, the number of quality-adjusted life-years lost as a result of obesity is similar to or greater than that lost as a result of smoking, according to data from the BRFSS.53
- According to data from the NCDR, among patients presenting with STEMI and a BMI ≥40 kg/m², in-hospital mortality rates were higher for patients with class III obesity (OR, 1.64; 95% CI, 1.32–2.03) when class I obesity was used as the referent.54
- In a study of 22,203 women and men from England and Scotland, metabolically unhealthy obese individuals were at an increased risk of all-cause mortality compared with metabolically healthy obese individuals (HR, 1.72; 95% CI, 1.23–2.41).55
- Recent estimates suggest that reductions in smoking, cholesterol, BP, and physical inactivity levels resulted in a gain of 2770,500 life-years; however, these gains were reduced by a loss of 715,000 life-years caused by the increased prevalence of obesity and DM.56
- In a comparison of 5 different anthropometric variables (BMI, waist circumference, hip circumference, waist-to-hip ratio, and waist-to-height ratio) in 62,223 individuals from Norway with 12 years of follow-up from the HUNT 2 study, the risk of death per SD increase in each measure was 1.02 (95% CI, 0.99–1.06) for BMI, 1.10 (95% CI, 1.06–1.14) for waist circumference, 1.01 (95% CI, 0.97–1.05) for hip circumference, 1.15 (95% CI, 1.11–1.19) for waist-to-hip ratio, and 1.12 (95% CI, 1.08–1.16) for waist-to-height ratio. For CVD mortality, the risk of death per SD increase was 1.12 (95% CI, 1.06–1.20) for BMI, 1.19 (95% CI, 1.12–1.26) for waist circumference, 1.06 (95% CI, 1.00–1.13) for hip circumference, 1.23 (95% CI, 1.16–1.30) for waist-to-hip ratio, and 1.24 (95% CI, 1.16–1.31) for waist-to-height ratio.57
- However, because BMI and waist circumference are strongly correlated, large samples are needed to evaluate their independent contributions to risk.1,58 A recent pooled analysis of waist circumference and mortality in 650,386 adults followed up for a median of 9 years revealed that a 5-cm increment in waist circumference was associated with an increase in all-cause mortality at all BMI categories examined from 20 to 50 kg/m².59 Similarly, in an analysis of postmenopausal women in the WHI limited to those with BMI ≥40 kg/m², mortality, CHD, and CHF incidence all increased with waist circumference >115 and >122 cm compared with ≤108.4 cm.52
Cost

- In 2008 US dollars, the estimated annual medical cost of obesity was $147 billion; the medical costs for those who were obese were $1429 higher than for those at normal weight.60

- The total excess cost related to the current prevalence of adolescent overweight and obesity is estimated to be $2.54 billion ($208 billion in lost productivity secondary to premature morbidity and mortality and $46 billion in direct medical costs).61

- If current trends in the growth of obesity continue, total healthcare costs attributable to obesity could reach $861 to $957 billion by 2030, which would account for 16% to 18% of US health expenditures.62

- According to the 2006 NHDS, the incidence of bariatric surgery was estimated at 113,000 cases per year, with costs of nearly $1.5 billion annually.63

- In a large bariatric surgery cohort, the prevalence of high 10-year predicted CVD risk was 36.5%,64 but 76% of those with low 10-year risk had high lifetime predicted CVD risk. The corresponding prevalence in US adults is 18% and 56%, respectively.65

- Among obese Swedish patients undergoing bariatric surgery and followed up for up to 15 years, maximum weight loss was 32%. The risk of death was 0.76 among those who underwent bariatric surgery compared with matched control subjects.66 More recent data examining MI and stroke showed that bariatric surgery was associated with fewer CVD deaths (HR, 0.47; 95% CI, 0.29–0.76) and fewer strokes (HR, 0.67; 95% CI, 0.54–0.83) than in the control group. However, CVD risk was related to baseline CVD risk factors rather than to baseline BMI or 2-year weight change.67

- Among 641 patients followed up for 10 years compared with 627 matched control subjects, after 2 years of follow-up, 72% of the surgically treated patients versus 21% of the control patients had remission of their DM; at 10 years of follow-up, results were 36% and 13%, respectively. Similar results have been observed for hypertension, elevated triglycerides, and low HDL cholesterol.68

Bariatric Surgery

- Patients with BMI >40 kg/m² or >35 kg/m² with an obesity-related comorbidity are eligible for gastric bypass surgery, which is typically performed as either a Roux-en-Y gastric bypass or a biliopancreatic diversion.

- According to the 2006 NHDS, the incidence of bariatric surgery was estimated at 113,000 cases per year, with costs of nearly $1.5 billion annually.63

- In a large bariatric surgery cohort, the prevalence of high 10-year predicted CVD risk was 36.5%,64 but 76% of those with low 10-year risk had high lifetime predicted CVD risk. The corresponding prevalence in US adults is 18% and 56%, respectively.65

- Adolescents (aged 10–19 years old) underwent bariatric surgery at a rate of 0.8/100,000 procedures, which increased to 2.3/100,000 in 2003 and remained constant by 2009 at 2.4/100,000.66 The Teen-LABS study recently reported a favorable short-term (30 day) complications profile of bariatric surgery among 242 patients aged 13 to 19 years.67

- A recent cost-effectiveness study of laparoscopic adjustable gastric banding showed that after 5 years, $4970 was saved in medical expenses; if indirect costs were included (absenteeism and presenteeism), savings increased to $6180 and $10960, respectively.68 However, when expressed per quality-adjusted life expectancy, only $6600 was gained for laparoscopic gastric bypass, $6200 for laparoscopic adjustable gastric band, and $17,300 for open Roux-en-Y gastric bypass, none of which exceeded the standard $50,000 per quality-adjusted life expectancy gained.69 Two other recent large studies failed to demonstrate a cost benefit for...
Global Burden of High BMI and Obesity

- Between 1980 and 2008, mean BMI has increased worldwide by 0.4 kg/m² per decade for men and 0.5 kg/m² per decade for women, with trends varying between nations. In 2008, an estimated 1.46 billion adults were overweight or obese. The prevalence of obesity was estimated at 205 million men and 297 million women. The highest prevalence of male obesity is in the United States, South and Central Latin America, Australasia, and Central and Western Europe, and the lowest prevalence is in South and Southeast Asia and East, Central, and West Africa. For women, the highest prevalence of obesity is in Southern and North Africa; the Middle East; Central and Southern Latin America; and the United States; and the lowest is in South, East, and Southeast Asia; the Asia-Pacific (high income); and East, Central, and West Africa.

- Between 1990 and 2010, estimated deaths attributable to high BMI increased 1.7-fold, from 1,963,549 to 3,731,232, and DALYs lost because of high BMI rose 1.8-fold, from 51,565 to 93,609. Therefore, between 1990 and 2010, high BMI went from tenth to sixth in ranking of contribution to the global burden of disease and was among the top 10 risk factors for global burden of disease in all regions except high-income Asia-Pacific; East, Southeast, and South Asia; and East, Central, and West sub-Saharan Africa.

References

Table 6-1. Overweight and Obesity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes, n (%)</td>
<td>159,200,000 (68.5)</td>
<td>81,800,000 (35.2)</td>
<td>23,700,000 (31.8)</td>
<td>12,600,000 (16.9)</td>
<td>$147 Billion</td>
</tr>
<tr>
<td>Males</td>
<td>81,500,000 (72.5)</td>
<td>38,600,000 (34.4)</td>
<td>12,200,000 (32.0)</td>
<td>6,300,000 (16.7)</td>
<td>...</td>
</tr>
<tr>
<td>Females</td>
<td>77,700,000 (64.7)</td>
<td>43,200,000 (36.0)</td>
<td>11,500,000 (31.6)</td>
<td>6,300,000 (17.2)</td>
<td>...</td>
</tr>
<tr>
<td>NH white males, %</td>
<td>72.7</td>
<td>34.2</td>
<td>27.8</td>
<td>12.6</td>
<td>...</td>
</tr>
<tr>
<td>NH white females, %</td>
<td>61.2</td>
<td>32.5</td>
<td>29.2</td>
<td>15.6</td>
<td>...</td>
</tr>
<tr>
<td>NH black males, %</td>
<td>69.4</td>
<td>37.9</td>
<td>34.4</td>
<td>19.9</td>
<td>...</td>
</tr>
<tr>
<td>NH black females, %</td>
<td>81.9</td>
<td>57.5</td>
<td>36.1</td>
<td>20.5</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic males, %</td>
<td>80.1</td>
<td>38.4</td>
<td>40.7</td>
<td>24.1</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic females, %</td>
<td>76.3</td>
<td>42.9</td>
<td>37.0</td>
<td>20.6</td>
<td>...</td>
</tr>
</tbody>
</table>

Overweight and obesity in adults is defined as body mass index (BMI) ≥25 kg/m². Obesity in adults is defined as BMI ≥30 kg/m². In children, overweight and obesity are based on BMI-for-age values at or above the 85th percentile of the 2000 Centers for Disease Control and Prevention (CDC) growth charts. In children, obesity is based on BMI-for-age values at or above the 95th percentile of the CDC growth charts. In January 2007, the American Medical Association’s Expert Task Force on Childhood Obesity recommended new definitions for overweight and obesity in children and adolescents; however, statistics based on this new definition are not yet available. Ellipses (...) indicate data not available; and NH, non-Hispanic.

*Data from Finkelstein et al.60

Sources: National Health and Nutrition Examination Survey (NHANES) 2009 to 2012 (adults), unpublished National Heart, Lung, and Blood Institute (NHLBI) tabulation; NHANES 2011 to 2012 (ages 2–19 years) from Ogden et al.86 Extrapolation for ages 2 to 19 years from NHLBI tabulation of US Census resident population on July 1, 2012.

Chart 6-1. Prevalence of overweight and obesity among students in grades 9 through 12 by sex and race/ethnicity. NH indicates non-Hispanic. Data derived from Kann et al (Table 101).87

7. Family History and Genetics

See Tables 7-1 through 7-3.

Biologically related first-degree relatives (siblings, offspring, and parents) share roughly 50% of their genetic variation with one another. This constitutes much greater sharing of genetic variation than with a randomly selected person from the population, and thus, familial aggregation of traits lends support for a genetic basis for the trait. Similarly, racial/ethnic minorities are more likely to share their genetic variation within their demographic than with other demographics. Familial aggregation of CVD may be related to aggregation of specific behaviors (eg, smoking, alcohol use) or risk factors (eg, hypertension, DM, obesity) that may themselves have environmental and genetic contributors. Unlike classic mendelian genetic risk factors, whereby usually 1 mutation directly causes 1 disease, a complex trait’s genetic contributors may increase risk without necessarily always causing the condition. The effect size of any specific contributor to risk may be small but widespread throughout a population, or may be large but affect only a small population, or may have an enhanced risk when an environmental contributor is present. We present a summary of evidence that a genetic risk for CVD is likely, as well as a summary of evidence on the most consistently replicated genetic markers for CHD and stroke identified to date. A comprehensive scientific statement on the role of genetics and genomics for the prevention and treatment of CVD is available elsewhere.1

Family History

Prevalence

- Among adults ≥20 years of age, 12.0% (SE 0.4%) reported having a parent or sibling with a heart attack or angina before the age of 50 years. The racial/ethnic breakdown is as follows (NHANES 2009–2012, unpublished NHLBI tabulation):
 - For non-Hispanic whites, 11.5% (SE 0.6%) for men, 14.6% (SE 0.8%) for women
 - For non-Hispanic blacks, 9.1% (SE 0.8%) for men, 12.3% (SE 0.7%) for women
 - For Hispanics, 7.6% (SE 0.7%) for men, 10.1% (SE 1.0%) for women

- HD occurs as people age, so the prevalence of family history will vary depending on the age at which it is assessed. The breakdown of reported family history of heart attack by age of survey respondent in the US population as measured by NHANES is as follows (NHANES 2009–2012, unpublished NHLBI tabulation):
 - Age 20 to 39 years, 8.0% (SE 0.6%) for men, 9.7% (SE 0.8%) for women
 - Age 40 to 59 years, 12.1% (SE 0.8%) for men, 15.2% (SE 1.4%) for women
 - Age 60 to 79 years, 13.3% (SE 1.5%) for men, 16.6% (SE 1.3%) for women
 - Age ≥80 years, 8.7% (SE 1.9%) for men, 15.5% (SE 2.4%) for women

- In the multigenerational FHS, only 75% of participants with a documented parental history of a heart attack before age 55 years reported that history when asked.2

Impact of Family History

Coronary Heart Disease

- Paternal history of premature heart attack has been shown to approximately double the risk of a heart attack in men and increase the risk in women by ≈70%.3,4
- History of a heart attack in both parents increases the risk of heart attack, especially when 1 parent had a premature heart attack5 (Table 7-1).
- Sibling history of CVD has been shown to increase the odds of CVD in men and women by 45% (OR, 1.45; 95% CI, 1.19–1.91) in models accounting for CVD risk factors.6
● Family history of premature angina, MI, angioplasty, or bypass surgery increased the lifetime risk by ≥50% for both HD (from 8.9% to 13.7%) and CVD (from 14.1% to 21%) mortality.7
● In a recent international study of individuals with premature ACS (age ≤55 years), more women (28%) than men (20%) had a family history of CAD (P=0.008). However, compared with patients without, patients with a family history of CAD had a higher prevalence of traditional CVD risk factors, including dyslipidemia and obesity. Women with a family history had a higher prevalence of each traditional risk factor (obesity, DM, dyslipidemia, and hypertension) except smoking.8

Other CVDs
● A parental history of AF was associated with ≥80% increased odds of AF in men and women.9 The risk of AF was increased the younger the age of onset and the more family members affected.10 In a Swedish study, the odds of AF associated with familial AF (OR, 5.04; 95% CI, 4.26–5.82) were higher in people with a history of premature AF (diagnosed AF at age <50 years). Interestingly, there was modest spousal aggregation of AF, consistent with a contribution of shared environment to AF risk; the spousal OR for AF was 1.16 (95% CI, 1.13–1.19).11
● A history of stroke in a first-degree relative increases the odds of stroke in men and women by ≥50%.12
● A parental history of HF also is associated with an increased odds of offspring HF (multivariable-adjusted HR, 1.7; 95% CI, 1.11–2.60).13
● In a Swedish population-based case control study, the risk of thoracic aortic disease increased the greater the number of affected relatives and the younger the individual affected. The OR was 5.8 (95% CI, 4.3–7.7) with 1 affected relative versus 20 (95% CI, 2.2–179) with at least 2 affected relatives.14
● Similarly, the odds of having PAD were elevated (OR, 1.83; 95% CI, 1.03–3.26) in individuals with a family history of PAD.15
● A family history of VTE is associated with a 2- to 3-fold odds of VTE, irrespective of identified known predisposing genetic factors.16,17

Genetics
Heart Disease
● Genome-wide association is a robust technique to identify associations between genotypes and phenotypes. Table 7-2 presents results from the CARDIoGRAMplusC4D Consortium, which represents the largest genetic study of CAD to date. Although the ORs are modest, ranging from 1.06 to 1.51 per copy of the risk allele (individuals may harbor up to 2 copies of a risk allele), these are common alleles, which suggests that the attributable risk may be substantial. Additional analysis suggested that loci associated with CAD were involved in lipid metabolism and inflammation pathways.18
● The relationship between genetic variants associated with CHD and measured CHD risk factors is complex, with some genetic markers associated with multiple risk factors and other markers showing no association with risk factors.19
● Genetic markers discovered thus far have not been shown to add to cardiovascular risk prediction tools beyond current models that incorporate family history.20 Genetic markers also have not been shown to improve prediction of subclinical atherosclerosis beyond traditional risk factors.21 However, an association between genetic markers and CAD has been seen.22
● The most consistently replicated genetic marker for HD in European-derived populations is located at 9p21.3. At this single-nucleotide polymorphism, ≥27% of the white population is estimated to have 0 risk alleles, 50% is estimated to have 1 risk allele, and the remaining 23% is estimated to have 2 risk alleles. In meta-analyses of individuals of East Asian ancestry, variants at 9p21.3 have also been reported to be associated with CHD (OR per risk allele, 1.3; 95% CI, 1.25–1.35).24
● The 10-year HD risk for a 65-year-old man with 2 risk alleles at 9p21.3 and no other traditional risk factors is ≥13.2%, whereas a similar man with 0 alleles would have a 10-year risk of ≥9.2%. The 10-year HD risk for a 40-year-old woman with 2 alleles and no other traditional risk factors is ≥2.4%, whereas a similar woman with 0 alleles would have a 10-year risk of ≥1.7%.23
● A variation at the 9p21.3 region also is associated with an increased risk of HF25 and sudden death.26 Associations have also been observed between the 9p21.3 region and CAC.27,28 Additionally, stronger associations have been found between variation at 9p21.3 and earlier27,28 and more severe29 heart attacks. Paradoxically, a recent meta-analysis reported that variants at 9p21.3 were associated with incident (HR, 1.19; 95% CI, 1.17–1.22) but not recurrent (HR, 1.01; 95% CI, 0.97–1.06) CHD events,30 which supports the genetic complexity of CHD. The biological mechanisms underpinning the association of genetic variation in the 9p21 region with disease outcomes are still under investigation.

Stroke
● The same 9p21.3 region has also been associated with intracranial aneurysm,31 AAA,32 and ischemic stroke.33
● For large-vessel ischemic stroke, an association for large-vessel stroke with histone deacetylase 9 on chromosome 7p21.1 has been identified (>9000 subjects) and replicated (>12000 subjects).33,34

CVD Risk Factors
● Heritability is the ratio of genetically caused variation to the total variation of a trait or measure. Table 7-3 presents heritability estimates for standard CVD risk factors using data generated from the FHS. These data suggest that most CVD risk factors have at least moderate heritability.

References
O'Donnell CJ, Psaty BM, Vasan RS, Ruel M, Shen WK, Terzic A, Wald-
man SA; on behalf of the American Heart Association Council on Func-
tional Genomics and Translational Biology, American Heart Association
Council on Epidemiology and Prevention, American Heart Association
Council on Basic Cardiovascular Sciences, American Heart Association
Council on Cardiovascular Disease in the Young, American Heart Asso-
ciation Council on Cardiovascular and Stroke Nursing, American Heart
Association Stroke Council. Genetics and genomics for the prevention and
treatment of cardiovascular disease: update: a scientific statement from the
American Heart Association [published correction appears in Circulation.

Murabito JM, Nam BH, D’Agostino Sr RB, Lloyd-Jones DM, O’Donnell
CJ, Wilson PWF. Accuracy of offspring reporting of parental cardiovascu-

Lloyd-Jones DM, Nam BH, D’Agostino Sr RB, Levy D, Murabito JM,
Wang TJ, Wilson PWF, O’Donnell CJ. Parental cardiovascular disease as
a risk factor for cardiovascular disease in middle-aged adults: a prospec-

Sesso HD, Lee IM, Gaziano JM, Rexrode KM, Glynn RJ, Buring JE. Ma-
ternal and paternal history of myocardial infarction and risk of cardiovas-

Chow CK, Islam S, Bautista L, Rumboldt Z, Yusufali A, Xie C, Anand SS,
Engert JC, Rangarajan S, Yusuf S. Parental history and myocardial infar-
cation risk across the world: the INTERHEART Study. J Am Coll Cardiol.

Murabito JM, Pencina MJ, Nam BH, D’Agostino Sr RB, Wang TJ, Lloyd-
Jones D, Wilson PWF, O’Donnell CJ. Sibling cardiovascular disease as
a risk factor for cardiovascular disease in middle-aged adults. JAMA.

Bachmann JM, Willis BL, Ayers CR, Khera A, Berry JD. Association be-
tween family history and coronary heart disease death across long-term
follow-up in men: the Cooper Center Longitudinal Study. Circulation.
2012;125:3092–3098.

Choi J, Daskalopoulou SS, Thanassoulis G, Karp I, Pelletier R, Behlouli
an der Meer FJ, Eikenboom JC, Rosendaal FR, Doggen CJ. Association
between 9p21 genomic variants and risk of thoracic aortic disease: a pop-

Lee DS, Pencina MJ, Benjamin EJ, Levy D, O’Donnell CJ, Nam BH, Larson
MG, D’Agostino RB, Vasan RS. Association of parent-

Olsson C, Granath F, Ståhle E. Family history, comorbidity and risk of
thoracic aortic disease: a population-based case-control study. Heart.

Wassel CL, Loomba R, Ix JH, Allison MA, Denenberg JO, Criqui MH.
Family history of peripheral artery disease is associated with prevalence and
severity of peripheral artery disease: the San Diego population study.

Bezemer JD, van der Meer FJ, Eikenboom JC, Rosendaal FR, Doggen CJ.
The value of family history as a risk indicator for venous thrombosis. Arch

CARDioGRAMplusC4D Consortium, Deloukas P, Kanoni S, Willenborg
C, Farrall M, Assimes TL, Thompson JR, Ingelsson E, Saleheen D, Erd-
mann J, Goldstein BA, Stirrups K, König IR, Sjörsen HH, Jørgensen
K, Lundmark P, Lytvynäkin LP, Rafael S, Shungin D, Arnauld C, Root R, Kure_ATOM, 482.

Heart Disease and Stroke Statistics—2015 Update: Chapter 7

e103

than 1000 categories of cardiovascular disease, including coronary heart disease, stroke, hypertension, and atrial fibrillation. This chapter provides a comprehensive overview of the latest research findings and clinical guidelines, offering insights into the prevention, diagnosis, and management of cardiovascular diseases. The chapter highlights the importance of genetics, genomics, and other emerging technologies in advancing our understanding of cardiovascular health and disease. It also emphasizes the role of lifestyle factors, environmental exposures, and socioeconomic determinants in shaping cardiovascular risk. By integrating diverse perspectives from researchers, clinicians, and public health experts, the chapter aims to provide a holistic view of cardiovascular health and disease, fostering interdisciplinary collaboration and innovation in the field.

The chapter starts with an introduction to the epidemiology of cardiovascular disease, discussing the global burden and trends in cardiovascular mortality and morbidity. It then delves into the genetic basis of cardiovascular disease, reviewing the latest findings from genome-wide association studies (GWAS) and other genetic approaches. The chapter highlights the contribution of genetic variants in modulating cardiovascular risk, including those located within genes involved in lipid metabolism, blood pressure regulation, and inflammation. It also addresses the role of rare genetic variants in complex cardiovascular phenotypes, illustrating the potential for personalized medicine and precision healthcare.

The chapter further explores the role of environmental and lifestyle factors in cardiovascular disease, underscoring the importance of lifestyle interventions in prevention and management. It discusses the impact of diet, physical activity, smoking, and alcohol consumption on cardiovascular health, as well as the role of psychosocial factors and socioeconomic status. The chapter also covers the emerging role of epigenetics and microbiome in cardiovascular disease, emphasizing the interplay between genetic and environmental factors.

The concluding section of the chapter synthesizes the key findings and provides recommendations for future research, highlighting areas of unmet need and emerging opportunities for translational research. It concludes by emphasizing the importance of interdisciplinarity and collaboration in advancing the field of cardiovascular disease research and care.
Table 7-1. OR for Combinations of Parental Heart Attack History

<table>
<thead>
<tr>
<th></th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No family history</td>
<td>1.00</td>
</tr>
<tr>
<td>One parent with heart attack ≥50 y of age</td>
<td>1.67 (1.55–1.81)</td>
</tr>
<tr>
<td>One parent with heart attack <50 y of age</td>
<td>2.36 (1.89–2.95)</td>
</tr>
<tr>
<td>Both parents with heart attack ≥50 y of age</td>
<td>2.90 (2.30–3.66)</td>
</tr>
<tr>
<td>Both parents with heart attack, one <50 y of age</td>
<td>3.26 (1.72–6.18)</td>
</tr>
<tr>
<td>Both parents with heart attack, both <50 y of age</td>
<td>6.56 (1.39–30.95)</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; and OR, odds ratio. Data derived from Chow et al.²

Table 7-3. Heritability of CVD Risk Factors From the FHS

<table>
<thead>
<tr>
<th>Trait</th>
<th>Heritability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI</td>
<td>0.21</td>
</tr>
<tr>
<td>SBP</td>
<td>0.42</td>
</tr>
<tr>
<td>DBP</td>
<td>0.39</td>
</tr>
<tr>
<td>Left ventricular mass</td>
<td>0.24-0.32</td>
</tr>
<tr>
<td>BMI</td>
<td>0.37 (mean age 40 y)–0.52 (mean age 60 y)</td>
</tr>
<tr>
<td>Waist circumference</td>
<td>0.41</td>
</tr>
<tr>
<td>Visceral abdominal fat</td>
<td>0.36</td>
</tr>
<tr>
<td>Subcutaneous abdominal fat</td>
<td>0.57</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>0.34</td>
</tr>
<tr>
<td>CRP</td>
<td>0.30</td>
</tr>
<tr>
<td>HbA\text{ac}</td>
<td>0.27</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>0.48</td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>0.52</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>0.57</td>
</tr>
<tr>
<td>LDL cholesterol</td>
<td>0.59</td>
</tr>
<tr>
<td>Estimated GFR</td>
<td>0.33</td>
</tr>
</tbody>
</table>

ABI indicates ankle-brachial index; BMI, body mass index; CRP, C-reactive protein; CVD, cardiovascular disease; DBP, diastolic blood pressure; FHS, Framingham Heart Study; GFR, glomerular filtration rate; HbA\text{ac}, glycosylated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; and SBP, systolic blood pressure.

Data derived from Deloukas et al.18
8. High Blood Cholesterol and Other Lipids
See Table 8-1 and Charts 8-1 through 8-4.

High cholesterol is a major risk factor for CVD and stroke. The AHA has identified untreated total cholesterol <170 mg/dL (for children) and <200 mg/dL (for adults) as 1 of the 7 components of ideal cardiovascular health. In 2011 to 2012, 75.7% of children and 46.6% of adults met these criteria.

Prevalence of High Total Cholesterol
For information on dietary cholesterol, total fat, saturated fat, and other factors that affect blood cholesterol levels, see Chapter 5 (Nutrition).

Youth
(See Chart 8-1.)
- Among children 6 to 11 years of age, the mean total cholesterol level is 160.2 mg/dL. For boys, it is 160.5 mg/dL; for girls, it is 159.8 mg/dL. The racial/ethnic breakdown is as follows (NHANES 2009–2012, unpublished NHLBI tabulation):
 - For non-Hispanic whites, 158.6 mg/dL for boys and 158.2 mg/dL for girls
 - For non-Hispanic blacks, 163.7 mg/dL for boys and 159.8 mg/dL for girls
 - For Hispanics, 160.5 mg/dL for boys and 161.2 mg/dL for girls
- Among adolescents 12 to 19 years of age, the mean total cholesterol level is 158.3 mg/dL. For boys, it is 155.2 mg/dL; for girls, it is 161.6 mg/dL. The racial/ethnic breakdown is as follows (NHANES 2009–2012, unpublished NHLBI tabulation):
 - For non-Hispanic whites, 155.2 mg/dL for boys and 163.2 mg/dL for girls
 - For non-Hispanic blacks, 153.9 mg/dL for boys and 158.6 mg/dL for girls

Adults
(See Table 8-1 and Charts 8-2 through 8-4.)
- An estimated 30.9 million adults ≥20 years of age have serum total cholesterol levels ≥240 mg/dL (extrapolated for 2012 by use of NCHS/NHANES 2009–2012 data), with a prevalence of 13.1%.
- Approximately 6.2% of adults ≥20 years of age have undiagnosed hypercholesterolemia, defined as a total cholesterol level ≥240 mg/dL and the participant having responded “no” to ever having been told by a doctor or other healthcare professional that the participant’s blood cholesterol level was high (NHANES 2009–2012, unpublished NHLBI tabulation).
- In 2011 to 2012, an estimated 12.9% of US adults aged ≥20 years (11.1% of men and 14.4% of women) had high total cholesterol, which was unchanged since 2009 to 2010, according to NCHS/NHANES 2011 to 2012 data.
 - Non-Hispanic black adults had consistently lower percentages with high total cholesterol (9.8% overall, 7.4% for men, and 11.5% for women) than non-Hispanic white adults (13.5% overall, 11.6% for men, and 15.2% for women).
 - Overall, 14.2% of Hispanic adults had high total cholesterol.
- The age-adjusted mean total cholesterol level for adults ≥20 years of age declined linearly from 206 mg/dL (95%
CI, 205–207 mg/dL) in 1988 to 1994 to 203 mg/dL (95% CI, 201–205 mg/dL) in 1999 to 2002 and to 196 mg/dL (95% CI, 195–198 mg/dL) in 2007 to 2010 (P<0.001 for linear trend).8
- Data from NHANES 2007 to 2010 (NCHS) showed the serum total crude mean cholesterol level in adults to be 132 mg/dL for men and 197 mg/dL for women.8 Statistically significant declining trends in age-adjusted mean total cholesterol levels from 1988–1994 to 2007–2010 were observed in all sex and race/ethnicity subgroups except for Mexican American men (P=0.03). The Healthy People 2010 guideline9 of an age-adjusted mean total cholesterol level of ≤200 mg/dL has been achieved in adults, in men, in women, and in all race/ethnicity and sex subgroups.
- Overall, the decline in cholesterol levels in recent years appears to reflect greater uptake of cholesterol-lowering medications rather than changes in dietary patterns.10
- The declining total cholesterol level appears to reflect a worldwide trend; a report on trends in total cholesterol in 199 countries and territories indicated that total cholesterol declined in high-income regions of the world (Australasia, North America, and Western Europe).11 During the period from 1999 to 2006, 26.0% of adults had hypercholesterolemia, 9% of adults had both hypercholesterolemia and hypertension, 1.5% of adults had DM and hypercholesterolemia, and 3% of adults had all 3 conditions.12

Screening
- Data from the 2013 BRFSS study of the CDC shows that the percentage of adults who had been screened for high cholesterol in the preceding 5 years ranged from 68.2% in Utah to 84.0% in Massachusetts. The median percentage among all 50 states was 76.4%.13
- The percentage of adults who reported having had their cholesterol level checked increased from 68.6% during 1999 to 2000 to 74.8% during 2005 to 200614 and then declined to 69.4% in 2011 to 2012.7
- Nearly 70% of adults (67% of men and nearly 72% of women) had been screened for cholesterol (defined as being told by a doctor their cholesterol was high and indicating they had their blood cholesterol checked <5 years ago) according to data from NHANES 2011 to 2012, which was unchanged since 2009 to 2010.7
 - Among non-Hispanic whites, 71.8% were screened (70.6% of men and 72.9% of women).
 - Among non-Hispanic blacks, 71.9% were screened (66.8% of men and 75.9% of women).
 - Among non-Hispanic Asians, 70.8% were screened (70.6% of men and 70.9% of women).
 - Among Hispanic adults, 59.3% were screened (54.6% of men and 64.2% of women). The percentage of adults screened for cholesterol in the past 5 years was lower for Hispanic adults than for non-Hispanic white, non-Hispanic black, and non-Hispanic Asian adults.7

Awareness
- Data from the 2005 to 2008 BRFSS (CDC) survey in 2011 showed that among adults screened for high cholesterol, the percentage who had been told that they had high cholesterol ranged from 33.5% in Colorado to 42.3% in Mississippi. The median percentage among states was 38.4%.13

Treatment
- The ACC/AHA recently released a revised recommendation for statin treatment.13 Unlike previous recommendations, which had fixed LDL and non-HDL cholesterol goals, the ACC/AHA recommended lipid measurement at baseline, at 1 to 3 months after statin initiation, and then annually to check for the expected percentage decrease of LDL cholesterol levels (30% to 45% with a moderate-intensity statin and ≥50% with a high-intensity statin). They also recommended statin therapy in 4 identified groups in which it has been clearly shown to reduce ASCVD risk. The 4 statin benefit groups are (1) people with clinical ASCVD, (2) those with primary elevations of LDL cholesterol >190 mg/dL, (3) people aged 40 to 75 years who have DM with LDL cholesterol 70 to 189 mg/dL and without clinical ASCVD, and (4) those without clinical ASCVD or DM with LDL cholesterol 70 to 189 mg/dL and estimated 10-year ASCVD risk >7.5%. Approximately 31.9% of the ASCVD-free, nonpregnant US population between 40 and 79 years of age has a 10-year risk of a first hard CHD event of ≥10% or has DM.16
- According to a recent analysis of NHANES data from 2005 to 2010, the number of people eligible for statin therapy would rise from 43.2 million US adults (37.5%) to 50.6 million (48.6%) based on the new ACC/AHA guidelines for the management of blood cholesterol. Most of the increase comes from adults 60 to 75 years old without CVD who have a 10-year ASCVD risk >7.5%; the net number of new statin prescriptions could potentially increase by 12.8 million, including 10.4 million for primary prevention.17
- NHANES data on the treatment of high LDL cholesterol showed an increase from 28.4% of people during 1999 to 2002 to 48.1% during 2005 to 2008.18
- Self-reported use of cholesterol-lowering medications increased from 8.2% during 1999 to 2000 to 14% in 2005 to 200614 and reached 23% in 2007 to 2010.19

Adherence

Youth
- The American Academy of Pediatrics recommends screening for dyslipidemia in children and adolescents who have a family history of dyslipidemia or premature CVD, those whose family history is unknown, and those youths with risk factors for CVD, such as being overweight or obese, having hypertension or DM, or being a smoker.3
- Analysis of data from NHANES 1999 to 2006 showed that the overall prevalence of abnormal lipid levels among youths 12 to 19 years of age was 20.3%.3
Adults

- New criteria from the “2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults” could result in >45 million middle-aged Americans who do not have CVD being recommended for consideration of statin therapy: 33.0 million are at ≥7.5% 10-year risk and 12.8 million are at >5.0% to 7.4% 10-year risk. This is approximately 1 in every 3 American adults, many of whom are already undergoing statin treatment under the previous US guidelines.

- On the basis of data from the 2005 to 2008 NHANES, an estimated 71 million US adults (33.5%) aged ≥20 years had high LDL cholesterol, but only 34 million (48.1%) were treated and only 23 million (33.2%) had their LDL cholesterol controlled.

 - The proportion of adults with high LDL cholesterol who were treated increased from 28.4% to 48.1% between the 1999 to 2002 and 2005 to 2008 study periods.
 - Among adults with high LDL cholesterol, the prevalence of LDL cholesterol control increased from 14.6% to 33.2% between the periods. The prevalence of LDL cholesterol control was lowest among people who reported receiving medical care less than twice in the previous year (11.7%), being uninsured (13.5%), being Mexican American (20.3%), or having income below the poverty level (21.9%).

Global Burden of Hypercholesterolemia

- Between 1980 and 2008, the mean age-adjusted total cholesterol level decreased from 4.72 to 4.64 mmol/L (95% CI, 4.51–4.76 mmol/L) for men and from 4.83 to 4.76 mmol/L (95% CI, 4.62–4.91 mmol/L) for women. Globally, mean total cholesterol changed little between 1980 and 2008, falling by <0.1 mmol/L per decade in men and women.

- Total cholesterol went from being the 14th leading risk factor in 1990 for the global burden of disease, as quantified by DALYs, to the number 15 risk factor in 2010.

- Raised cholesterol, defined as ≥190 mg/dL or ≥5.0 mmol/L, is estimated to cause 2.6 million deaths (4.5% of total deaths) and 29.7 million DALYs (2.0% of total DALYs).

- The prevalence of elevated total cholesterol was highest in the WHO European Region (54% for both sexes), followed by the WHO Region of the Americas (48% for both sexes). The WHO African Region and the WHO South-East Asia Region showed the lowest percentages (23% and 30%, respectively).

- Twenty-nine percent of ischemic heart disease DALYs can be attributed to high total cholesterol, the second-leading physiological risk factor.

Lipid Levels

LDL (Bad) Cholesterol

- Among adolescents aged 12 to 19 years of age, the mean LDL cholesterol level was 89.3 mg/dL (boys, 88.3 mg/dL; girls, 90.3 mg/dL). The racial/ethnic breakdown is as follows (NHANES 2009–2012, unpublished NHLBI tabulation):
 - For non-Hispanic whites, 89.5 mg/dL for boys and 91.1 mg/dL for girls
 - For non-Hispanic blacks, 86.7 mg/dL for boys and 90.9 mg/dL for girls
 - For Hispanic Americans, 87.4 mg/dL for boys and 88.9 mg/dL for girls

- High levels of LDL cholesterol occurred in 7.1% of male adolescents and 7.4% of female adolescents during 2009 to 2012 (unpublished NHLBI tabulation).

- The mean level of LDL cholesterol for American adults ≥20 years of age was 115.8 mg/dL in 2009 to 2012 (unpublished NHLBI tabulation).

- According to NHANES 2009 to 2012 (unpublished NHLBI tabulation):
 - Among non-Hispanic whites, mean LDL cholesterol levels were 113.8 mg/dL for men and 116.8 mg/dL for women.
 - Among non-Hispanic blacks, mean LDL cholesterol levels were 113.4 mg/dL for men and 115.5 mg/dL for women.
 - Among Hispanics, mean LDL cholesterol levels were 120.1 mg/dL for men and 114.8 mg/dL for women.

- The prevalence of high LDL cholesterol decreased from 59% in 1976 to 1980 to 42% in 1988 to 1994 and to 33% in 2001 to 2004, reaching 27% in 2007 to 2010. Between 1976 to 1980 and 2007 to 2010, the prevalence of high LDL cholesterol significantly decreased for men (from 65% to 31%), women (54% to 24%), and adults aged 40 to 64 years (56% to 27%) and 65 to 74 years (72% to 30%).

- The age-adjusted prevalence of high LDL cholesterol in US adults was 26.6% in 1988 to 1994 and 25.3% in 1999 to 2004 (NHANES/NCHS). Between 1988 to 1994 and 1999 to 2004, awareness increased from 39.2% to 63.0%, and use of pharmacological lipid-lowering treatment increased from 11.7% to 40.8%. LDL cholesterol control increased from 4.0% to 25.1% among those with high LDL cholesterol. In 1999 to 2004, rates of LDL cholesterol control were lower among adults 20 to 49 years of age than among those ≥65 years of age (13.9% versus 30.3%, respectively), among non-Hispanic blacks and Mexican Americans than among non-Hispanic whites (17.2% and 16.5% versus 26.9%, respectively), and among men than among women (22.6% versus 26.9%, respectively).

- Mean levels of LDL cholesterol decreased from 126.2 mg/dL during 1999 to 2000 to 115.5 mg/dL during 2011 to 2012. The age-adjusted prevalence of high LDL cholesterol decreased from 42.9% during 1999 to 2000 to 32.2% during 2011 to 2012 (unpublished NHLBI tabulation).

- Data from NHANES 2005 to 2006 indicate that among those with elevated LDL cholesterol levels, 35.5% had not been screened previously, 24.9% were screened but not told they had elevated cholesterol, and 39.6% were treated inadequately.
HDL (Good) Cholesterol

Youth

- Among children 6 to 11 years of age, the mean HDL cholesterol level is 53.9 mg/dL. For boys, it is 55.4 mg/dL, and for girls, it is 52.4 mg/dL. The racial/ethnic breakdown is as follows (NHANES 2009–2012, unpublished NHLBI tabulation):
 - For non-Hispanic whites, 55.1 mg/dL for boys and 52.5 mg/dL for girls
 - For non-Hispanic blacks, 58.5 mg/dL for boys and 54.5 mg/dL for girls
 - For Hispanics, 53.5 mg/dL for boys and 51.4 mg/dL for girls

- Among adolescents 12 to 19 years of age, the mean HDL cholesterol level is 51.4 mg/dL. For boys, it is 49.4 mg/dL, and for girls, it is 53.4 mg/dL. The racial/ethnic breakdown is as follows (NHANES 2009–2012):
 - For non-Hispanic whites, 48.9 mg/dL for boys and 52.4 mg/dL for girls
 - For non-Hispanic blacks, 52.6 mg/dL for boys and 55.1 mg/dL for girls
 - For Hispanics, 48.1 mg/dL for boys and 53.6 mg/dL for girls

- Low levels of HDL cholesterol occurred in 19.5% of male adolescents and 11.1% of female adolescents during 2009 to 2012 (NHANES 2009–2012, unpublished NHLBI tabulation).

Adults

- The mean level of HDL cholesterol for American adults ≥20 years of age is 52.9 mg/dL (NHANES 2009–2012, unpublished NHLBI tabulation).

- According to NHANES 2009 to 2012 (unpublished NHLBI tabulation):
 - Among non-Hispanic whites, mean HDL cholesterol levels were 47.7 mg/dL for men and 58.5 mg/dL for women
 - Among non-Hispanic blacks, mean HDL cholesterol levels were 51.9 mg/dL for men and 57.4 mg/dL for women
 - Among Hispanics, mean HDL cholesterol levels were 45.4 mg/dL for men and 54.3 mg/dL for women

- Approximately 17% of adults (just over one quarter of men and <10% of women) had low HDL cholesterol during 2011 to 2012. The percentage of adults with low HDL cholesterol has decreased 20% since 2009 to 2010.7
 - Among non-Hispanic whites, 17.1% (25.4% of men and 9.3% of women) had low HDL.
 - Among non-Hispanic blacks, 12.7% (19.1% of men and 7.8% of women) had low HDL. The percentage of adults with low HDL cholesterol was lower in non-Hispanic black adults than in non-Hispanic white adults. These racial and ethnic differences were also observed in men but not in women.
 - Among non-Hispanic Asians, 14.3% (24.5% of men and 5.1% of women) had low HDL. The prevalence of low HDL cholesterol was 5 times greater among non-Hispanic Asian men than women. Non-Hispanic Asian adults had consistently lower percentages of low HDL cholesterol than Hispanic adults.

- The prevalence of low HDL cholesterol was 5 times higher in non-Hispanic Asian men (24.5%) than in non-Hispanic Asian women (5.1%).
 - Among Hispanic adults, 21.8% (32.6% of men and 11.3% of women) had low HDL. The percentage of adults with low HDL cholesterol was higher in Hispanic adults than in non-Hispanic black or non-Hispanic white adults. These racial and ethnic differences were also observed in men but not in women.

Triglycerides

Youth

There are limited data available on triglycerides for children 6 to 11 years of age.

- Among adolescents 12 to 19 years of age, the geometric mean triglyceride level is 82.1 mg/dL. For boys, it is 84.6 mg/dL, and for girls, it is 79.5 mg/dL. The racial/ethnic breakdown is as follows (NHANES 2009–2012):
 - Among non-Hispanic whites, 83.1 mg/dL for boys and 82.4 mg/dL for girls
 - Among non-Hispanic blacks, 70.4 mg/dL for boys and 62.2 mg/dL for girls
 - Among Hispanics, 90.3 mg/dL for boys and 84.9 mg/dL for girls

- High levels of triglycerides occurred in 10.0% of male adolescents and 6.5% of female adolescents during 2009 to 2012.

Adults

- The geometric mean level of triglycerides for American adults ≥20 years of age is 108.8 mg/dL (NHANES 2009–2012, unpublished NHLBI tabulation).

- Approximately 25.1% of adults had high triglyceride levels during 2009 to 2012 (NHANES 2009–2012, unpublished NHLBI tabulation).

- Among men, the age-adjusted geometric mean triglyceride level is 117.2 mg/dL (NHANES 2009–2012, unpublished NHLBI tabulation), with the following racial/ethnic breakdown:
 - 117.7 mg/dL for non-Hispanic white men
 - 92.7 mg/dL for non-Hispanic black men
 - 134.7 mg/dL for Hispanic men

- Among women, the age-adjusted geometric mean triglyceride level is 101.4 mg/dL (NHANES 2009–2012, unpublished NHLBI tabulation), with the following racial/ethnic breakdown:
 - 104.0 mg/dL for non-Hispanic white women
 - 83.5 mg/dL for non-Hispanic black women
 - 109.7 mg/dL for Hispanic women

- Fewer than 3% of adults with a triglyceride level ≥150 mg/dL received pharmacological treatment during 1999 to 2004.
References

Table 8-1. High Total and LDL Cholesterol and Low HDL Cholesterol

<table>
<thead>
<tr>
<th>Population Group</th>
<th>Prevalence of Total Cholesterol ≥200 mg/dL, 2012 Age ≥20 y</th>
<th>Prevalence of Total Cholesterol ≥240 mg/dL, 2012 Age ≥20 y</th>
<th>Prevalence of LDL Cholesterol ≥130 mg/dL, 2012 Age ≥20 y</th>
<th>Prevalence of HDL Cholesterol <40 mg/dL, 2012 Age ≥20 y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes, n (%)*</td>
<td>100 100 000 (42.8)</td>
<td>30 900 000 (13.1)</td>
<td>73 500 000 (31.7)</td>
<td>44 600 000 (19.9)</td>
</tr>
<tr>
<td>Males, n (%)*</td>
<td>45 300 000 (40.4)</td>
<td>13 000 000 (11.6)</td>
<td>34 900 000 (31.0)</td>
<td>32 400 000 (28.9)</td>
</tr>
<tr>
<td>Females, n (%)*</td>
<td>54 830 000 (44.9)</td>
<td>17 900 000 (14.4)</td>
<td>38 600 000 (32.0)</td>
<td>12 200 000 (10.4)</td>
</tr>
<tr>
<td>NH white males, %</td>
<td>39.9</td>
<td>11.5</td>
<td>29.4</td>
<td>28.7</td>
</tr>
<tr>
<td>NH white females, %</td>
<td>45.9</td>
<td>15.3</td>
<td>32.0</td>
<td>10.2</td>
</tr>
<tr>
<td>NH black males, %</td>
<td>37.4</td>
<td>8.8</td>
<td>30.7</td>
<td>20.0</td>
</tr>
<tr>
<td>NH black females, %</td>
<td>40.7</td>
<td>10.9</td>
<td>33.6</td>
<td>10.3</td>
</tr>
<tr>
<td>Hispanic males, %</td>
<td>46.2</td>
<td>14.8</td>
<td>38.8</td>
<td>33.8</td>
</tr>
<tr>
<td>Hispanic females, %</td>
<td>43.4</td>
<td>13.7</td>
<td>31.8</td>
<td>12.8</td>
</tr>
</tbody>
</table>

Prevalence of total cholesterol ≥200 mg/dL includes people with total cholesterol ≥240 mg/dL. In adults, levels of 200 to 239 mg/dL are considered borderline high. Levels of ≥240 mg/dL are considered high.

HDL indicates high-density lipoprotein; LDL, low-density lipoprotein; and NH, non-Hispanic.

*Total data for total cholesterol are for Americans ≥20 years of age. Data for LDL cholesterol, HDL cholesterol, and all racial/ethnic groups are age adjusted for age ≥20 years.

Source for total cholesterol ≥200 mg/dL, ≥240 mg/dL, LDL, and HDL: National Health and Nutrition Examination Survey (2009–2012), National Center for Health Statistics, and National Heart, Lung, and Blood Institute. Estimates from National Health and Nutrition Examination Survey 2009 to 2012 (National Center for Health Statistics) were applied to 2012 population estimates.

9. High Blood Pressure

ICD-9 401 to 404, ICD-10 110 to 115. See Tables 9-1 and 9-2 and Charts 9-1 through 9-5.

HBP is a major risk factor for CVD and stroke.1 The AHA has identified untreated BP <90th percentile (for children) and

<120/<80 mmHg (for adults aged ≥20 years) as 1 of the 7 components of ideal cardiovascular health.2 In 2011 to 2012, 82.3% of children and 42.2% of adults met these criteria (Chapter 2, Cardiovascular Health).

Prevalence
(See Table 9-1 and Chart 9-1.)

- Surveillance definitions vary widely in the published literature.3
- For surveillance purposes, the following definition of HBP has been proposed4:
 —SBP ≥140 mmHg or DBP ≥90 mmHg or taking antihypertensive medicine, or
 —Having been told at least twice by a physician or other health professional that one has HBP.

 - With this definition, the prevalence of hypertension (age adjusted) among US adults ≥20 years of age was estimated to be 32.6% in NHANES 2009 to 2012. This equates to an estimated 80.0 million adults ≥20 years of age who have HBP (38.3 million men and 41.7 million women), extrapolated to 2012 data (Table 9-1).
 - In 2009 to 2012, the age-adjusted prevalence of hypertension was 44.9% and 46.1% among non-Hispanic black men and women, respectively; 32.9% and 30.1% among non-Hispanic white men and women, respectively; and 29.6% and 29.9% among Hispanic men and women, respectively.
 - NHANES data show that a higher percentage of men than women have hypertension until 45 years of age. From 45 to 54 years of age and from 55 to 64 years of age, the percentages of men and women with hypertension are similar. After that, a higher percentage of women have hypertension than men (Chart 9-1).
 - The prevalence of hypertension increased between 1988 to 1994, 1999 to 2006, and 2007 to 2012 among non-Hispanic black men (37.5%, 39.5%, and 40.1%, respectively) and women (38.2%, 41.7%, and 42.9%, respectively), non-Hispanic white men (25.6%, 28.7%, and 30.1%, respectively) and women (22.9%, 27.8%, and 27.7%, respectively), and Mexican American women (25.0%, 26.1%, and 27.0%, respectively) but not Mexican American men (26.9%, 24.3%, and 26.6%, respectively).
 - Data from NHANES 2011 to 2012 found that 17.2% of US adults are not aware they have hypertension.4
 - Data from the 2007 to 2008 BRFSS, NHIS, and NHANES surveys found 27.8%, 28.5%, and 30.7% of US adults, respectively, had been told they had hypertension.
 - Among those 18 to 39 years of age, prevalence was 7.3%; among those 40 to 59 years of age, prevalence was 32.4%; and among those ≥60 years of age, prevalence was 65.0%.4
 - Oral contraceptive use was less common among women with than among those without hypertension.5
 - Data from NHANES 2011 to 2012 estimated the prevalence of hypertension in men and women ≥18 years of age to be 29.7% and 28.5%, respectively.4
 - Data from the 2013 BRFSS/CDC indicate that the percentage of adults ≥18 years of age who had been told they had HBP ranged from 25.5% in Minnesota and Colorado to 38.3% in Louisiana. The mean percentage for the United States was 30.4%.7
According to 2003 to 2008 NHANES data, among US adults with hypertension, 11.8% met the criteria for resistant hypertension (SBP/DBP ≥140/90 mm Hg and reported use of antihypertensive medications from 3 different drug classes or drugs from ≥4 antihypertensive drug classes regardless of BP). This represents an increase from 5.5% in 1998 to 1994 and 8.5% in 1999 to 2004.8

The “2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults” report recommends a higher SBP threshold (150 mm Hg) for treatment initiation and goal attainment in adults ≥60 years of age without DM or CKD. Additionally, the SBP treatment/goal threshold increased from 130 to 140 mm Hg among individuals with DM or CKD. The DBP goal remained at 90 mm Hg.5 This change should have minimal impact on the percentage of US adults <60 years of age with hypertension.

—The prevalence of hypertension using the 2014 definition versus the JNC 7 definition declined from 20.3% to 19.2%.10 Among US adults ≥60 years of age, the percentage with hypertension decreased from 68.9% to 61.2% between JNC 7 and the 2014 definition, with above-goal BP declining from 41.3% to 20.9%.10

—In 2005 to 2010, more US adults ≥60 years of age had SBP ≥150 mm Hg than between 140 and 149 mm Hg.11

Projections show that by 2030, ≈41.4% of US adults will have hypertension, an increase of 8.4% from 2012 estimates (unpublished AHA computation, based on methodology described by Heidenreich et al12).

Older Adults

In 2009 to 2010, hypertension was among the diagnosed chronic conditions that were more prevalent among older (≥65 years of age) women than older men (57% prevalence for women, 54% for men). Ever-diagnosed conditions that were more prevalent among older men than older women included HD (37% for men, 26% for women) and DM (24% for men, 18% for women), on the basis of data from NHIS/NCHS.13

The age-adjusted prevalence of hypertension (both diagnosed and undiagnosed) in 2003 to 2006 was 75% for older women and 65% for older men on the basis of data from NHANES/NCHS.14

Data from the 2004 NNHS revealed the most frequent chronic medical condition among this nationally representative sample of long-term stay nursing home residents aged ≥65 years was hypertension (53% of men and 56% of women). In men, prevalence of hypertension decreased with increasing age.15

Among US adults ≥60 years of age in NHANES 2011 to 2012, prevalence of hypertension was 65.0%, awareness of hypertension was 86.1%, treatment for hypertension was 82.2%, and control of hypertension was 50.5%.4

Data from NHANES 2005 to 2010 found that 76.5% of US adults ≥80 years of age had hypertension. Of this population, 43.9% had isolated systolic hypertension and 2.0% had systolic and diastolic hypertension.16

In 2005 to 2010, 30.9% of US adults ≥80 years of age were taking ≥3 classes of antihypertensive medication. This represents an increase from 7.0% and 19.2% in 1988 to 1994 and 1999 to 2004, respectively.16

Children and Adolescents

Data from participants aged 12 to 19 years in the 2005 to 2010 NHANES found ideal BP (<95th percentile) to be present in 78% of males and 90% of females; poor BP (>95th percentile) was found in 2.9% of male and 3.7% of female participants.17

Analysis of data from NHANES III (1988–1994) and NHANES 1999 to 2008 found the prevalence of elevated BP (SBP or DBP ≥90th percentile or SBP/DBP ≥120/80 mm Hg) increased from 15.8% to 19.2% among boys and from 8.2% to 12.6% among girls.18

Among older children, male sex, black race/ethnicity, higher BMI, and higher sodium intake were independently associated with elevated BP for participants 8 to 17 years of age in NHANES 1999 to 2008.19

In a study of 199,513 children (aged 3 to 17 years) across 3 large, integrated healthcare delivery systems, 81.9% were normotensive (<90th percentile of BP), 12.7% had prehypertension (90th to 94th percentiles), and 5.4% had hypertension (≥95th percentile) based on a single visit. After 2 additional visits, the prevalence of hypertension (≥95th percentile at all 3 visits) was confirmed to be present in only 0.14% of the children. The prevalence of confirmed hypertension was higher in non-Hispanic blacks and Asian/Pacific Islanders than in whites and was higher at higher BMI percentiles.19

Analysis of the NHES, the Hispanic Health and Nutrition Examination Survey, and the NHANES/NCHS surveys of the NCHS (1963–2002) found that the BP, pre-HBP, and HBP trends in children and adolescents 8 to 17 years of age moved downward from 1963 to 1988 and upward thereafter. Pre-HBP and HBP increased 2.3% and 1%, respectively, between 1988 and 1999. Increased obesity (abdominal obesity more so than general obesity) partially explained the HBP and pre-HBP rise from 1988 to 1999. BP and HBP reversed their downward trends 10 years after the increase in the prevalence of obesity. In addition, an ethnic and sex gap appeared in 1988 for pre-HBP and in 1999 for HBP: Non-Hispanic blacks and Mexican Americans had a greater prevalence of HBP and pre-HBP than non-Hispanic whites, and the prevalence was greater in boys than in girls. In that study, HBP in children and adolescents was defined as SBP or DBP that was, on repeated measurement, ≥95th percentile.20

A study in Ohio of >14,000 children and adolescents 3 to 18 years of age who were observed at least 3 times between 1999 and 2006 found that 507 children (3.6%) had hypertension. Of these, 131 (26%) had been diagnosed and 376 (74%) were undiagnosed. In addition, 3% of those with hypertension had stage 2 hypertension, and 41% of those with stage 2 hypertension were undiagnosed. Criteria for prehypertension were met by 485 children. Of these, 11% were diagnosed. In this study, HBP in children and adolescents was defined as SBP or DBP that was, on repeated measurement, ≥95th percentile.21

Analysis of data from the SEARCH study, which included children 3 to 17 years of age with type 1 and type 2 DM, found the prevalence of elevated BP to be 5.9% among those with type 1 DM and 23.7% among those with type 2 DM.22

Longitudinal BP outcomes from the National Childhood Blood Pressure database (ages 13–15 years) were examined.
Race/Ethnicity and HBP

(See Table 9-1 and Chart 9-2.)

- The prevalence of hypertension in blacks in the United States is among the highest in the world. From 1988 to 1994 through 1999 to 2002, the prevalence of HBP in adults increased from 35.8% to 41.4% among blacks, and it was particularly high among black women at 44.0%. Prevalence among whites also increased, from 24.3% to 28.1%.24
- From 1999 to 2000 through 2009 to 2010, the prevalence of hypertension did not increase among non-Hispanic black men (38.0% and 39.6% in 1999–2000 and 2009–2010, respectively) or women (40.8% and 43.1% in 1999–2000 and 2009–2010, respectively).25
- In 2011 to 2012, non-Hispanic blacks had a higher prevalence of hypertension (42.1%) than non-Hispanic whites (28.0%), Hispanics (24.7%), and non-Hispanic Asians (24.7%).4
- Compared with whites, blacks develop HBP earlier in life, and their average BP is much higher.26,27
- The incidence of hypertension is higher for blacks than whites through 75 years of age; for a 45-year-old without hypertension, the 40-year risk for hypertension is 92.7% among blacks, 92.4% among Hispanics, 86.0% among whites, and 84.1% among Asians.28
- Compared with whites, blacks have a 1.3 times greater rate of nonfatal stroke, a 1.8 times greater rate of fatal stroke, a 1.5 times greater rate of death attributable to HD, and a 4.2 times greater rate of ESRD (fifth and sixth reports of the JNC).
- The same increment in SBP is associated with a higher stroke risk for blacks than for whites.29
- Higher SBP explains ≈50% of the excess risk among blacks compared with whites.30
- Data from the 2013 NHIS showed that black adults 18 years of age were more likely (32.6%) to have been told ≥2 occasions that they had hypertension than American Indian/Alaska Native adults (26.2%), white adults (22.8%), Hispanic or Latino adults (21.6%), or Asian adults (21.0%).31
- In NHANES 2011 to 2012, age-adjusted awareness of hypertension was similar among non-Hispanic blacks (85.7%), non-Hispanic whites (82.7%), and Hispanics (82.2%) and lower among non-Hispanic Asians (72.8%).4
- In the Hispanic Community Health Study/Study of Latinos, the age-standardized prevalence of hypertension ranged from a low of 19.9% among US men from South America to 32.6% among their counterparts from the Dominican Republic. For US women, the age-standardized prevalence of hypertension was lowest for those of South American descent (15.9%) and highest for their counterparts from Puerto Rico (29.1%).32
- Among NHIS 1997 to 2005 respondents, in multivariate-adjusted analyses that controlled for sociodemographic and health-related factors, odds of self-reported hypertension were 67% higher among Dominicans and 20% to 27% lower among Mexicans/ Mexican Americans and Central/South Americans than among non-Hispanic whites.33
- Data from MESA found that being born outside the United States, speaking a language other than English at home, and living fewer years in the United States were each associated with a decreased prevalence of hypertension.34
- Filipino (27%) and Japanese (25%) adults were more likely than Chinese (17%) or Korean (17%) adults to have ever been told that they had hypertension.35

Mortality

(See Table 9-1.)

- In 2011, there were 65123 deaths attributable to HBP. In 2011, there were 377258 any-mention deaths for HBP. The 2011 death rate was 18.9. Death rates were 17.6 for white males, 47.1 for black males, 15.2 for white females, and 35.1 for black females.36
- When any-mention mortality for 2011 was used, the overall death rate was 110.0. Death rates were 114.5 for white males, 212.8 for black males, 90.1 for Asian or Pacific Islander males, and 100.6 for American Indian or Alaska Native males (underestimated because of underreporting). In females, rates were 92.0 for white females, 157.9 for black females, 71.5 for Asian or Pacific Islander females, and 83.3 for American Indian or Alaska Native females (underestimated because of underreporting).37
- From 2001 to 2011, the death rate attributable to HBP increased 13.2%, and the actual number of deaths rose 39.3% (NHBLI tabulation).36
- A mathematical model was developed to estimate the number of deaths that potentially could be prevented annually by increasing the use of 9 clinical preventive services. The model predicted that a 10% increase in hypertension treatment would result in ≈14000 deaths prevented.38
- Data from the Harvard Alumni Health Study found that higher BP in early adulthood was associated several decades later with higher risk for all-cause mortality, CVD mortality, and CHD mortality but not stroke mortality.39
- An analysis of NHANES I and III that compared mortality over time in hypertensive and nonhypertensive US adults found a reduction in the age-adjusted mortality rate from 18.8 per 1000 person-years for NHANES I (follow-up: 1971–1992) to 14.3 for NHANES III (follow-up: 1988–2006) among people with hypertension. The reduction was higher in men than in women but was similar for blacks and whites.40
- Compared with other dietary, lifestyle, and metabolic risk factors, HBP is the leading cause of death in women and the second-leading cause of death in men, behind smoking.41
- The CDC analyzed death certificate data from 1995 to 2002 (any-mention mortality; ICD-9 codes 401–404 and ICD-10 codes I10–I13). The results indicated that Puerto Rican Americans had a consistently higher hypertension-related death rate than all other Hispanic subpopulations and non-Hispanic whites. The age-standardized hypertension-related mortality rate was 127.2 per 100000 population for all Hispanics, similar to that of non-Hispanic whites (135.9). The age-standardized rate for Hispanic females (118.3) was substantially lower than that observed for Hispanic males (135.9). Hypertension-related mortality
rates for males were higher than rates for females for all Hispanic subpopulations. Puerto Rican Americans had the highest hypertension-related death rate among all Hispanic subpopulations (154.0); Cuban Americans had the lowest (82.5).42

- Assessment of 30-year follow-up of the Hypertension Detection and Follow-up Program identified the long-term benefit of stepped care, as well as the increased survival for hypertensive African Americans, although disparities in death rates did persist.43
- Assessment of the Charleston Heart Study and Evans County Heart Study identified the excess burden of elevated BP for African Americans and its effect on long-term health outcomes.44

Risk Factors

- Numerous risk factors and markers for development of hypertension have been identified, including age, ethnicity, family history of hypertension and genetic factors, lower education and socioeconomic status, greater weight, lower PA, tobacco use, psychosocial stressors, sleep apnea, and dietary factors (including dietary fats, higher sodium intake, lower potassium intake, and excessive alcohol intake).
- A study of related individuals in the NHLBI’s FHS suggested that different sets of genes regulate BP at different ages.45
- Recent data from the Nurses’ Health Study suggest that a large proportion of incident hypertension in women can be prevented by controlling dietary and lifestyle risk factors.46
- Risk prediction models for developing hypertension have been developed and validated. A commonly used risk prediction model was developed in the FHS and includes age, sex, SBP, DBP, BMI, smoking, and parental history of hypertension.47,48

Aftermath

- Approximately 69% of people who have a first heart attack, 77% of those who have a first stroke, and 74% of those who have CHF have BP ≥140/90 mm Hg (NHLBI unpublished estimates from ARIC, CHS, and FHS Cohort and Offspring studies).
- Data from FHS/NHLBI indicate that recent (within the past 10 years) and remote antecedent BP levels may be an important determinant of risk over and above the current BP level.49
- Data from the FHS/NHLBI indicate that hypertension is associated with shorter overall life expectancy, shorter life expectancy free of CVD, and more years lived with CVD.50

 - Total life expectancy was 5.1 years longer for normotensive men and 4.9 years longer for normotensive women than for hypertensive people of the same sex at 50 years of age.
 - Compared with hypertensive men at 50 years of age, men with untreated BP <140/90 mm Hg survived on average 7.2 years longer without CVD and spent 2.1 fewer years of life with CVD. Similar results were observed for women.

Hospital Discharges/Ambulatory Care Visits

(See Table 9-1.)

- From 2000 to 2010, the number of inpatient discharges from short-stay hospitals with HBP as the first-listed diagnosis increased from 457000 to 488000 (no significant difference; NCHS, NHDS). The number of all-listed discharges increased from 8034000 to 11282000 (NHLBI, unpublished data from the NHDS, 2010; diagnoses in 2010 were truncated at 7 diagnoses for comparability with earlier year).
- Data from the Nationwide Inpatient Sample from the years 2000 to 2007 found the frequency of hospitalizations for adults aged ≥18 years of age with a hypertensive emergency increased from 101 to 111 per 100000 in 2007 (average increase of 1.11%). In contrast to the increased number of hospitalizations, the all-cause in-hospital mortality rate decreased during the same period from 2.8% to 2.6%.51
- Data from ambulatory medical care use estimates for 2010 showed that the number of visits for essential hypertension was 43436000. Of these, 38916000 were physician office visits, 940000 were ED visits, and 3580000 were outpatient department visits (NAMCS and NHAMCS, NHLBI tabulation).
- In 2010, there were 280000 hospitalizations with a first-listed diagnosis of essential hypertension (ICD-9-CM code 401), but essential hypertension was listed as either a primary or a secondary diagnosis on 11048000 hospitalized inpatient visits (unpublished data from the NHDS, NHLBI tabulation).

Awareness, Treatment, and Control

(See Table 9-2 and Charts 9-3 through 9-5.)

- Data from NHANES 2009 to 2012 showed that of those with hypertension who were ≥20 years of age, 82.7% were aware of their condition, 76.5% were under current treatment, 54.1% had their hypertension under control, and 45.9% did not have it controlled. Awareness and treatment of hypertension were higher at older ages. Hypertension control was higher in US adults 40 to 59 years of age (58.0%) and those ≥60 years of age (54.1%) than in their counterparts 20 to 39 years of age (35.4%). Non-Hispanic black adults were more aware of their hypertension than Hispanics (87.0% and 77.7%, respectively; NHLBI tabulation).
- Data from NHANES 1999 to 2008 and BRFSS 1997 to 2009 showed awareness, treatment, and control of hypertension varied across the country and were highest in the southeastern United States.52
- Analysis of NHANES 1999 to 2006 and 2009 to 2012 found the proportion of adults aware of their hypertension increased within each race-ethnicity/sex subgroup. Similarly, large increases in hypertension treatment and control (+10%) occurred in each of these groups (Table 9-2).
- According to data from NHANES 1999 to 2000 through 2009 to 2010, HBP control rates improved from 27.5% to 46.5%, treatment improved from 56.9% to 71.6%, and the control among those treated improved from 46.5% to 64.4%.53
In 2009 to 2010, controlled hypertension increased from 48.4% to 53.3%, respectively. Medication use to lower hypertension was lowest for those aged 18 to 39 years (46.0%) compared with those aged 40 to 59 years (77.1%) and those aged ≥60 years (80.7%). Non-Hispanic black adults were more likely to take antihypertensive medication than non-Hispanic whites or Hispanic adults (79.7%, 76.6%, and 69.6%, respectively).54

Data from the NHANES 2005 to 2010 show that among those ≥80 years of age, 79.4% of those with hypertension were aware of this condition, 57.4% were treated, and 39.8% had controlled their BP to JNC 7 targets.60

The change in SBP threshold from JNC 7 to the 2014 JAMA definition resulted in 5.8 million fewer US adults having antihypertensive medication treatment recommended to them, and 13.5 million fewer US adults taking treatment were recommended to be prescribed dose intensification or additional medication classes.10

Among a cohort of postmenopausal women taking hormone replacement, hypertension was the most common comorbidity, with a prevalence of 34%.55

A study of >300 women in Wisconsin showed a need for significant improvement in BP and LDL levels. Of the screened participants, 35% were not at BP goal, 32.4% were not at LDL goal, and 53.5% were not at both goals.56

In 2005, a survey of people in 20 states conducted by the BRFSS of the CDC found that 19.4% of respondents had been told on ≥2 visits to a health professional that they had HBP. Of these, 70.9% reported changing their eating habits; 79.5% reduced the use of or were not using salt; 79.2% reduced the use of or eliminated alcohol; 68.8% were exercising; and 73.4% were taking antihypertensive medication.57

Among 1509 NHANES 2005 to 2006 participants aged ≥30 years with hypertension, 24% were categorized as low risk, 21% as intermediate risk, and 23% as high risk according to Framingham global risk. Treatment for hypertension varied by risk category and ranged from 58% to 75%; hypertension control was 80% for those in the low-risk category and <50% for those in the high-risk category.58

According to data from NHANES 2001 to 2006, non-Hispanic blacks had 90% higher odds of poorly controlled BP than non-Hispanic whites. Among those who were hypertensive, non-Hispanic blacks and Mexican Americans had 40% higher odds of uncontrolled BP than non-Hispanic whites.59

According to data from NHANES 1998 to 2008 for adults with DM, prevalence of hypertension increased, whereas awareness, treatment, and control improved during these time periods; however, for adults 20 to 44 years of age, there was no evidence of improvement.60

Global Burden of Hypertension

In 2000, it was estimated that 972 million adults worldwide had hypertension.61

Between 1980 and 200862:

—The global mean age-adjusted SBP declined from 130.5 mm Hg in 1980 to 128.1 mm Hg in men and from 127.2 to 124.4 mm Hg in women.

—The global age-adjusted prevalence of uncontrolled hypertension decreased from 33% to 29% among men and from 29% to 25% among women.

—Because of population growth and aging, the number of people worldwide with uncontrolled hypertension (SBP ≥140 mm Hg or DBP ≥90 mm Hg) increased from 605 million to 978 million between 1980 and 2008.65

HBP went from being the fourth-leading risk factor in 1990, as quantified by DALYs, to being the number 1 risk factor in 2010.63

In 2010, HBP was 1 of the 5 leading risk factors in all regions with the exception of Oceania, Eastern sub-Saharan Africa, and Western sub-Saharan Africa.63

Cost

(See Table 9-1.)

The estimated direct and indirect cost of HBP for 2011 is $46.4 billion (MEPS, NHLBI tabulation).

Projections show that by 2030, the total cost of HBP could increase to an estimated $274 billion (unpublished AHA computation, based on methodology described in Heidenreich et al).64

Prehypertension

Prehypertension is untreated SBP of 120 to 139 mm Hg or untreated DBP of 80 to 89 mm Hg and not having been told on ≥2 occasions by a physician or other health professional that one has hypertension.

Among disease-free participants in NHANES 1999 to 2006, the prevalence of prehypertension was 36.3%. Prevalence was higher in men than in women. Furthermore, prehypertension was correlated with an adverse cardiometabolic risk profile.64

Follow-up of 9845 men and women in the FHS/NHLBI who attended examinations from 1978 to 1994 revealed that at 35 to 64 years of age, the 4-year incidence of hypertension was 5.3% for those with baseline BP <120/80 mm Hg, 17.6% for those with SBP of 120 to 129 mm Hg or DBP of 80 to 84 mm Hg, and 37.3% for those with SBP of 130 to 139 mm Hg or DBP of 85 to 89 mm Hg. At 65 to 94 years of age, the 4-year incidences of hypertension were 16.0%, 25.5%, and 49.5% for these BP categories, respectively.65

Among participants with and without prehypertension in MESA, 23.6% and 5.3%, respectively, developed hypertension over 4.8 years of follow-up.48

Data from FHS/NHLBI also reveal that prehypertension is associated with elevated relative and absolute risks for CVD outcomes across the age spectrum. Compared with normal BP (<120/80 mm Hg), prehypertension was associated with a 1.5- to 2-fold increased risk for major CVD events in those <60, 60 to 79, and ≥80 years of age. Absolute risks for major CVD associated with prehypertension increased markedly with age: 6-year event rates for major CVD were 1.5% in prehypertensive people <60 years of age, 4.9% in those 60 to 79 years of age, and 19.8% in those ≥80 years of age.66
In a study of NHANES 1999 to 2000 (NCHS), people with prehypertension were more likely than those with normal BP levels to have above-normal cholesterol levels (≥200 mg/dL) and to be overweight or obese, whereas the probability of current smoking was lower. People with prehypertension were 1.65 times more likely to have ≥1 of these adverse risk factors than were those with normal BP.

In the REGARDS study, prehypertension was more common in blacks than whites and was more common among people with other risk factors, including DM and elevated CRP.

A meta-analysis of 29 prospective cohort studies (including 1010858 participants) found prehypertension was associated with CVD incidence or death, stroke, and MI. The risk was particularly noted for those with BP values in the higher prehypertension range.

References

Hypertension is defined in terms of National Health and Nutrition Examination Survey blood pressure measurement and health interviews. A subject was considered hypertensive if systolic blood pressure was ≥140 mm Hg or diastolic blood pressure was ≥90 mm Hg, if the subject said “yes” to taking antihypertensive medication, or if the subject was told on 2 occasions that he or she had hypertension. Prevalence in American Indian or Alaska Natives is based on self-report data from the National Health Interview Survey, with hypertension defined as subjects having been told on ≥2 different visits that they had hypertension or high blood pressure. Ellipses (…) indicate data not available; and NH, non-Hispanic.

* Mortality data for the white, black, Asian or Pacific Islander, and American Indian or Alaska Native populations include deaths among people of Hispanic and non-Hispanic origin. Death rates for Hispanic, American Indian or Alaska Native, and Asian and Pacific Islander people should be interpreted with caution because of inconsistencies in reporting Hispanic origin or race on the death certificate compared with censuses, surveys, and birth certificates. Studies have shown underreporting on death certificates of American Indian or Alaska Native, Asian and Pacific Islander, and Hispanic decedents, as well as undercounts of these groups in censuses.

† These percentages represent the portion of total high blood pressure mortality that is for males vs females.

‡ Includes Chinese, Filipino, Hawaiian, Japanese, and other Asian or Pacific Islander.

§ National Health Interview Survey (2013), National Center for Health Statistics; data are weighted percentages for Americans ≥18 years of age. Persons had to have been told on 2 or more different visits that they had hypertension or high blood pressure to be classified as hypertensive.

Sources: Prevalence: National Health and Nutrition Examination Survey (2009–2012), National Center for Health Statistics, and National Heart, Lung, and Blood Institute. Percentages for racial/ethnic groups are age adjusted for Americans ≥20 years of age. Age-specific percentages are extrapolated to the 2012 US population estimates. Mortality: Centers for Disease Control and Prevention/National Center for Health Statistics, 2011 Mortality Multiple Cause-of-Death—United States. These data represent underlying cause of death only. Hospital discharges: National Hospital Discharge Survey, National Center for Health Statistics; data include those discharged alive, dead, or status unknown. Cost: Medical Expenditure Panel Survey data include estimated direct costs for 2011; indirect costs calculated by National Heart, Lung, and Blood Institute for 2011.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes</td>
<td>80000000 (32.6%)</td>
<td>65123</td>
<td>488000</td>
<td>$46.4 Billion</td>
</tr>
<tr>
<td>Males</td>
<td>38300000 (33.5%)</td>
<td>29363 (45.0%)†</td>
<td>216000</td>
<td>...</td>
</tr>
<tr>
<td>Females</td>
<td>41700000 (31.7%)</td>
<td>35760 (55.0%)†</td>
<td>272000</td>
<td>...</td>
</tr>
<tr>
<td>NH white males</td>
<td>32.9%</td>
<td>21830</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NH white females</td>
<td>30.1%</td>
<td>27907</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NH black males</td>
<td>44.9%</td>
<td>6610</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NH black females</td>
<td>46.1%</td>
<td>6783</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic males</td>
<td>29.6%</td>
<td>*</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic females</td>
<td>29.9%</td>
<td>*</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Asian</td>
<td>...</td>
<td>1667‡</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>26.2%§</td>
<td>326</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Table 9-2. Hypertension Awareness, Treatment, and Control: NHANES 1999 to 2006 and 2007 to 2012, by Race/Ethnicity and Sex

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NH white males</td>
<td>71.8</td>
<td>80.2</td>
<td>61.8</td>
<td>72.6</td>
<td>41.9</td>
<td>53.3</td>
</tr>
<tr>
<td>NH white females</td>
<td>76.9</td>
<td>84.4</td>
<td>68.1</td>
<td>80.2</td>
<td>40.0</td>
<td>56.7</td>
</tr>
<tr>
<td>NH black male</td>
<td>70.1</td>
<td>80.0</td>
<td>59.6</td>
<td>67.9</td>
<td>34.1</td>
<td>40.7</td>
</tr>
<tr>
<td>NH black females</td>
<td>85.3</td>
<td>88.2</td>
<td>76.6</td>
<td>81.1</td>
<td>43.8</td>
<td>54.1</td>
</tr>
<tr>
<td>Mexican American males</td>
<td>57.7</td>
<td>67.0</td>
<td>41.8</td>
<td>57.9</td>
<td>25.6</td>
<td>35.0</td>
</tr>
<tr>
<td>Mexican American females</td>
<td>69.9</td>
<td>78.6</td>
<td>57.9</td>
<td>70.5</td>
<td>31.9</td>
<td>47.0</td>
</tr>
</tbody>
</table>

Values are percentages. Hypertension is defined in terms of NHANES blood pressure measurements and health interviews. A subject was considered hypertensive if systolic blood pressure was ≥140 mm Hg or diastolic blood pressure was ≥90 mm Hg, or if the subject said “yes” to taking antihypertensive medication. NH indicates non-Hispanic; and NHANES, National Health and Nutrition Examination Survey. Sources: NHANES (1999–2006, 2007–2012) and National Heart, Lung, and Blood Institute.

Chart 9-1. Prevalence of high blood pressure in adults ≥20 years of age by age and sex (National Health and Nutrition Examination Survey: 2007–2012). Hypertension is defined as systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg, if the subject said “yes” to taking antihypertensive medication, or if the subject was told on 2 occasions that he or she had hypertension. Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.
Chart 9-2. Age-adjusted prevalence trends for high blood pressure in adults ≥20 years of age by race/ethnicity, sex, and survey (National Health and Nutrition Examination Survey: 1988–1994, 1999–2006, and 2007–2012). Hypertension is defined as systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg, if the subject said “yes” to taking antihypertensive medication, or if the subject was told on 2 occasions that he or she had hypertension. NH indicates non-Hispanic. Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.

Chart 9-3. Extent of awareness, treatment, and control of high blood pressure by race/ethnicity (National Health and Nutrition Examination Survey: 2007–2012). Hypertension is defined as systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg, or if the subject said “yes” to taking antihypertensive medication. NH indicates non-Hispanic. Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.
Chart 9-4. Extent of awareness, treatment, and control of high blood pressure by age (National Health and Nutrition Examination Survey: 2007–2012). Hypertension is defined as systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg, or if the subject said “yes” to taking antihypertensive medication. Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.

Chart 9-5. Extent of awareness, treatment, and control of high blood pressure by race/ethnicity and sex (National Health and Nutrition Examination Survey: 2007–2012). Hypertension is defined as systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg, or if the subject said “yes” to taking antihypertensive medication. NH indicates non-Hispanic. Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.
10. Diabetes Mellitus

ICD-9 250; ICD-10 E10 to E14. See Table 10-1, Charts 10-1 through 10-6.

DM is a major risk factor for CVD and stroke.1 The AHA has identified untreated fasting blood glucose levels of <100 mg/dL for children and adults as 1 of the 7 components of ideal cardiovascular health.2 In 2011 to 2012, 85.3% of children and 56.5% of adults met these criteria.

Prevalence

Youth

● Approximately 186,000 people <20 years of age have DM. Each year, ≈15,000 people <20 years of age are diagnosed with type 1 DM. Healthcare providers are finding more and more children with type 2 DM, a disease usually diagnosed in adults ≥40 years of age. Children who develop type 2 DM are typically overweight or obese and have a family history of the disease. Most are American Indian, black, Asian, or Hispanic/Latino.3

● During 2008 to 2009, an estimated 18,436 people <20 years of age in the United States were newly diagnosed with type 1 DM annually, and 5089 people <20 years old were newly diagnosed with type 2 DM annually.4

● Between 2001 and 2009, the prevalence of type 2 DM in youth increased by 30.5%.5

● Among adolescents 10 to 19 years of age diagnosed with DM, 57.8% of blacks were diagnosed with type 2 versus type 1 DM compared with 46.1% of Hispanic youth and 14.9% of white youth.6

● According to the Bogalusa Heart Study, a long-term follow-up study of youth aging into adulthood, youth who were prediabetic or who had DM were more likely to have a constellation of metabolic disorders in young adulthood (19–44 years of age), including obesity, hypertension, dyslipidemia, and metabolic syndrome, all of which predispose to CHD.7

● Among youth with type 2 DM, 10.4% are overweight and 79.4% are obese.8

● According to NHANES data from 1999 to 2007, among US adolescents aged 12 to 19 years, the prevalence of prediabetes and DM increased from 9% to 23%.9

● The TODAY cohort comprised youth aged 10 to 17 years (41.1% Hispanic and 31.5% non-Hispanic black) participating in a randomized controlled study of new-onset type 2 DM; 41.5% of participants had household income...
The results of the clinical trial demonstrated that only half of the children maintained durable glycemic control with monotherapy, a higher rate of treatment failure than observed in adult cohorts.

- In the TODAY cohort, youth who had type 2 DM were sedentary >56 minutes longer per day (via accelerometry) than obese youth from NHANES.

- Of 1514 SEARCH participants, 95% reported having undergone BP checks and 88% reported having had lipid-level checks, whereas slightly more than two thirds (68%) reported having had HbA,1c testing or eye examinations (66%).

Adults

(See Table 10-1 and Charts 10-1 through 10-4.)

- On the basis of data from NHANES 2009 to 2012 (unpublished NHLBI tabulation), an estimated 21.1 million adults have diagnosed DM, 8.1 million adults have undiagnosed DM, and 80.8 million adults (35.3%) have prediabetes (eg, fasting blood glucose of 100 to <126 mg/dL).

- Analysis of NHANES/NCHS data from 1988 to 1994 and from 2005 to 2010 in adults ≥20 years of age showed that the prevalence of DM (diagnosed DM or HbA,1c ≥6.5%) among adults ≥20 years of age increased from 6.2% in 1988 to 1994 to 9.9% (21 million adults) in 2005 to 2010.

- Minority groups remain disproportionately affected by DM. The prevalence of total DM (diagnosed DM or HbA,1c ≥6.5%) in non-Hispanic blacks is almost twice as high as whites (15.4% versus 8.6%), and Mexican Americans had a 35% higher prevalence of DM than whites (11.6% versus 8.6%).

- The prevalence of diagnosed DM in adults ≥65 years of age was 26.9% in 2010, and an additional 50% (>20 million) had prediabetes based on fasting glucose, oral glucose tolerance testing, or HbA,1c. In addition, data from NHANES 2005 to 2006 show that 46% of DM cases remain undiagnosed in this group aged ≥65 years.

- According to the Bogalusa Heart Study, men >20 years of age have a slightly higher prevalence of DM (11.8%) than women (10.8%).

- After adjustment for population age differences, 2010 to 2012 national survey data for people >20 years of age indicate that 7.6% of non-Hispanic whites, 9.0% of Asian Americans, 12.8% of Hispanics, 13.2% of non-Hispanic blacks, and 15.9% of American Indians/Alaska Natives had diagnosed DM.

- Compared with non-Hispanic white adults, the risk of diagnosed DM was 18% higher among Asian Americans, 66% higher among Hispanics/Latinos, and 77% higher among non-Hispanic blacks.

- In 2004 to 2006, the prevalence of diagnosed DM was more than twice as high for Asian Indian adults (14%) as for Chinese (6%) or Japanese (5%) adults.

- Type 2 DM accounts for 90% to 95% of all diagnosed cases of DM in adults.

- On the basis of 2013 BRFSS (CDC) data, the prevalence of adults in the United States who reported ever having been told by a physician that they had DM ranged from 6.2% in Colorado to 12.6% in Alabama. The mean percentage among all states was 9.4%.

- The CDC analyzed data from 1994 to 2004 collected by the Indian Health Service that indicated that the age-adjusted prevalence of DM per 1000 population increased 101.2% among American Indian/Alaska Native adults <35 years of age (from 8.5% to 17.1%). During this time period, the prevalence of diagnosed DM was greater among females than males in all age groups.

- On the basis of projections from NHANES studies between 1984 and 2004, the total prevalence of DM in the United States is expected to more than double from 2005 to 2050 (from 5.6% to 12.0%) in all age, sex, and race/ethnicity groups. Increases are projected to be largest for the oldest age groups (for instance, projected to increase by 220% among those 65–74 years of age and by 449% among those ≥75 years of age). DM prevalence is projected to increase by 99% among non-Hispanic whites, by 107% among non-Hispanic blacks, and by 127% among Hispanics. The age/race/ethnicity group with the largest increase is expected to be blacks ≥75 years of age (projected increase of 606%).

- According to NHIS data from 1997 to 2008, the prevalence of DM was higher at both time points among Asian Americans (4.3%–8.2%) than among whites (3.8%–6.0%), with the Asian American group also having a greater proportional increase (1.9- versus 1.5-fold increase). This was observed despite lower BMI levels (23.6 versus 26.1 kg/m² in the earliest time period) among Asians.

Global Burden of DM

- The prevalence of DM for adults worldwide was estimated to be 6.4% in 2010 and is projected to be 7.7% in 2030. The total number of people with DM is projected to rise from 285 million in 2010 to 439 million in 2030.

- According to international survey and epidemiological data from 2.7 million participants, the prevalence of DM in adults increased from 8.3% in men and 7.5% in women in 1980 to 9.8% in men and 9.2% in women in 2008. The number of individuals affected with DM increased from 153 million in 1980 to 347 million in 2008.

- In 2010, DM and other endocrine disorders caused >2.7 million deaths worldwide, accounting for 5.2% of all deaths.

Incidence

Youth

- In the SEARCH study, the incidence of DM in youth overall was 24.3 per 100 000 person-years. Among children <10 years of age, most had type 1 DM, regardless of race/ethnicity. The highest rates of incident type 1 DM were observed in non-Hispanic white youth (18.6, 28.1, and 32.9 per 100 000 person-years for age groups of 0–4, 5–9, and 10–14 years, respectively). Overall, type 2 DM was relatively infrequent, with the highest rates (17.0–49.4 per 100 000 person-years) seen among 15- to 19-year-old minority groups.

- Of 2291 individuals <20 years of age with newly diagnosed DM, slightly more than half (54.5%) had autoimmune, insulin-sensitive DM, and 15.9% had nonautoimmune, insulin-resistant DM.

- Projecting disease burden for the US population <20 years of age by 2050, the number of youth with type 1 DM will
According to data from the CDC, the National Diabetes Information Clearinghouse, the National Institute of Diabetes and Digestive and Kidney Diseases, and the National Institutes of Health:

- At least 68% of people ≥65 years of age with DM die of some form of HD; 16% die of stroke.
- HD death rates among adults with DM are 2 to 4 times higher than the rates for adults without DM.26

Adults
(See Table 10-1.)

- A total of 1.7 million new cases of DM (type 1 or type 2) were diagnosed in US adults ≥20 years of age in 2010.4
- Data from the FHS indicate a doubling in the incidence of DM over the past 30 years, most dramatically during the 1990s. Among adults 40 to 55 years of age in each decade of the 1970s, 1980s, and 1990s, the age-adjusted 8-year incidence rates of DM were 2.0%, 3.0%, and 3.7% among women and 2.7%, 3.6%, and 5.8% among men, respectively. Compared with the 1970s, the age- and sex-adjusted OR for DM was 1.40 in the 1980s and 2.05 in the 1990s (P for trend=0.0006). Most of the increase in absolute incidence of DM occurred in individuals with a BMI ≥30 kg/m² (P for trend=0.03).27
- DM incidence in adults also varies markedly by race. Over 5 years of follow-up in 45- to 84-year-olds in MESA, 8.2% of the cohort developed DM. The cumulative incidence was highest in Hispanics (11.3%), followed by black (9.5%), Chinese (7.7%), and white (6.3%) participants.28
- On the basis of meta-analyses of 4 longitudinal cohort studies comprising 175938 individuals and 1.1 million person-years of follow-up, a statistically significant adjusted association was observed between net duration of television viewing and risk for incident type 2 DM, with a 20% increased risk per each 2-hour daily increment of exposure (adjusted RR, 1.20; 95% CI, 1.14–1.27).29
- According to NHANES data from 1988 to 1994 compared with 2005 to 2010, the prevalence of DM increased from 8.4% to 12.1%. This increase was most pronounced among those ≥65 years of age (increase in prevalence from 18.6% to 28.5%).30
- According to data from NHANES and BRFSS, up to 48.7% of individuals with self-reported DM did not meet glycemic, BP, and lipid targets, and only 14.3% met all 3 targets and did not smoke.31
- Gestational DM complicates 2% to 10% of pregnancies and increases the risk of developing type 2 DM by 35% to 60%.32

Mortality
(See Table 10-1.)

- DM mortality in 2011 was 73,831. Any-mention mortality in 2011 was 239,189.32
- The 2011 overall underlying-cause death rate attributable to DM was 21.7. Death rates per 100,000 population were 24.3 for white males, 44.9 for black males, 16.2 for white females, and 35.8 for black females.32
- According to data from the CDC, the National Diabetes Information Clearinghouse, the National Institute of Diabetes and Digestive and Kidney Diseases, and the National Institutes of Health:

- In a collaborative meta-analysis of 820,900 individuals from 97 prospective studies, DM was associated with the following risks: all-cause mortality, HR 1.80 (95% CI, 1.71–1.90); cancer death, HR 1.25 (95% CI, 1.19–1.31); and vascular death, HR 2.32 (95% CI, 2.11–2.56). In particular, DM was associated with death attributable to the following cancers: liver, pancreas, ovary, colorectal, lung, bladder, and breast. A 50-year-old with DM died on average 6 years earlier than an individual without DM.33
- FHS/NHLBI data show that having DM significantly increased the risk of developing CVD (HR 2.5 for women and 2.4 for men) and of dying when CVD was present (HR 2.2 for women and 1.7 for men). Diabetic men and women ≥50 years of age lived an average of 7.5 and 8.2 years less than their nondiabetic counterparts. The differences in life expectancy free of CVD were 7.8 and 8.4 years, respectively.34
- Analysis of data from the FHS from 1950 to 2005 found reductions in all-cause and CVD mortality among men and women with and without DM; however, all-cause and CVD mortality rates among individuals with DM remain ≥2-fold higher than for individuals without DM.35
- Analysis of data from NHANES 1971 to 2000 found that men with DM experienced a 43% relative reduction in the age-adjusted mortality rate, which was similar to that of nondiabetic men. Among women with DM, however, mortality rates did not decrease, and the incremental mortality risk for diabetic compared with nondiabetic women doubled during this period of study.36
- During 1979 to 2004, DM death rates for black youth 1 to 19 years of age were approximately twice those for white youth. During 2003 to 2004, the annual average DM death rate per 1 million youth was 2.46 for black youth and 0.91 for white youth.37
- Among individuals ≥65 years of age participating in the CHS, during follow-up for up to 16 years, adjusted CHD mortality risk was similar for those with prevalent CHD free of DM at study entry compared with participants with DM but free of CHD (HR, 1.04; 95% CI, 0.83–1.30).38
- According to NHIS data from 1997 to 2006, the rate of CVD death among adults with DM decreased by 40% (95% CI, 23%–54%). Similarly, all-cause mortality decreased by 23% (95% CI, 10%–35%). In contrast, over this same period among adults without DM, the CVD mortality rate decreased by 60%, and the all-cause mortality rate decreased by 44%.39

Awareness
(See Chart 10-5.)

- On the basis of analyses of NHANES/NCHS data from 2005 to 2010, 11% of adults with DM did not know they had it.14 Although the prevalence of diagnosed DM has increased significantly over the past decade, the numbers of adults with undiagnosed DM and impaired fasting glucose has remained relatively stable.
Analysis of NHANES data collected during 2005 to 2010 indicated that the prevalence of diagnosed DM, defined as people told by a physician or other health professional that they had DM, was 8.4% among people ≥20 years of age.14

Of the estimated 21 million adults with DM, 84.8% were told they had DM or were undergoing treatment, and 11% (2.3 million) of those with confirmed DM (calibrated HbA1c level ≥6.5% and fasting plasma glucose level ≥126 mg/dL) were unaware of the diagnosis.14

Of 15.4 million people being treated with glucose-lowering medication (86.6% of the diagnosed diabetic population), 8.5 million (55.2%) had their hyperglycemia under control (ie, had calibrated HbA1c <7%), and 6.9 million (44.8%) were being treated but did not have their hyperglycemia under control (HbA1c ≥7%). An estimated 2.4 million individuals with diagnosed DM are not treated with glucose-lowering therapy.14

Aftermath
(See Chart 10-6.)

Although the exact date of DM onset can be difficult to determine, increasing duration of DM diagnosis is associated with increasing CVD risk. Longitudinal data from FHS suggest that the risk factor–adjusted RR of CHD is 1.38 (95% CI, 0.99–1.92) times higher and the risk for CHD death is 1.86 (95% CI, 1.17–2.93) times higher for each 10-year increase in duration of DM.40

On the basis of data from the NCHS/NHIS, 1997 to 200541

—The estimated number of people ≥35 years of age with DM and a self-reported cardiovascular condition increased 36%, from 4.2 million in 1997 to 5.7 million in 2005; however, the respective age-adjusted prevalence decreased 11.2%, from 36.6% in 1997 to 32.5% in 2005, which reflects an increase in the number of patients diagnosed with DM that exceeded the increase in CVD prevalence.

—Age-adjusted CVD prevalence was higher among men than among women, among whites than among blacks, and among non-Hispanics than among Hispanics. Among women, the age-adjusted prevalence decreased by 11.2%; among men, it did not decrease significantly. Among blacks, the age-adjusted prevalence of self-reported CVD decreased by 25.3%; among whites, no significant decrease occurred; among non-Hispanics, the rate decreased by 12%. No clear trends were detected among Hispanics.

—Because the total number of people with DM and self-reported CVD increased over this period but proportions with self-reported CVD declined, the data suggest that the mean age at which people are diagnosed with DM is decreasing, or the higher CVD mortality rate among older diabetic individuals is removing them from ability to self-report CVD. These and other data show a consistent increase over time in the United States of the number of people with DM and CVD.

Data from the FHS show that despite improvements in CVD morbidity and mortality over >4 decades of observation, DM continues to be associated with incremental CVD risk. Participants 45 to 64 years of age from the FHS original and offspring cohorts who attended examinations in 1950 to 1966 ("earlier" time period) and in 1977 to 1995 ("later" time period) were followed up for incident MI, CHD death, and stroke. Among participants with DM, the age- and sex-adjusted CVD incidence rate was 286.4 per 10 000 person-years in the earlier period and 146.9 per 10 000 person-years in the later period, a 35.4% decline. HRs for DM as a predictor of incident CVD were not significantly different in the earlier (risk factor–adjusted HR, 2.68; 95% CI, 1.88–3.82) versus later (HR, 1.96; 95% CI, 1.44–2.66) period. Thus, although there was a 50% reduction in the rate of incident CVD events among adults with DM, the absolute risk of CVD remained 2-fold greater than among people without DM.42

—Data from these earlier and later time periods in FHS also suggest that the increasing prevalence of DM is leading to an increasing rate of CVD, resulting in part from CVD risk factors that commonly accompany DM. The age- and sex-adjusted HR for DM as a CVD risk factor was 3.0 in the earlier time period and 2.5 in the later time period. Because the prevalence of DM has increased over time, the PAR for DM as a CVD risk factor increased from 5.4% in the earlier time period to 8.7% in the later time period (attributable risk ratio, 1.62; P=0.04). Adjustment for CVD risk factors (age, sex, hypertension, current smoking, high cholesterol, and obesity) weakened this attributable risk ratio to 1.5 (P=0.12).43

—Other data from FHS show that over a 30-year period, CVD among women with DM was 54.8% among normal-weight women but 78.8% among obese women. Among normal-weight men with DM, the lifetime risk of CVD was 78.6%, whereas it was 86.9% among obese men.44

Data from the ARIC study of the NHLBI found that the magnitude of incremental CHD risk associated with DM was smaller in blacks than in whites.45

In analyses from the NRMI comprising data registered on 1 734 431 patients admitted with AMI to 1964 participating US hospitals, the incremental adjusted OR for hospital mortality associated with DM declined from 1.24 (95% CI, 1.16–1.32) in 1994 to 1.08 (95% CI, 0.99–1.19) in 2006, which demonstrates a closing of the acute hospital mortality gap associated with DM.46

On the basis of analyses of data from the NHIS, the NHDS, the US Renal Data System, and the US National Vital Statistics System, between 1990 and 2010, the rate of incident CVD among participants with DM declined 67.8% (Chart 10-6).

A subgroup analysis was conducted of patients with DM enrolled in randomized clinical trials that evaluated ACS therapies. The data included 62 036 patients from TIMI studies (46 577 with STEMI and 15 459 with UA/NSTEMI). Of these, 17.1% had DM. Modeling showed that mortality at 30 days was significantly higher among patients with DM than among those without DM who presented with UA/NSTEMI (2.1% versus 1.1%; P=0.001) and STEMI (8.5% versus 5.4%; P=0.001), with adjusted risks for 30-day mortality in DM versus no DM of 1.78 for UA/NSTEMI (95% CI, 1.24–2.56) and 1.40 (95% CI, 1.24–1.57) for STEMI. DM was also associated with significantly higher mortality.
1 year after UA/NSTEMI or STEMI. By 1 year after ACS, patients with DM who presented with UA/NSTEMI had a risk of death that approached that of patients without DM who presented with STEMI (7.2% versus 8.1%).

- In an analysis of provincial health claims data for adults living in Ontario, Canada, between 1992 and 2000, the rate of patients admitted for AMI and stroke decreased to a greater extent in the diabetic than the nondiabetic population (AMI, −15.1% versus −9.1%, P = 0.0001; stroke, −24.2% versus −19.4%, P = 0.0001). Patients with DM experienced reductions in case fatality rates related to AMI and stroke similar to those without DM (−44.1% versus −33.2%, P = 0.1, and −17.1% versus −16.6%, P = 0.9, respectively) and similarly comparable decreases in all-cause mortality. Over the same period, the number of DM cases increased by 165%, which translates to a marked increase in the proportion of CVD events occurring among patients with DM: AMI, 44.6%; stroke, 26.1%; AMI deaths, 17.2%; and stroke deaths, 13.2%.

- In the same data set, the transition to a high-risk category (an event rate equivalent to a 10-year risk of 20% or an event rate equivalent to that associated with previous MI) occurred at a younger age for men and women with DM than for those without DM (mean difference, 14.6 years). For the outcome of AMI, stroke, or death resulting from any cause, men and women with DM entered the high-risk category at 47.9 and 54.3 years of age, respectively. The data suggest that DM confers a risk equivalent to aging 15 years. In North America, diverse data show lower rates of CVD among people with DM, but as the prevalence of DM has increased, so has the absolute burden of CVD, especially among middle-aged and older individuals.

- DM increases the risk of HF and adversely affects outcomes among patients with HF.

—DM alone qualifies for the most recent ACC Foundation/AHA diagnostic criteria for stages A and B HF, a classification of patients without HF but at notably high risk for its development.

—in MESA, DM was associated with a 2-fold increased adjusted risk of incident HF among 6814 individuals free of CVD at baseline over a mean follow-up of 4 years (HR, 1.99; 95% CI, 1.08–3.68).

—Post hoc analysis of data from the EVEREST randomized trial of patients hospitalized with decompenated systolic HF stratified by DM status, which evaluated cardiovascular outcomes over a follow-up period of 9.9 months, demonstrated an increased adjusted HR for the composite of cardiovascular mortality and HF rehospitalization associated with DM (HR, 1.17; 95% CI, 1.04–1.31).

- DM increases the risk of AF. On the basis of meta-analysis of published observational data comprising 11 studies and >1.6 million participants, DM was crudely associated with a 40% increased risk for AF (RR, 1.39; 95% CI, 1.10–1.75), with the association remaining significant after multivariable adjustment (adjusted RR, 1.24; 95% CI, 1.06–1.44), yielding an estimate of the population attributable fraction of AF attributable to DM of 2.5%.

- DM increases the risk of stroke, with the RR ranging from 1.8- to 6-fold increased risk.

—DM is associated with increased ischemic stroke incidence at all ages, with the incremental risk associated with DM being most prominent before 55 years of age in blacks and before 65 years of age in whites.

—Ischemic stroke patients with DM are younger, more likely to be black, and more likely to have hypertension, prior MI, and high cholesterol than nondiabetic patients.

- On the basis of analyses of data from the NHIS, the NHDS, the US Renal Data System, and the US National Vital Statistics System, between 1990 and 2010, the rate of incident stroke among patients with DM declined 52.7% (Chart 10-6).

- DM accounted for 44% of the new cases of ESRD in 2011.

- In 2012, the incidence rate of ESRD attributed to DM in adults ≥20 years in the Veterans Affairs health system increased with age, from 4.44 per 100,000 in those aged 20 to 29 years to 110.35 per 100,000 in those ≥70 years old compared with rates of 2.40 and 81.88, respectively, in those without DM.

- On the basis of analyses of data from the NHIS, the NHDS, the US Renal Data System, and the US National Vital Statistics System, between 1990 and 2010, the rate of incident ESRD among patients with DM declined 28.3% (Chart 10-6).

- HbA1c levels ≥6.5% can be used to diagnose DM. In the population-based ARIC study, over a 14-year follow-up period that preceded the endorsement of HbA1c as a diagnostic criterion, HbA1c levels ≥6.5% at study entry were associated with a multivariable-adjusted HR of 16.5 (95% CI, 14.2–19.1) for diagnosed DM based on contemporaneous diagnostic criteria and 1.95 (95% CI, 1.53–2.48) for CHD relative to those with HbA1c <5.0%.

Risk Factors for Developing DM

- Risk for developing type 2 DM is higher in men than in women even after accounting for other risk factors.

- DM, especially type 2 DM, is associated with clustered risk factors for CHD, with a prevalence of 75% to 85% for hypertension among adults with DM, 70% to 80% for elevated LDL, and 60% to 70% for obesity.

- Aggressive treatment of hypertension is recommended for adults with DM to prevent cardiovascular complications. Between NHANES III (1984–1992) and NHANES 1999 to 2004, the proportion of patients with DM whose BP was treated increased from 76.5% to 87.8%, and the proportion whose BP was controlled nearly doubled (from 15.9% to 29.6%).

- Aggressive treatment of hypercholesterolemia is recommended for adults with DM, with the cornerstone of treatment being statin therapy, which is recommended for all patients with DM >40 years of age independent of baseline cholesterol, with at least a moderate dose of statin therapy.

- CHD risk factors among patients with DM remain suboptimally treated, although improvements have been observed over the past decade. Between 1999 and 2008, in up to 2623 adult participants with DM, data from NHANES showed that improvements were observed for the achieved targets for control of HbA1c (from 37.0% to 55.2%), BP
According to 2007 data from the BRFSS, only 25% of adults with DM achieved recommended levels of total PA based on the 2007 American Diabetes Association guidelines.71

Data from the 2012 National Healthcare Disparities Report (AHRQ, US Department of Health and Human Services) found that only 23% of adults >40 years of age with DM received all 4 interventions to reduce risk factors recommended for comprehensive DM care in 2009. The proportion receiving all 4 interventions was lower among blacks and Hispanics than whites.65

In 1 large academic medical center, outpatients with type 2 DM were observed during an 18-month period for proportions of patients who had HbA1c levels, BP, or total cholesterol levels measured; who had been prescribed any drug therapy if HbA1c levels, SBP, or LDL cholesterol levels exceeded recommended treatment goals; and who had been prescribed greater-than-starting-dose therapy if these values were above treatment goals. Patients were less likely to have cholesterol levels measured (76%) than HbA1c levels (92%) or BP (99%; P < 0.0001 for either comparison). The proportion of patients who received any drug therapy was greater for above-goal HbA1c (92%) than for above-goal SBP (78%) or LDL cholesterol (38%; P < 0.0001 for each comparison). Similarly, patients whose HbA1c levels were above the treatment goal (80%) were more likely to receive greater-than-starting-dose therapy than those who had above-goal SBP (62%) and LDL cholesterol levels (13%; P < 0.0001).69

—Data from the same academic medical center also showed that CVD risk factors among women with DM were managed less aggressively than among men with DM. Women were less likely than men to have HbA1c <7% (without CHD: adjusted OR for women versus men 0.84, P = 0.005; with CHD: 0.63, P = 0.0001). Women without CHD were less likely than men to be treated with lipid-lowering medication (0.82; P = 0.01) or, when treated, to have LDL cholesterol levels <100 mg/dL (0.75; P = 0.004) and were less likely than men to be prescribed aspirin (0.63; P = 0.0001). Women with DM and CHD were less likely than men to be prescribed aspirin (0.70, P = 0.0001) and, when treated for hypertension or hyperlipidemia, were less likely to have BP levels <130/80 mm Hg (0.75; P < 0.0001) or LDL cholesterol levels <100 mg/dL (0.80; P = 0.006).69

Analysis of data from the CHS of the NHLBI found that lifestyle risk factors, including PA level, dietary habits, smoking habits, alcohol use, and adiposity measures, assessed late in life, were each independently associated with risk of new-onset DM. Participants whose PA level and dietary, smoking, and alcohol habits were all in the low-risk group had an 82% lower incidence of DM than all other participants. When absence of adiposity was added to the other 4 low-risk lifestyle factors, incidence of DM was 89% lower.70

According to 2007 data from the BRFSS, only 25% of adults with DM achieved recommended levels of total PA based on the 2007 American Diabetes Association guidelines.71

Hospitalizations
(See Table 10-1.)

Youth

—Nationwide Inpatient Sample data from 1993 to 2004 were analyzed for individuals 0 to 29 years of age with a diagnosis of DM. Rates of hospitalizations increased by 38%. Hospitalization rates were higher for females (42%) than for males (29%). Inflation-adjusted total charges for DM hospitalizations increased 130%, from $1.05 billion in 1993 to $2.42 billion in 2004.72

Adults

—According to NHDS data reported by the CDC in an analysis of data from 2010, DM was a listed diagnosis in 16% of US adult hospital discharges. Of the 5.1 million discharges with DM listed, circulatory diseases was the most common first-listed diagnosis (24.1%; 1.3 million discharges) and DM the second most common (11.5%; 610000 discharges).73

Hypoglycemia

—Hypoglycemia is a common side effect of DM treatment, typically defined as a blood glucose level <50 mg/dL; severe hypoglycemia is additionally defined as patients needing assistance to treat themselves.

—In the ADVANCE trial, 2.1% of patients had an episode of severe hypoglycemia.

—Severe hypoglycemia was associated with an increased risk of major macrovascular events (HR, 2.88; 95% CI, 2.01–4.12), cardiovascular death (HR, 2.68; 95% CI, 1.72–4.19), and all-cause death (HR, 2.69; 95% CI, 1.97–3.67), including nonvascular outcomes. The lack of specificity of hypoglycemia with vascular outcomes suggests that it might be a marker for susceptibility. Risk factors for hypoglycemia included older age, DM duration, worse renal function, lower BMI, lower cognitive function, use of multiple glucose-lowering medications, and randomization to the intensive glucose control arm.74

—According to data from the 2004 to 2008 MarketScan database of type 2 DM, which consisted of 536581 individuals, the incidence rate of hypoglycemia was 153.8 per 10000 person-years and was highest in adults aged 18 to 34 years (218.8 per 10000 person-years).75

—According to data from 2956 adults >55 years of age from the ACCORD trial, poor cognitive function, defined as a 5-point poorer baseline score on the Digit Symbol Substitution Test, was associated with a 13% increased risk of severe hypoglycemia that required medical assistance.76

—In a sample of 813 adults with type 2 DM enrolled in commercial health plans, 71% reported experiencing symptoms of hypoglycemia.77

Cost
(See Table 10-1.)

—In 2012, the cost of DM was estimated at $245 billion, up from $174 billion in 2007, accounting for 1 in 5 healthcare dollars. Of these costs, $176 billion were direct medical costs.
costs and $69 billion resulted from reduced productivity. Inpatient care accounted for 43% of these costs, 18% were attributable to prescription costs to treat DM complications, and 12% were related to antidiabetes agents and supplies.78

- After adjustment for age and sex, medical costs for patients with DM were 2.3 times higher than for people without DM.16
- According to the insurance claims and MarketScan data from 7556 youth <19 years of age with insulin-treated DM, costs for youth with hypoglycemia were $12,850 compared with $8970 for youth without hypoglycemia. For diabetic ketoacidosis, costs were $14,236 for youth with versus $8398 for youth without diabetic ketoacidosis.79
- The cost of hypoglycemia, according to data from 536,581 individuals with type 2 DM from the 2004 to 2008 MarketScan database, was $52,223,675, which accounted for 1.0% of inpatient costs, 2.7% of ED costs, and 0.3% of outpatient costs. This resulted in a mean cost of $17,564 for an inpatient admission, $1387 for an ED visit, and $394 for an outpatient visit.75

Type 1 DM

- Type 1 DM constitutes 5% to 10% of DM in the United States.80
- The Colorado IDDM Study Registry and SEARCH registry demonstrated an increasing incidence of type 1 DM among Colorado youth ≤17 years of age, with an increase in the incidence of 2.3% (95% CI, 1.6%–3.1%) per year over the past 26 years.81
- Between 1996 and 2010, the number of youth with type 1 DM increased by 5.7% per year.82
- Among youth with type 1 DM, the prevalence of overweight is 22.1% and the prevalence of obesity is 12.6%.8
- A long-term study of patients with type 1 DM that began in 1966 showed that over 30 years of follow-up, overall risk of mortality associated with type 1 DM was 7 times greater than that of the general population. Females had a 13.2-fold incremental mortality risk compared with a 5.0-fold increased risk in males. During the course of study, the incremental mortality risk associated with type 1 DM declined from 9.3 to 5.6 times that of nondiabetic control subjects.83
- According to 30-year mortality data from Allegheny County, PA, those with type 1 DM have a mortality rate 5.6 times higher than the general population.84
- The leading cause of death among patients with type 1 DM is CVD, which accounted for 22% of deaths among those in the Allegheny County, PA, type 1 DM registry, followed by renal (20%) and infectious (18%) causes.85
- Long-term follow-up data from the DCCT/EDIC Research Group showed that intensive versus conventional treatment in the DCCT was associated with a 42% reduced risk of CVD (P=0.02) and a 57% reduced risk of the composite end point (P=0.02; included nonfatal MI, stroke, and CVD death).86
- Observational data from the Swedish National Diabetes Register showed that most CVD risk factors were more adverse among patients with HbA1c between 8.0% and 11.9% than among those with HbA1c between 5.0% and 7.9%. Per 1% unit increase in HbA1c, the HR of fatal and nonfatal CHD was 1.30 in multivariable-adjusted models and 1.27 for fatal and nonfatal CVD. Among patients with HbA1c 5.0% to 7.9%, the HR of fatal/nonfatal CHD was 1.71 and the risk of fatal/nonfatal CVD was 1.59.87
- Among 2787 patients from the EURODIAB Prospective Complications Study, age, waist-hip ratio, pulse pressure, non-HDL cholesterol, microalbuminuria, and peripheral and autonomic neuropathy were risk factors for all-cause, CVD, and non-CVD mortality.88
- Among 3610 older patients (>60 years of age) with type 1 DM, the risk of severe hypoglycemia was twice as high as those <60 years of age (40.1 versus 24.3 per 100 patient-years).89

References

Table 10-1. Diabetes Mellitus

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes</td>
<td>211,000,000 (8.5%)</td>
<td>8,100,000 (3.3%)</td>
<td>80,800,000 (35.3%)</td>
<td>1,700,000</td>
<td>73,831</td>
<td>630,000</td>
</tr>
<tr>
<td>Males</td>
<td>10,500,000 (9.0%)</td>
<td>5,100,000 (4.4%)</td>
<td>46,400,000 (42.4%)</td>
<td>38,324 (51.9%)§</td>
<td>311,000</td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>10,600,000 (8.0%)</td>
<td>3,000,000 (2.4%)</td>
<td>34,000,000 (28.4%)</td>
<td>35,507 (48.1%)§</td>
<td>319,000</td>
<td></td>
</tr>
<tr>
<td>NH white males</td>
<td>7.6%</td>
<td>4.0%</td>
<td>43.0%</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>NH white females</td>
<td>6.1%</td>
<td>1.7%</td>
<td>28.9%</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>NH black males</td>
<td>13.8%</td>
<td>4.8%</td>
<td>36.3%</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>NH black females</td>
<td>14.6%</td>
<td>2.3%</td>
<td>27.8%</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Hispanic males</td>
<td>12.5%</td>
<td>6.8%</td>
<td>43.0%</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Hispanic females</td>
<td>11.8%</td>
<td>5.0%</td>
<td>26.0%</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Asian or Pacific Islander</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Undiagnosed DM is defined as those whose fasting glucose is ≥126 mg/dL but who did not report being told by a healthcare provider that they had DM. Prediabetes is a fasting blood glucose of 100 to <126 mg/dL (impaired fasting glucose); prediabetes includes impaired glucose tolerance.

DM indicates diabetes mellitus; ellipses (…), data not available; and NH, non-Hispanic.

†Mortality data for the white, black, Asian or Pacific Islander, and American Indian or Alaska Native populations include deaths among people of Hispanic and NH origin. Death rates for Hispanic, American Indian or Alaska Native, and Asian and Pacific Islander people should be interpreted with caution because of inconsistencies in reporting Hispanic origin or race on the death certificate compared with censuses, surveys, and birth certificates. Studies have shown underreporting on death certificates of American Indian or Alaska Native, Asian and Pacific Islander, and Hispanic decedents, as well as undercounts of these groups in censuses.

‡Yang et al.²⁸

§These percentages represent the portion of total DM mortality that is for males vs females.

Sources: Prevalence: Prevalence of diagnosed and undiagnosed DM: National Health and Nutrition Examination Survey 2009 to 2012, National Center for Health Statistics (NCHS), and National Heart, Lung, and Blood Institute. Percentages for racial/ethnic groups are age adjusted for Americans ≥20 years of age. Age-specific percentages are extrapolations to the 2012 US population estimates. Mortality: Centers for Disease Control and Prevention/NCHS, 2011 Mortality Multiple Cause-of-Death–United States. These data represent underlying cause of death only. Hospital discharges: National Hospital Discharge Survey, NCHS; data include those inpatients discharged alive, dead, or status unknown.

Chart 10-6. Trends in age-standardized rates of diabetes mellitus-related complications among US adults with and without diagnosed diabetes mellitus.47
11. Metabolic Syndrome

See Charts 11-1 through 11-6.

- Metabolic syndrome is a multicomponent risk factor for CVD and type 2 DM that reflects the clustering of individual cardiometabolic risk factors related to abdominal obesity and insulin resistance. Clinically, metabolic syndrome is a useful entity for communicating the nature of lifestyle-related cardiometabolic risk to both patients and other clinicians. Although several different clinical definitions for metabolic syndrome have been proposed, the International Diabetes Federation, NHLBI, AHA, and others recently proposed a harmonized definition for metabolic syndrome.¹ By this definition, metabolic syndrome is diagnosed when any 3 of the following 5 risk factors are present:
 —Fasting plasma glucose ≥100 mg/dL or undergoing drug treatment for elevated glucose
 —HDL cholesterol <40 mg/dL in men or <50 mg/dL in women or undergoing drug treatment for reduced HDL cholesterol
 —Triglycerides ≥150 mg/dL or undergoing drug treatment for elevated triglycerides
 —Waist circumference >102 cm in men or >88 cm in women for people of most ancestries living in the United States. Ethnicity and country-specific thresholds can be used for diagnosis in other groups, particularly Asians and individuals of non-European ancestry who have predominantly resided outside the United States.
 —BP ≥130 mmHg systolic or ≥85 mmHg diastolic or undergoing drug treatment for hypertension or antihypertensive drug treatment in a patient with a history of hypertension.

- The new harmonized metabolic syndrome definition identifies a similar risk group and predicts CVD risk similarly to the prior metabolic syndrome definitions.²

- There are many adverse health conditions that are related to metabolic syndrome but are not part of its clinical definition. These include nonalcoholic fatty liver disease, sexual dysfunction (erectile dysfunction in men and polycystic ovarian syndrome in women), obstructive sleep apnea, certain forms of cancer, and possibly osteoarthritis, as well as a general proinflammatory and prothrombotic state.³

- Those with a fasting glucose level ≥126 mg/dL or a casual glucose value ≥200 mg/dL or taking hypoglycemic medication will normally be classified separately as having DM; many of these people will also have metabolic syndrome.

Abbreviations Used in Chapter 11

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>American College of Cardiology</td>
</tr>
<tr>
<td>AF</td>
<td>atrial fibrillation</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>ARIC</td>
<td>Atherosclerosis Risk in Communities</td>
</tr>
<tr>
<td>ASCVD</td>
<td>atherosclerotic cardiovascular disease</td>
</tr>
<tr>
<td>BIOSHARE-EU</td>
<td>Biobank Standardization and Harmonization for Research Excellence in the European Union</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>CAC</td>
<td>coronary artery calcification</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery disease</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CHRIS</td>
<td>Collaborative Health Research in South Tyrol Study</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>COURAGE</td>
<td>Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DESIR</td>
<td>Data From an Epidemiological Study on the Insulin Resistance Syndrome</td>
</tr>
<tr>
<td>DILGOM</td>
<td>Dietary, Lifestyle, and Genetics Determinants of Obesity and Metabolic Syndrome</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>EGCU</td>
<td>Estonian Genome Center of the University of Tartu</td>
</tr>
<tr>
<td>FRS</td>
<td>Framingham Risk Score</td>
</tr>
<tr>
<td>HDL</td>
<td>high-density lipoprotein</td>
</tr>
<tr>
<td>HDL-C</td>
<td>high-density lipoprotein cholesterol</td>
</tr>
<tr>
<td>HF</td>
<td>heart failure</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>HR</td>
<td>hazard ratio</td>
</tr>
<tr>
<td>HUNT2</td>
<td>Nord-Trøndelag Health Study</td>
</tr>
<tr>
<td>IMT</td>
<td>intima-media thickness</td>
</tr>
<tr>
<td>KNHANES</td>
<td>Korean National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>KORA</td>
<td>Cooperative Health Research in the Region of Augsburg</td>
</tr>
<tr>
<td>LDL</td>
<td>low-density lipoprotein</td>
</tr>
<tr>
<td>LV</td>
<td>left ventricular</td>
</tr>
<tr>
<td>MESA</td>
<td>Multi-Ethnic Study of Atherosclerosis</td>
</tr>
<tr>
<td>MetS</td>
<td>metabolic syndrome</td>
</tr>
<tr>
<td>Mex-Am</td>
<td>Mexican American</td>
</tr>
<tr>
<td>MHO</td>
<td>metabolically healthy obesity</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>MICRO</td>
<td>Microisolates in South Tyrol Study</td>
</tr>
<tr>
<td>NCDS</td>
<td>National Child Development Study</td>
</tr>
<tr>
<td>NCHS</td>
<td>National Center for Health Statistics</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NHLBI</td>
<td>National Heart, Lung, and Blood Institute</td>
</tr>
<tr>
<td>NIPPON DATA</td>
<td>National Integrated Project for Prospective Observation of Noncommunicable Disease and Its Trends in Aged</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PA</td>
<td>physical activity</td>
</tr>
<tr>
<td>PAR</td>
<td>population attributable risk</td>
</tr>
<tr>
<td>PREVEND</td>
<td>Prevention of Renal and Vascular End-Stage Disease</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
<tr>
<td>TG</td>
<td>triglycerides</td>
</tr>
<tr>
<td>WC</td>
<td>waist circumference</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Prevalence

Youth

(See Chart 11-1.)

- According to the 2009 AHA scientific statement about metabolic syndrome in children and adolescents, metabolic syndrome should be diagnosed with caution in this age group, because metabolic syndrome categorization in adolescents is not stable. Approximately half of the 1098 adolescent participants in the Princeton School District Study diagnosed with pediatric Adult Treatment Panel III metabolic syndrome lost the diagnosis over 3 years of follow-up.

- Additional evidence of the instability of the diagnosis of metabolic syndrome in children exists. In children 6 to 17 years of age participating in research studies in a single clinical research hospital, the diagnosis of metabolic syndrome was unstable in 46% of cases after a mean of 5.6 years of follow-up.

- Uncertainty remains concerning the definition of the obesity component of metabolic syndrome in the pediatric population because it is age dependent. Therefore, use of BMI percentiles and waist-height ratio has been recommended. Using standard CDC and FITNESSGRAM standards for pediatric obesity, the prevalence of metabolic syndrome in obese youth ranges from 19% to 35%. On the basis of NHANES 1999 to 2002 data, the prevalence of metabolic syndrome in adolescents 12 to 19 years of age was 9.4%, which represents 2.9 million people. It was 13.2% in boys, 5.3% in girls, 10.7% in whites, 5.2% in blacks, and 11.1% in Mexican Americans.

- In 1999 to 2004, 4.5% of US adolescents 12 to 17 years of age had metabolic syndrome according to the definition developed by the International Diabetes Federation. In 2006, this prevalence would have represented 1.1 million adolescents 12 to 17 years of age with metabolic syndrome. It increased from 1.2% among those 12 to 13 years of age to 7.1% among those 14 to 15 years of age and was higher among boys (6.7%) than girls (2.1%). Furthermore, 4.5% of white adolescents, 3.0% of black adolescents, and 7.1% of Mexican American adolescents had metabolic syndrome.

- In the most recent report using NHANES data, the age-adjusted prevalence of metabolic syndrome in those aged 12 to 19 years appeared to be decreasing. In this report, the age-adjusted prevalence from 1988 to 1994 was 7.3%, dropping to 6.7% from 1999 to 2002 and to 6.5% from 2003 to 2006. This is contrast to the Korean NHANES, in which the prevalence of metabolic syndrome in those aged 12 to 19 years increased from 4.0% to 7.8%. In the United States, improvements in HDL cholesterol and BP led to the decreased prevalence, whereas increases in dyslipidemia and abdominal obesity contributed to the increasing prevalence in Korea.

- Of 31 participants in the NHLBI Lipid Research Clinics Princeton Prevalence Study and the Princeton Follow-Up Study who had metabolic syndrome at baseline, 21 (68%) had metabolic syndrome 25 years later. After adjustment for age, sex, and race, the baseline status of metabolic syndrome was significantly associated with an increased risk of having metabolic syndrome during adulthood (OR, 6.2; 95% CI, 2.8–13.8).

- In the Bogalusa Heart Study, 4 variables (BMI, homeostasis model assessment of insulin resistance, ratio of triglycerides to HDL cholesterol, and mean arterial pressure) considered to be part of metabolic syndrome clustered together in blacks and whites and in both children and adults; however, the degree of clustering was stronger among adults than among children. As in adults, preclinical cardiovascular abnormalities, such as elevated carotid IMT, are closely associated with metabolic syndrome in children and adolescents.

Adults

(See Charts 11-2 through 11-5.)

The following estimates include many who also have DM, in addition to those with metabolic syndrome without DM:

- Prevalence of metabolic syndrome varies by the definition used, with definitions such as that from the International Diabetes Federation and the harmonized definition suggesting lower thresholds for defining central obesity in European whites, Asians (in particular, South Asians), Middle Easterners, Sub-Saharan Africans, and Hispanics, which results in higher prevalence estimates.

- The phenotypic expression of metabolic syndrome also varies by race/ethnicity and is likely influenced by genetic factors. For example, in population-based US data, nonalcoholic fatty liver disease is present in only 18% of African-Americans with metabolic syndrome but is present in 39% of Hispanics with metabolic syndrome. The phenotypic expression of metabolic syndrome also varies by country and culture, particularly in Europe.

- On the basis of data from NHANES 1999 to 2010, the age-adjusted prevalence of metabolic syndrome in the United States has peaked (in the 2001–2002 cycle) and has begun to fall.

—In the 1999 to 2000 cycle, the age-adjusted prevalence of metabolic syndrome was 25.54%. In 2001 to 2002, the age-adjusted prevalence peaked at 27.37%. In 2009 to 2010, the age-adjusted prevalence was 22.90%.
Among American Indian and Alaska Native people living in the southwestern United States, the prevalence of metabolic syndrome was reported to be 43.2% in men and 47.3% in women; among Alaska Native people, prevalences were 26.5% and 31.2%, respectively.26

The prevalence of metabolic syndrome among pregnant women increased to 26.5% during 1999 to 2004 from 17.8% during 1988 to 1994.27

The prevalence of metabolic syndrome has been noted to be high among select special populations, including those taking atypical antipsychotic drugs, those receiving prior organ transplants, HIV-infected individuals, those previously treated for blood cancers, those with systemic inflammatory disorders such as psoriasis, and individuals in select professions, including law enforcement and firefighters.34

There is a bidirectional relationship between metabolic syndrome and depression. In prospective studies, the presence of depression increases the risk of metabolic syndrome (OR, 1.49; 95% CI, 1.19–1.87), whereas metabolic syndrome increases the risk of depression (OR, 1.52; 95% CI, 1.20–1.91).35

Perhaps most importantly with respect to meeting the 2020 goals, the prevalence of metabolic syndrome increases with greater cumulative life-course exposure to sedentary behavior and physical inactivity; screen time, including television viewing; and intake of sugar-sweetened beverages.36,37 Each of these risk factors is reversible with lifestyle change.

Global Burden of Metabolic Syndrome

(See Chart 11-6.)

Metabolic syndrome is becoming hyperendemic around the world. Recent evidence has described the prevalence of metabolic syndrome in Canada,40 Latin America,41 India,42 and Bangladesh,43 as well as many other countries. On the basis of data from NIPPON DATA, the age-adjusted prevalence of metabolic syndrome in a Japanese population was 19.3%.44 In a partially representative Chinese population, the age-adjusted prevalence of metabolic syndrome in China was 21.3%,45 whereas in northwest China, the prevalence was 15.1%.46

In the INTERHEART case-control study of MI in 26,903 subjects from 52 countries, metabolic syndrome was present in 29.1% of case subjects and just 16.8% of control subjects. The age- and obesity-adjusted prevalence of metabolic syndrome was highest among women (32.1%), South Asians (29.8%), and other Asians (28.7%).47

In a report from BIOSHARE-EU, which harmonizes modern data from 10 different population-based cohorts in 7 European countries, the age-adjusted prevalence of metabolic syndrome in obese subjects ranged from 24% to 65% in women and from 24% to 65% in men. In the obese population, the prevalence of metabolic syndrome far exceeded the prevalence of metabolically healthy obesity, which had a prevalence of 7% to 28% in women and 2% to 19% in men. The prevalence of metabolic syndrome varied considerably by European country in the BIOSHARE-EU consortium.48

In a recent systematic review of 10 Brazilian studies, the weighted mean prevalence of metabolic syndrome in Brazil was 29.6%.49

The metabolic syndrome is highly prevalent in modern indigenous populations, notably in Brazil and Australia. The prevalence of metabolic syndrome was estimated to be...
33.0% in Australian Aborigines and 50.3% in Torres Strait Islanders.50

Risk

Youth

- Few prospective pediatric studies have examined the future risk for CVD or DM according to baseline metabolic syndrome status. Data from 771 participants 6 to 19 years of age from the NHLBI’s Lipid Research Clinics Princeton Prevalence Study and the Princeton Follow-up Study showed that the risk of developing CVD was substantially higher among those with metabolic syndrome than among those without this syndrome (OR, 14.6; 95% CI, 4.8–45.3) who were followed up for 25 years.15
- Another analysis of 814 participants in this cohort showed that those 5 to 19 years of age who had metabolic syndrome at baseline had an increased risk of having DM 25 to 30 years later compared with those who did not have the syndrome at baseline (OR, 11.5; 95% CI, 2.1–63.7).51
- Additional data from the Princeton Follow-Up Study, the Fels Longitudinal Study, and the Muscatine Study suggest that the absence of components of metabolic syndrome in childhood has a high negative predictive value for the development of metabolic syndrome or DM in adulthood.52
- In a study of 6328 subjects from 4 prospective studies, compared with people with normal BMI as children and as adults, those with consistently high adiposity from childhood to adulthood had an increased risk of the following metabolic syndrome components: hypertension (RR, 2.7; 95% CI, 2.2–3.3), low HDL (RR, 2.1; 95% CI, 1.8–2.5), elevated triglycerides (RR, 3.0; 95% CI, 2.4–3.8), type 2 DM (RR, 5.4; 95% CI, 3.4–8.5), and increased carotid IMT (RR, 1.7; 95% CI, 1.4–2.2). Those who were overweight or obese during childhood but were not obese as adults had no increased risk compared with those with consistently normal BMI.53
- In 1757 youths from the Bogalusa Heart Study and the Cardiovascular Risk in Young Finns Study, those with metabolic syndrome in youth and adulthood were at 3.4 times increased risk of high carotid IMT and 12.2 times increased risk of type 2 DM in adulthood as those without metabolic syndrome at either time. Adults whose metabolic syndrome had resolved after their youth were at no increased risk of having high IMT or type 2 DM.54

Adults

- Consistent with 2 earlier meta-analyses, a recent meta-analysis of prospective studies concluded that metabolic syndrome increased the risk of developing CVD (summary RR, 1.78; 95% CI, 1.58–2.00).55 The risk of CVD tended to be higher in women (summary RR, 2.63) than in men (summary RR, 1.98; P=0.09). On the basis of results from 3 studies, metabolic syndrome remained a predictor of cardiovascular events after adjustment for the individual components of the syndrome (summary RR, 1.54; 95% CI, 1.32–1.79). A more recent meta-analysis among 87 studies comprising 951 083 subjects showed an even higher risk of CVD associated with metabolic syndrome (summary RR, 2.35; 95% CI, 2.02–2.73), with significant increased risks (RRs ranging from 1.6 to 2.9) for all-cause mortality, CVD mortality, MI, and stroke, as well as for those with metabolic syndrome without DM.56
- In one of the earlier studies among US adults, mortality follow-up of the second NHANES showed a stepwise increase in risk of CHD, CVD, and total mortality across the spectrum of no disease, metabolic syndrome (without DM), DM, prior CVD, and those with CVD and DM, with an HR for CHD mortality of 2.02 (95% CI, 1.42–2.89) associated with metabolic syndrome. Increased risk was seen with increased numbers of metabolic syndrome risk factors.57
- Estimates of RR for CVD generally increase as the number of components of metabolic syndrome increases.58 Compared with men without an abnormal component in the Framingham Offspring Study, the HRs for CVD were 1.48 (95% CI, 0.69–3.16) for men with 1 or 2 components and 3.99 (95% CI, 1.89–8.41) for men with ≥3 components.59 Among women, the HRs were 3.39 (95% CI, 1.31–8.81) for 1 or 2 components and 5.95 (95% CI, 2.20–16.11) for ≥3 components. Compared with men without a metabolic abnormality in the British Regional Heart Study, the HRs were 1.74 (95% CI, 1.22–2.39) for 1 component, 2.34 (95% CI, 1.65–3.32) for 2 components, 2.88 (95% CI, 2.02–4.11) for 3 components, and 3.44 (95% CI, 2.35–5.03) for 4 or 5 components.59
- The cardiovascular risk associated with metabolic syndrome varies on the basis of the combination of metabolic syndrome components present. Of all possible ways to have 3 metabolic syndrome components, the combination of central obesity, elevated BP, and hyperglycemia conferred the greatest risk for CVD (HR, 2.36; 95% CI, 1.54–3.61) and mortality (HR, 3.09; 95% CI, 1.93–4.94) in the Framingham Offspring Study.60
- Data from the Aerobics Center Longitudinal Study indicate that risk for CVD mortality is increased in men without DM who have metabolic syndrome (HR, 1.8; 95% CI, 1.5–2.0); however, among those with metabolic syndrome, the presence of DM is associated with even greater risk for CVD mortality (HR, 2.1; 95% CI, 1.7–2.6).61 Analysis of data from NCHS was used to determine the number of disease-specific deaths attributable to all nonoptimal levels of each risk factor exposure by age and sex. The results of the analysis of dietary, lifestyle, and metabolic risk factors show that targeting a handful of risk factors has large potential to reduce mortality in the United States.62
- Among stable CAD patients in the COURAGE trial, the presence of metabolic syndrome was associated with an increased risk of death or MI (unadjusted HR, 1.41; 95% CI, 1.15–1.73; P=0.001); however, after adjustment for its individual components, metabolic syndrome was no longer significantly associated with outcome (HR, 1.15; 95% CI, 0.79–1.68; P=0.46).63
- In the INTERHEART case-control study of 26 903 subjects from 52 countries, metabolic syndrome was associated with an increased risk of MI, both according to the WHO (OR, 2.69; 95% CI, 2.45–2.95) and the International Diabetes Federation (OR, 2.20; 95% CI, 2.03–2.38) definitions, with a PAR of 14.5% (95% CI, 12.7%–16.3%) and 16.8% (95% CI, 14.8%–18.8%), respectively, and associations that were similar across all regions and ethnic groups. In
addition, the presence of ≥3 risk factors with subthreshold values was associated with increased risk of MI (OR, 1.50; 95% CI, 1.24–1.81) compared with having “normal” values. Similar results were observed when the International Diabetes Federation definition was used.47

- In the Three-City Study, among 7612 participants aged ≥65 years who were followed up for 5.2 years, metabolic syndrome was associated with increased total CHD (HR, 1.78; 95% CI, 1.39–2.28) and fatal CHD (HR, 2.40; 95% CI, 1.41–4.09); however, metabolic syndrome was not associated with CHD beyond its individual risk components.64

- The United States has a higher prevalence of metabolic syndrome and a higher CVD mortality rate than Japan. It is estimated that 13.3% to 44% of the excess CVD mortality in the Unites States is explained by metabolic syndrome or metabolic syndrome–related existing CVD.44

- In MESA, among 6603 people aged 45 to 84 years (1686 [25%] with metabolic syndrome without DM and 881 [13%] with DM), subclinical atherosclerosis assessed by CAC was more severe in people with metabolic syndrome and DM than in those without these conditions, and the extent of CAC was a strong predictor of CHD and CVD events in these groups.65 Furthermore, the progression of CAC was greater in people with metabolic syndrome and DM than in those without, and progression of CAC predicted future CVD event risk both in those with metabolic syndrome and in those with DM.66,67

- In addition to CVD, metabolic syndrome has been associated with incident AF,68 HF,69 and cognitive decline.70

- Although associated with increased risk, the metabolic syndrome is not designed to be risk predictive tool and should not be compared to dedicated risk prediction tools such as the FRS71 or the new 2013 ACC/AHA ASCVD risk estimator.72

- Metabolic syndrome is associated with increased health-care use and health-care–related costs among individuals with and without DM. Overall, healthcare costs increase by ≈24% for each additional metabolic syndrome component present.73

Risk Factors

- Risk of metabolic syndrome probably begins before birth. The Prediction of Metabolic Syndrome in Adolescence Study showed that the coexistence of low birth weight, small head circumference, and parental history of overweight or obesity places children at the highest risk for metabolic syndrome in adolescence. Other risk factors identified included parental history of DM, gestational hypertension in the mother, and lack of breastfeeding.74

- In prospective or retrospective cohort studies, the following factors have been reported as being directly associated with incident metabolic syndrome, defined by one of the major definitions, in prospective or retrospective cohort studies: muscular strength,75 increased PA or physical fitness,76,77 aerobic training,78 alcohol intake,79,80 fiber intake,81 Mediterranean diet,82 dairy consumption,83 hot tea consumption (but not sugar–sweetened iced tea),84 vitamin D intake,85,86 intake of tree nuts,87,88 avocado intake,89 potassium intake,90,91 ability to interpret nutrition labels,92,93 insulin sensitivity,94,95 ratio of aspartate aminotransferase to alanine transaminase,96 total testosterone,97,98,99 serum 25-hydroxyvitamin D,100 sex hormone–binding globulin,101,102 and Δ5-desaturase activity.103

- In the DESIR cohort, metabolic syndrome was associated with an unfavorable hemodynamic profile, including increased brachial central pulse pressure and increase pulse pressure amplification, compared with similar individuals with isolated hypertension but without metabolic syndrome.104 In MESA, metabolic syndrome was associated with major and minor ECG abnormalities, although this varied by sex.105

- Individuals with metabolic syndrome have a higher degree of endothelial dysfunction than individuals with a similar burden of traditional cardiovascular risk factors.106 Metabolic syndrome is associated with increased thrombosis, including increased resistance to aspirin.107

- In modern imaging studies using echocardiography, magnetic resonance imaging, cardiac CT, and positron emission tomography, metabolic syndrome has been shown to be closely related to increased epicardial adipose tissues,108 increased visceral fat in other locations,109 high-risk coronary plaque features including increased necrotic core,110 impaired coronary flow reserve,111 and LV diastolic dysfunction.112

- In >6 years of follow-up in the ARIC Study, 1970 individuals (25%) developed metabolic syndrome, and compared with the normal-weight group (BMI <25 kg/m²), the ORs of developing metabolic syndrome were 2.81 (95% CI, 2.50–3.17) and 5.24 (95% CI, 4.50–6.12) for the overweight (BMI 25–30 kg/m²) and obese (BMI ≥30 kg/m²) groups, respectively. Compared with the lowest quartile of leisure-time PA, the ORs of developing metabolic syndrome were 0.80 (95% CI, 0.71–0.91) and 0.92 (95% CI, 0.81–1.04) for people in the highest and middle quartiles, respectively.113

References

1. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr. Harmonizing the

Chart 11-1. Secular trend of metabolic syndrome components in the US National Health and Nutrition Examination Survey (NHANES) and the Korean NHANES (KNHANES) cohorts over the past decade. BP indicates blood pressure; HDL, high-density lipoprotein cholesterol; TG, triglycerides; and WC, waist circumference. *Significant difference between NHANES 2003 and 2006 and NHANES III. †Significant difference between NHANES 2004 and 2005 and NHANES II. ‡Significant difference between NHANES 1999 to 2002. §Significant difference between KNHANES 2007 and KNHANES 1998. ¶Significant difference between KNHANES 2007 and KNHANES 2001. Source: Lim et al. 14

Chart 11-3. Age-adjusted prevalence of metabolic syndrome among men by race, National Health and Nutrition Examination Survey (NHANES) 1999 to 2010. Data derived from Beltrán-Sánchez et al.23

Chart 11-4. Age-adjusted prevalence of metabolic syndrome among women by race, National Health and Nutrition Examination Survey (NHANES) 1999 to 2010. Data derived from Beltrán-Sánchez et al.23
Chart 11-5. Prevalence and trends of the 5 components of metabolic syndrome in the adult US population (≥20 years old), 1999 to 2010, by sex (first column), race/ethnicity (second column), and race/ethnicity and sex (third and fourth columns). HDL-C indicates high-density lipoprotein cholesterol; Mex-Am, Mexican American; and Waist circumf., waist circumference. Shaded areas represent 95% confidence intervals. Source: Beltrán-Sánchez et al.23
Chart 11-6. Age-standardized prevalence of metabolic syndrome (MetS) and metabolically healthy obesity (MHO) among obese (body mass index \geq 30 kg/m2) men (A) and women (B) in different cohorts. CHRIS indicates Collaborative Health Research in South Tyrol Study; DILGOM, Dietary, Lifestyle, and Genetics Determinants of Obesity and Metabolic Syndrome; EGCUT, Estonian Genome Center of the University of Tartu; HUNT2, Nord-Trøndelag Health Study; KORA, Cooperative Health Research in the Region of Augsburg; MICROS, Microisolates in South Tyrol Study; NCDS, National Child Development Study; NL, The Netherlands; and PREVEND, Prevention of Renal and Vascular End-Stage Disease. Source: van Vliet-Ostaptchouk et al.48
12. Chronic Kidney Disease

ICD-10 N18.0. See Tables 12-1 through 12-3.

End-Stage Renal Disease

Prevalence, Incidence, and Risk

(See Tables 12-1 and 12-2.)

ESRD is a condition that is most commonly associated with DM or HBP, occurs when the kidneys are functioning at a very low level, and is currently defined as the receipt of chronic renal replacement treatment such as hemodialysis, peritoneal dialysis, or kidney transplantation. The ESRD population is increasing in size and cost as those with CKD transition to ESRD and as a result of changing practice patterns in the United States.

Data from the 2010 annual report of the US Renal Data System showed that in 2008, the prevalence of ESRD was 547,982, with 70% of these prevalent cases being treated with hemodialysis.1

In 2008, 112,476 new cases of ESRD were reported.1

In 2008, 17,413 kidney transplants were performed.1

Data from a large cohort of insured patients showed that in addition to established risk factors for ESRD, lower hemoglobin levels, higher serum uric acid levels, self-reported history of nocturia, and family history of kidney disease are independent risk factors for ESRD.2

Prevalence

The prevalence of ESRD in 2008 varied across different racial/ethnic groups: 57.4 years for blacks, 58.0 years for Native Americans, 59.3 years for Asians, and 60.6 years for whites.1

Treatment of ESRD is more common in men than in women.1

Blacks, Hispanics, Asian Americans, and Native Americans have significantly higher rates of ESRD than do whites/Europeans. Blacks represent nearly 32% of treated patients with ESRD.1

Data from a large insured population revealed that among adults with a GFR >60 mL·min⁻¹·1.73 m⁻² and no evidence of proteinuria or hematuria at baseline, risks for ESRD increased dramatically with higher baseline BP level, and in this same patient population, BP-associated risks were greater in men than in women and in blacks than in whites.3

Compared with white patients with similar levels of kidney function, black patients are much more likely to progress to ESRD and are on average 10 years younger when they reach ESRD.4,5

Results from a large community-based population showed that higher BMI also independently increased the risk of ESRD. The higher risk of ESRD with overweight and obesity was consistent across age, sex, and race and in the presence or absence of DM, hypertension, or known baseline kidney disease.6

Age, Sex, Race, and Ethnicity

The median age of the population with ESRD in 2008 varied across different racial/ethnic groups: 57.4 years for blacks, 58.0 years for Native Americans, 59.3 years for Asians, and 60.6 years for whites.1

Treatment of ESRD is more common in men than in women.1

Blacks, Hispanics, Asian Americans, and Native Americans have significantly higher rates of ESRD than do whites/Europeans. Blacks represent nearly 32% of treated patients with ESRD.1

Chronic Kidney Disease

Prevalence

CKD, defined as reduced GFR, excess urinary protein excretion, or both, is a serious health condition and a worldwide public health problem. The incidence and prevalence of CKD are increasing in the United States and are associated with poor outcomes and a high cost to the US healthcare system. Controversy exists about whether CKD itself independently causes incident CVD, but it is clear that people with CKD, as well as those with ESRD, represent a population at very high risk for CVD events. In fact, individuals with CKD are more likely to die of CVD than to transition to ESRD. The US Renal Data System estimates that by 2020, >700,000 Americans will have ESRD, with >500,000 requiring dialysis and >250,000 receiving a transplant.

The National Kidney Foundation Kidney Disease Outcome Quality Initiative developed guidelines in 2002 that provided a standardized definition for CKD. Prevalence estimates may differ depending on assumptions used in obtaining estimates, including which equation is used to estimate GFR and methods for measuring proteinuria.7

The most recent US prevalence estimates of CKD come from NHANES 1988 to 1994 and 1999 to 2004 (NCHS) in adults ≥20 years of age.8

—The prevalence of CKD in 1999 to 2004 (stages 1 to 5)9 was 13.1%. This represents an increase from the 10.0% prevalence estimate from NHANES 1988 to 1994 (NCHS).

—The prevalence of stage 1 CKD (eGFR ≥90 mL·min⁻¹·1.73 m⁻² with kidney damage, ie, presence of albuminuria) is 1.8%.

Abbreviations Used in Chapter 12

<table>
<thead>
<tr>
<th>ACTION</th>
<th>Acute Coronary Treatment and Intervention Outcomes Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>atrial fibrillation</td>
</tr>
<tr>
<td>AMI</td>
<td>acute myocardial infarction</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CHF</td>
<td>congestive heart failure</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CKD</td>
<td>chronic kidney disease</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>eGFR</td>
<td>estimated glomerular filtration rate</td>
</tr>
<tr>
<td>ESRD</td>
<td>end-stage renal disease</td>
</tr>
<tr>
<td>GFR</td>
<td>glomerular filtration rate</td>
</tr>
<tr>
<td>HBP</td>
<td>high blood pressure</td>
</tr>
<tr>
<td>HF</td>
<td>heart failure</td>
</tr>
<tr>
<td>HR</td>
<td>hazard ratio</td>
</tr>
<tr>
<td>ICD-10</td>
<td>International Classification of Diseases, 10th Revision</td>
</tr>
<tr>
<td>JNC V</td>
<td>fifth report of the Joint National Committee on Prevention,</td>
</tr>
<tr>
<td></td>
<td>Detection, Evaluation, and Treatment of High Blood Pressure</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>NCHS</td>
<td>National Center for Health Statistics</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>PAD</td>
<td>peripheral arterial disease</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
</tbody>
</table>

Click here to go to the Table of Contents
CVD is the leading cause of death among those with ESRD, (See Table 12-3.)

<table>
<thead>
<tr>
<th>Stage of CKD</th>
<th>eGFR (mL·min⁻¹·1.73 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>60–89</td>
</tr>
<tr>
<td>Stage 2</td>
<td>30–59</td>
</tr>
<tr>
<td>Stage 3</td>
<td>15–29</td>
</tr>
<tr>
<td>Stage 4</td>
<td>15–14</td>
</tr>
<tr>
<td>Stage 5</td>
<td>14 or less</td>
</tr>
</tbody>
</table>

- More than 26 million people (13%) in the United States have CKD, and most are undiagnosed. Another 20 million are at increased risk for CKD.

Demographics
- According to current definitions, the prevalence of CKD was higher with older age, as follows:
 - 6.0% for those 20 to 39 years of age
 - 11.6% for those 40 to 59 years of age
 - 38.8% for those ≥60 years of age
- CKD prevalence was greater among those with DM (43.8%) and hypertension (29.4%) than among those without these chronic conditions.
- The prevalence of CKD was slightly higher among Mexican Americans (18.7%) and non-Hispanic blacks (19.9%) than among non-Hispanic whites (16.1%). This disparity was most evident for those with stage 1 CKD; non-Hispanic whites had a CKD prevalence of 4.2% compared with prevalences among Mexican Americans and non-Hispanic blacks of 10.2% and 9.4%, respectively.

Risk Factors
- Many traditional CVD risk factors are also risk factors for CKD, including older age, male sex, hypertension, DM, smoking, and family history of CVD.
- Recent evidence suggests that BMI is associated with worsening CKD.
 - In a cohort of 652 African American individuals with hypertensive nephrosclerosis, BMI was independently associated with urine total protein and albumin excretion.
- In addition, both the degree of CKD (ie, eGFR) and urine albumin are strongly associated with the progression from CKD to ESRD. Furthermore, urine albumin level is associated with progression to CKD across all levels of reduced eGFR.
- Other risk factors include systemic conditions such as autoimmune diseases, systemic infections, and drug exposure, as well as anatomically local conditions such as urinary tract infections, urinary stones, lower urinary tract obstruction, and neoplasia. Even after adjustment for these risk factors, excess CVD risk remains.

ESRD/CKD and CVD
(See Table 12-3.)
- CVD is the leading cause of death among those with ESRD, although the specific cardiovascular cause of death may be more likely to be arrhythmic than an AMI, end-stage HF, or stroke. CVD mortality is 5 to 30 times higher in dialysis patients than in subjects from the general population of the same age, sex, and race.
- Individuals with less severe forms of kidney disease are also at significantly increased CVD risk independent of typical CVD risk factors.
- CKD is a risk factor for recurrent CVD events.
- CKD is also a risk factor for AF.

Studies from a broad range of cohorts demonstrate an association between reduced eGFR and elevated risk of CVD, CVD outcomes, and all-cause death that appears to be largely independent of other known major CVD risk factors.

- Although clinical practice guidelines recommend management of mineral and bone disorders secondary to CKD, a recent meta-analysis suggests that there is no consistent association between calcium and parathyroid hormone and the risk of death or cardiovascular events.
- Any degree of albuminuria, starting below the microalbuminuria cut point, has been shown to be an independent risk factor for cardiovascular events, CHF hospitalization, PAD, and all-cause death in a wide variety of cohorts.
- A recent meta-analysis of 21 published studies of albuminuria involving 105,872 participants (730,577 person-years) from 14 studies with urine albumin/creatinine ratio measurements and 1128,310 participants (4732,110 person-years) from 7 studies with urine dipstick measurements showed that excess albuminuria or proteinuria is independently associated with a higher risk of CVD and all-cause mortality.

- People with both albuminuria/proteinuria and reduced eGFR are at particularly high risk for CVD, CVD outcomes, and death.
- The exact reasons why CKD and ESRD increase the risk of CVD have not been completely delineated but are clearly multifactorial and likely involve pathological alterations in multiple organ systems and pathways.

One potential explanation for the higher CVD event rate in patients with CKD is the low uptake of standard therapies for patients presenting with MI. In a recent analysis from the ACTION registry, patients presenting with CKD had a substantially higher mortality rate. In addition, patients with CKD were less likely to receive standard therapies for the treatment of MI.

Cost: ESRD
- The total annual cost of treating ESRD in the United States was $26.8 billion in 2008, which represents nearly 6% of the total Medicare budget.
- The total annual cost associated with CKD has not been determined accurately to date.

Cystatin C: Kidney Function and CVD
- Serum cystatin C, another marker of kidney function, has been proposed to be a more sensitive indicator of kidney function than serum creatinine and creatinine-based estimating formulas at higher levels of GFR. It is a low-molecular-weight protein produced at a constant rate by all nucleated cells and appears not to be affected significantly across age, sex, and levels of muscle mass. Cystatin C is
excreted by the kidneys, filtered through the glomerulus, and nearly completely reabsorbed by proximal tubular cells. Several equations have been proposed using cystatin C alone and in combination with serum creatinine to estimate kidney function. 37,38

All-Cause Mortality

- Elevated levels of cystatin C have been shown to be associated with increased risk for all-cause mortality in studies from a broad range of cohorts. 39-43
- In addition to GFR and urine albumin-to-creatinine ratio, cystatin C provides incremental information for the prediction of ESRD and mortality.

—In a recent analysis of 26,643 US adults, the addition of cystatin C to the combination of creatinine and albumin-to-creatinine ratio resulted in a significant improvement in the prediction of both all-cause mortality and the development of ESRD. 44

Cardiovascular Disease

- Data from a large national cohort found higher values of cystatin C to be associated with prevalent stroke, angina, and MI, 43 as well as higher BMI. 44
- Elevated cystatin C was an independent risk factor for HF, 45,46 PAD events, 47 clinical atherosclerosis, and subclinical measures of CVD in older adults, 48 as well as for cardiovascular events among those with CHD. 39,49
- In several diverse cohorts, elevated cystatin C has been found to be associated with CVD-related mortality, 41,50,51 including sudden cardiac death. 52
- In a recent clinical trial of 9,270 patients with CKD, the effect of lipid-lowering therapy with simvastatin plus ezetimibe was associated with a lower risk for major atherosclerotic events compared with placebo. 53

References

Table 12-1. BP and the Adjusted Risk of ESRD Among 316,675 Adults Without Evidence of Baseline Kidney Disease

<table>
<thead>
<tr>
<th>JNC V BP Category</th>
<th>Adjusted RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td>1.00 (Reference)</td>
</tr>
<tr>
<td>Normal, not optimal</td>
<td>1.62 (1.27–2.07)</td>
</tr>
<tr>
<td>High normal</td>
<td>1.98 (1.55–2.52)</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
</tr>
<tr>
<td>Stage 1</td>
<td>2.59 (2.07–3.25)</td>
</tr>
<tr>
<td>Stage 2</td>
<td>3.86 (3.00–4.96)</td>
</tr>
<tr>
<td>Stage 3</td>
<td>3.88 (2.82–5.34)</td>
</tr>
<tr>
<td>Stage 4</td>
<td>4.25 (2.63–6.86)</td>
</tr>
</tbody>
</table>

BP indicates blood pressure; CI, confidence interval; ESRD, end-stage renal disease; JNC V, fifth report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; and RR, relative risk.

Table 12-2. Multivariable Association Between BMI and Risk of ESRD Among 320,252 Adults

<table>
<thead>
<tr>
<th>BMI, kg/m²</th>
<th>Adjusted RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5–24.9 (Normal weight)</td>
<td>1.00 (Reference)</td>
</tr>
<tr>
<td>25.0–29.9 (Overweight)</td>
<td>1.87 (1.64–2.14)</td>
</tr>
<tr>
<td>30.0–34.9 (Class I obesity)</td>
<td>3.57 (3.05–4.18)</td>
</tr>
<tr>
<td>35.0–39.9 (Class II obesity)</td>
<td>6.12 (4.97–7.54)</td>
</tr>
<tr>
<td>≥40.0 (Extreme obesity)</td>
<td>7.07 (5.37–9.31)</td>
</tr>
</tbody>
</table>

BMI indicates body mass index; CI, confidence interval; ESRD, end-stage renal disease; and RR, relative risk.

Table 12-3. Adjusted HR for Death of Any Cause, Cardiovascular Events, and Hospitalization Among 1,120,295 Ambulatory Adults, According to eGFR

<table>
<thead>
<tr>
<th>eGFR, mL·min⁻¹·1.73 m⁻²</th>
<th>Death of Any Cause</th>
<th>Any Cardiovascular Event</th>
<th>Any Hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥60†</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>45–59</td>
<td>1.2 (1.1–1.2)</td>
<td>1.4 (1.4–1.5)</td>
<td>1.1 (1.1–1.1)</td>
</tr>
<tr>
<td>30–44</td>
<td>1.8 (1.7–1.9)</td>
<td>2.0 (1.9–2.1)</td>
<td>1.5 (1.5–1.5)</td>
</tr>
<tr>
<td>15–29</td>
<td>3.2 (3.1–3.4)</td>
<td>2.8 (2.6–2.9)</td>
<td>2.1 (2.0–2.2)</td>
</tr>
<tr>
<td><15</td>
<td>5.9 (5.4–6.5)</td>
<td>3.4 (3.1–3.8)</td>
<td>3.1 (3.0–3.3)</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; eGFR, estimated glomerular filtration rate; and HR, hazard ratio.

*The analyses were adjusted for age, sex, income, education, use or nonuse of dialysis, and presence or absence of prior coronary heart disease, prior chronic heart failure, prior ischemic stroke or transient ischemic attack, prior peripheral arterial disease, diabetes mellitus, hypertension, dyslipidemia, a serum albumin level of ≤3.5 g/dL, dementia, cirrhosis or chronic liver disease, chronic lung disease, documented proteinuria, and prior hospitalizations.

†This group served as the reference group.
13. Total Cardiovascular Diseases

ICD-9 390 to 459, 745 to 747, ICD-10 I00 to I99, Q20 to Q28; see Glossary (Chapter 27) for details and definitions.

See Tables 13-1 through 13-3 and Charts 13-1 through 13-21.

Prevalence

(See Table 13-1 and Chart 13-1.)

An estimated 85.6 million American adults (>1 in 3) have ≥1 types of CVD. Of these, 43.7 million are estimated to be ≥60 years of age. Total CVD includes diseases listed in the bullet points below, with the exception of congenital CVD. Because of overlap across conditions, it is not possible to add these conditions to arrive at a total.

- **HBP**—80.0 million (defined as systolic pressure ≥140 mm Hg and/or diastolic pressure ≥90 mm Hg, use of antihypertensive medication, or being told at least twice by a physician or other health professional that one has HBP).
- **CHD**—15.5 million
 - MI (heart attack)—7.6 million
 - AP (chest pain)—8.2 million
 - HF—5.7 million
 - Stroke (all types)—6.6 million
 - Congenital cardiovascular defects—650,000 to 1.3 million

- The following age-adjusted race-ethnicity prevalence estimates from the NHIS, NCHS are for diagnosed conditions for people ≥18 years of age in 2013:
 - Among whites only, 11.1% have HD (Includes CHD, AP, MI, or any other heart condition or disease), 6.1% have CHD (Includes CHD, AP, or MI), 22.8% have hypertension, and 2.5% have had a stroke.
 - Among blacks or African Americans, 10.3% have HD, 6.3% have CHD, 32.6% have hypertension, and 3.6% have had a stroke.
 - Among Hispanics or Latinos, 8.3% have HD, 5.4% have CHD, 21.0% have hypertension, and 1.9% have had a stroke.
 - Among Asians, 6.1% have HD, 3.7% have CHD, 21.0% have hypertension, and 1.9% have had a stroke.
 - Among American Indians or Alaska Natives, 8.2% have HD and 26.2% have hypertension. The statistics for CHD and stroke for this group are not shown because of unreliability.*

- Asian Indian adults (9%) are ≈2-fold more likely than Korean adults (4%) to have ever been told they have HD, based on data for 2004 to 2006.

- By 2030, 43.9% of the US population is projected to have some form of CVD (unpublished AHA tabulation, based on methodology described by Heidenreich et al).

Incidence

(See Chart 13-2.)

- On the basis of the NHLBI’s FHS original and offspring cohort data from 1980 to 2003:
 - The average annual rate of first cardiovascular events rises from 3 per 1000 men at 35 to 44 years of age to 74 per 1000 men at 85 to 94 years of age. For women, comparable rates occur 10 years later in life. The age gap narrows with advancing age.
 - Before 75 years of age, a higher proportion of CVD events attributable to CHD occur in men than in women, and a higher proportion of events attributable to stroke occur in women than in men.

*Statistics 12.5% and 10.3% are statistically unreliable (relative SE >30% and <50%). The statistic not shown has a relative SE >50%.
Among American Indian men 45 to 74 years of age in the SHS, the incidence of CVD ranges from 20 to 28 per 1000 population. Among women, it ranges from 9 to 15 per 1000.4

Data from the FHS indicate that the subsequent lifetime risk for all CVD in recipients starting free of known disease is almost 2 in 3 for men and >1 in 2 for women at 45 years of age.5

Analysis of FHS data among participants free of CVD at 50 years of age showed the lifetime risk for developing CVD was 51.7% for men and 39.2% for women. Median overall survival was 30 years for men and 36 years for women.6

Mortality

(See Tables 13-1 through 13-3 and Charts 13-3 through 13-18.)

ICD-10 I00 to I99, Q20 to Q28 for CVD; C00 to C97 for cancer; C33 to C34 for lung cancer; C50 for breast cancer; J40 to J47 for CLRD; G30 for Alzheimer disease; E10 to E14 for DM; and V01 to X59 and Y85 to Y86 for accidents.

● In every year since 1900 except 1918, CVD accounted for more deaths than any other major cause of death in the United States.7,8
● Based on 2011 mortality data8

—CVD as the listed underlying cause of death accounted for 31.5% (786,641) of all 2,515,458 deaths, or =1 of every 3 deaths in the United States. CVD any-mentions (1,361,165 deaths in 2011) constituted 54.1% of all deaths that year (NHLBI; NCHS public use data files).
—On average, >2150 Americans die of CVD each day, an average of 1 death every 40 seconds.
—CVD currently claims more lives each year than cancer and CLRD combined.
—The death rate attributable to CVD was 229.6 per 100,000.
—The death rates were 275.7 for males and 192.3 for females. The rates were 271.9 for white males, 352.4 for black males, 188.1 for white females, and 248.6 for black females.
—From 2001 to 2011, death rates attributable to CVD declined 30.8%. In the same 10-year period, the actual number of CVD deaths per year declined by 15.5% (NHLBI tabulation).
—Among other causes of death, cancer caused 576,691 deaths; CLRD, 142,943; accidents, 126,438; and Alzheimer disease, 84,974.
—The leading causes of death in women ≥65 years of age were diseases of the heart (No. 1), cancer (No. 2), stroke (No. 3), and CLRD (No. 4). In older men, they were diseases of the heart (No. 1), cancer (No. 2), CLRD (No. 3), and stroke (No. 4).9
—CVD (including congenital cardiovascular defects) caused =1 death per minute among females, or 398,035 deaths. That represents approximately the same number of female lives as were claimed by cancer, CLRD, and DM combined (unpublished NHLBI tabulation). There were 409,931 deaths attributable to breast cancer in females; lung cancer claimed 70,243 females. Death rates for females were 21.6 for breast cancer and 37.1 for lung cancer. One in 30.8 deaths of females was attributable to breast cancer, whereas 1 in 7.5 was attributable to CHD. For comparison, 1 in 4.6 females died of cancer, whereas 1 in 3.2 died of CVD.

—Approximately 155,000 Americans who were <65 years of age died of CVD, and 34% of deaths attributed to CVD occurred before the age of 75 years, which is well below the average life expectancy of 78.7 years.

● If all forms of major CVD were eliminated, life expectancy could rise by almost 7 years. If all forms of cancer were eliminated, the estimated gain could be 3 years. According to the same study, the probability at birth of eventually dying of major CVD (ICD-10 I00–I17) is 47%, and the chance of dying of cancer is 22%. Additional probabilities are 3% for accidents, 2% for DM (unrelated to CVD), and 0.7% for HIV.10
● A study of the decrease in US deaths attributable to CHD from 1980 to 2000 suggests that ≈47% of the decrease was attributable to increased use of evidence-based medical therapies for secondary prevention and 44% to changes in risk factors in the population attributable to lifestyle and environmental changes.7
● Analysis of data from NCHS was used to determine the number of disease-specific deaths attributable to all non-optional levels of each risk factor exposure, by age and sex. In 2005, tobacco smoking and HBP were estimated to be responsible for 467,000 deaths, accounting for ≈1 in 5 or 6 deaths among US adults. Overweight/obesity and physical inactivity were each estimated to be responsible for nearly 1 in 10 deaths. High dietary salt, low dietary omega-3 fatty acids, and high dietary trans fatty acids were the dietary risks with the largest estimated excess mortality effects.10

Aftermath

● Among the estimated 45 million people with functional disabilities in the United States, HD, stroke, and hypertension are among the 15 leading conditions that caused those disabilities. Disabilities were defined as difficulty with activities of daily living or instrumental activities of daily living, specific functional limitations (except vision, hearing, or speech), and limitation in ability to do housework or work at a job or business.11

Awareness of Warning Signs and Risk Factors for CVD

● Surveys conducted every 3 years since 1997 by the AHA to evaluate trends in women’s awareness, knowledge, and perceptions related to CVD found most recently (in 2012) that awareness of HD as the leading cause of death among women was 56%, 30% higher than in 1997 (P<0.001). Awareness among black and Hispanic women in 2012 was similar to that of white women in 1997; however, awareness rates in 2012 among black and Hispanic women remained well below that of white women. Awareness of heart attack signs remained low for all racial/ethnic and age groups surveyed during the same time.12

Disparities in CVD Risk Factors

(See Chart 13-19.)

● Analysis of several data sets by the CDC showed that in adults ≥18 years of age, disparities were common in all
risk factors examined. In men, the highest prevalence of obesity (29.7%) was found in Mexican Americans who had completed a high school education. Black women with or without a high school education had a high prevalence of obesity (48.4%). Hypertension prevalence was high among blacks (41.2%) regardless of sex or educational status. Hypercholesterolemia was high among white and Mexican American men and white women regardless of educational status. CHD and stroke were inversely related to education, income, and poverty status. Hospitalization for total HD and AMI was greater among men, but hospitalization for CHF and stroke was greater among women. Among Medicare enrollees, CHF hospitalization was higher among blacks, Hispanics, and American Indian/Alaska Natives than among whites, and stroke hospitalization was highest among blacks. Hospitalizations for CHF and stroke were highest in the southeastern United States. Life expectancy remains higher in women than in men and in whites than in blacks by ≈5 years. CVD mortality at all ages tended to be highest in blacks.13

—Analysis of >14,000 middle-aged subjects in the ARIC study sponsored by the NHLBI showed that >90% of CVD events in black subjects, compared with ≈70% in white subjects, appeared to be explained by elevated or borderline risk factors. Furthermore, the prevalence of participants with elevated risk factors was higher in black subjects; after accounting for education and known CVD risk factors, the incidence of CVD was identical in black and white subjects. Although organizational and social barriers to primary prevention do exist, the primary prevention of elevated or borderline risk factors might substantially impact the future incidence of CVD, and these beneficial effects would likely be applicable not only for white but also for black subjects.14

—Data from the MEPS 2004 Full-Year Data File showed that nearly 26 million US adults ≥18 years of age were told by a doctor that they had HD, stroke, or any other heart-related disease15:

—Among those told that they had HD, 33.9% had a healthy weight compared with 39.3% who had never been told they had HD.

—Among those ever told that they had indicators of HD, 18.3% continued to smoke.

—More than 93% engaged in at least 1 recommended behavior for prevention of HD (not smoking, engaging in physical exercise regularly, and maintaining healthy weight): 75.5% engaged in 1 or 2; 18% engaged in all 3; and 6.5% did not engage in any of the recommended behaviors.

—Age-based variations:

 o Moderate to vigorous PA ≥3 times per week varied according to age. Younger people (18–44 years of age) were more likely (59.9%) than those who were older (45–64 and ≥65 years of age, 55.3% and 48.5%, respectively) to engage in regular PA.

 o A greater percentage of those 18 to 44 years of age had a healthy weight (43.7%) than did those 45 to 64 years of age and ≥65 years of age (31.4% and 37.3%, respectively).

 o People ≥65 years of age were more likely to be nonsmokers (89.7%) than were people 18 to 44 years of age and 45 to 64 years of age (76.1% and 77.7%, respectively).

—Race/ethnicity-based variations:

 o Non-Hispanic whites were more likely than Hispanics or non-Hispanic blacks to engage in moderate to vigorous PA (58.5% versus 51.4% and 52.5%, respectively).

 o Non-Hispanic whites were more likely to have maintained a healthy weight than were Hispanics or non-Hispanic blacks (39.8% versus 32.1% and 29.7%, respectively).

 o Hispanics were more likely to be nonsmokers (84.2%) than were non-Hispanic whites and non-Hispanic blacks (77.8% and 76.3%, respectively).

—Sex-based variations:

 o Men were more likely to have engaged in moderate to vigorous PA ≥3 times per week than women (60.3% versus 53.1%, respectively).

 o Women were more likely than men to have maintained a healthy weight (45.1% versus 31.7%, respectively).

 o 81.7% of women did not currently smoke, compared with 75.7% of men.

—Variations based on education level:

 o A greater percentage of adults with at least some college education engaged in moderate to vigorous PA ≥3 times per week (60.8%) than did those with a high school education or less than a high school education (55.3% and 48.3%, respectively).

 o A greater percentage of adults with at least some college education had a healthy weight (41.2%) than did those with a high school or less than high school education (36.2% and 36.1%, respectively).

 o There was a greater percentage of nonsmokers among those with a college education (85.5%) than among those with a high school or less than high school education (73.8% and 69.9%, respectively).

—A study of nearly 1500 participants in MESA found that Hispanics with hypertension, hypercholesterolemia, or DM who spoke Spanish at home (as a proxy of lower levels of acculturation) or who had spent less than half a year in the United States had higher SBP, LDL cholesterol, and fasting blood glucose, respectively, than Hispanics who were preferential English speakers and who had lived a longer period of time in the United States.16

—Recent findings from >15,000 Hispanics of diverse background demonstrated that a sizeable proportion of both men and women had major CVD risk factors, with higher prevalence among Puerto Rican subgroups and those with lower socioeconomic status and a higher level of acculturation.17

Family History of CVD

(See Chapter 7 for more detailed information.)

—A family history of CVD increases risk of CVD, with the largest increase in risk if the family member’s CVD was premature.18
There is consistent evidence from multiple large-scale prospective epidemiology studies for a strong and significant association of a reported family history of premature parental CHD with incident MI or CHD in offspring. In the FHS, the occurrence of a validated premature ASCVD event in either a parent or a sibling was associated with an 2-fold elevated risk for CVD, independent of other traditional risk factors. Addition of a family history of premature CVD to a model that contained traditional risk factors provided improved prognostic value in the FHS.

Parental history of premature CHD is associated with increased burden of subclinical atherosclerosis in the coronary arteries and the abdominal aorta. In the FHS, a parental history of validated HF was associated with a 1.7-fold higher risk of HF in offspring, after multivariable adjustment.

Despite the importance of family history, several barriers impede first-degree relatives of people with CVD from engaging in risk-reducing behaviors, such as few being aware of the specific health information from relatives necessary to develop a family history; in addition, there is an inappropriate risk perception or an underestimation of one’s own sense of vulnerability.

Impact of Healthy Lifestyle and Low Risk Factor Levels

(See Chapter 2 for more detailed statistics regarding healthy lifestyles and low risk factor levels.)

A number of studies suggest that prevention of risk factor development at younger ages may be the key to “successful aging,” and they highlight the need for evaluation of the potential benefits of intensive prevention efforts at younger and middle ages once risk factors develop to increase the likelihood of healthy longevity.

Approximately 80% of CVDs can be prevented through not smoking, eating a healthy diet, engaging in PA, maintaining a healthy weight, and controlling HBP, DM, and elevated lipid levels.

Data from the Cardiovascular Lifetime Risk Pooling Project, which involved 18 cohort studies and combined data on 257,384 black men and women and white men and women, indicate that at 45 years of age, participants with optimal risk factor profiles had a substantially lower lifetime risk of CVD events than those with 1 major risk factor (1.4% versus 39.6% among men; 4.1% versus 20.2% among women). Having ≥2 major risk factors further increased lifetime risk to 49.5% in men and 30.7% in women.

In another study, FHS investigators followed up 2531 men and women who were examined between the ages of 40 and 50 years and observed their overall rates of survival and survival free of CVD to 85 years of age and beyond. Low levels of the major risk factors in middle age were associated with overall survival and morbidity-free survival to ≥85 years of age.

Data from the Chicago Heart Association Detection Project (1967–1973, with an average follow-up of 31 years) showed the following:

—In younger women (18–39 years of age) with favorable levels for all 5 major risk factors (BP, serum cholesterol, BMI, DM, and smoking), future incidence of CHD and CVD is rare, and long-term and all-cause mortality are much lower than for those who have unfavorable or elevated risk factor levels at young ages. Similar findings applied to men in this study.

—Participants (18–64 years of age at baseline) without a history of MI were investigated to determine whether traditional CVD risk factors were similarly associated with CVD mortality in black and white men and women. In general, the magnitude and direction of associations were similar by race. Most traditional risk factors demonstrated similar associations with mortality in black and white adults of the same sex. Small differences were primarily in the strength and not the direction of the association.

However, data from NHANES 1999 to 2002 showed that only approximately one third of adults complied with 26 of the recommended heart-healthy behaviors. Dietary recommendations in general and daily fruit intake recommendations in particular were least likely to be followed.

Seventeen-year mortality data from the NHANES II Mortality Follow-Up Study indicated that the RR for fatal CVD was 51% lower for men and 71% lower for women with none of the 3 major risk factors (hypertension, current smoking, and elevated total cholesterol [≥240 mg/dL]) than for those with ≥1 risk factor. Had all 3 major risk factors not occurred, it is hypothesized that 64% of all CHD deaths among women and 45% of CHD deaths in men could have been avoided.

Hospital Discharges, Ambulatory Care Visits, Home Health Care Patients, Nursing Home Residents, and Hospice Care Discharges

(See Table 13-1 and Charts 13-20 and 13-21.)

From 2000 to 2010, the number of inpatient discharges from short-stay hospitals with CVD as the first-listed diagnosis decreased from 6,294,000 to 5,802,000 (NHDS, NCHS, and NHLBI). In 2010, CVD ranked highest among all disease categories in hospital discharges (NHDS, NCHS, and NHLBI).

In 2010, there were 75,432,000 physician office visits with a primary diagnosis of CVD (NCHS, NAMCS, NHLBI tabulation). In 2010, there were 46,400,000 ED visits and 7,829,000 hospital outpatient department visits with a primary diagnosis of CVD (NAMCS, NHLBI tabulation).

Among the 1,459,000 home healthcare patients each day in 2007, CVD was the leading primary diagnosis; almost one fifth of home healthcare patients had a primary diagnosis of CVD at admission into home health care (18.3% or 267,300 residents) or at the time of interview (18.9% or 275,700 residents) (NCHS, NHHCs). The majority (62.9% or 918,900 patients) of home healthcare patients each day in 2007 had any diagnosis of CVD at the time of interview.

Among the 1,045,100 patients discharged from hospice in 2007, CVD was the primary diagnosis for 15.8% (or 165,100 discharges) at admission and 15.9% (or 165,700 discharges) at discharge. Half (50% or 523,000) of all hospice discharges had any diagnosis of CVD at the time of discharge.
Operations and Procedures
(See Chapter 24 for detailed information.)

- In 2010, an estimated 7588,000 inpatient cardiovascular operations and procedures were performed in the United States; 4.4 million were performed on males, and 3.2 million were performed on females (NHLBI tabulation of NHDS, NCHS).

Cost
(See Chapter 25 for detailed information.)

- The estimated direct and indirect cost of CVD for 2011 is $320.1 billion (NHLBI tabulation).
- By 2030, (2012$) total direct medical costs of CVD are projected to increase to $819 billion (unpublished AHA tabulation based on methodology described by Heidenreich et al). [1]

Global Burden of CVD
(See Table 13-3.)

- CVD is the leading global cause of death, accounting for 17.3 million deaths per year, a number that is expected to grow to >23.6 million by 2030. [32]
- In 2008, CVD deaths represented 30% of all global deaths. [32]
- Eighty percent of CVD deaths take place in low- and middle-income countries and occur almost equally in men and women. [32]
- In May 2012, during the World Health Assembly, Ministers of Health agreed to adopt a global target to reduce premature (age 30–70 years) noncommunicable disease mortality 25% by 2025. [33]
- Targets for 6 risk factors (tobacco and alcohol use, salt intake, obesity, and raised BP and glucose) were also agreed on to address this goal. It is projected that if the targets are met, premature death attributable to CVDs in 2025 will be reduced by 34%, with 11.4 million and 15.9 million deaths delayed or prevented in those aged 30 to 69 years and ≥70 years, respectively. [34]
- In 2010, the estimated global cost of CVD was $863 billion, and this cost is estimated to rise to $1044 billion by 2030. [35]

References

Table 13-1. Cardiovascular Diseases

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes</td>
<td>85600000 (35.0%)</td>
<td>786641</td>
<td>5802000</td>
<td>$320.1 Billion</td>
</tr>
<tr>
<td>Males</td>
<td>41800000 (36.4%)</td>
<td>386606 (49.4%)†</td>
<td>3021000</td>
<td>...</td>
</tr>
<tr>
<td>Females</td>
<td>43800000 (33.7%)</td>
<td>398035 (50.6%)†</td>
<td>2781000</td>
<td>...</td>
</tr>
<tr>
<td>NH white males</td>
<td>36.1%</td>
<td>331751</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NH black males</td>
<td>46.0%</td>
<td>46081</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NH black females</td>
<td>48.3%</td>
<td>47130</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic males</td>
<td>32.4%</td>
<td>*</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic females</td>
<td>32.5%</td>
<td>*</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Asian or Pacific Islander</td>
<td>...</td>
<td>17050†</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>...</td>
<td>3826</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Ellipses (…) indicate data not available; and NH, non-Hispanic.

*Mortality data for the white, black, Asian or Pacific Islander, and American Indian or Alaska Native populations include deaths among people of Hispanic and non-Hispanic origin. Numbers of deaths for the American Indian or Alaska Native and Asian or Pacific Islander populations are known to be underestimated. Death rates for Hispanic, American Indian or Alaska Native, and Asian and Pacific Islander people should be interpreted with caution because of inconsistencies in reporting Hispanic origin or race on the death certificate compared with censuses, surveys, and birth certificates. Studies have shown underreporting on death certificates of American Indian or Alaska Native, Asian and Pacific Islander, and Hispanic decedents, as well as undercounts of these groups in censuses.

†These percentages represent the portion of total cardiovascular disease mortality that is attributable to males vs females.

‡Includes Chinese, Filipino, Hawaiian, Japanese, and other Asian or Pacific Islander.

Sources: Prevalence: National Health and Nutrition Examination Survey 2009 to 2012, National Center for Health Statistics (NCHS) and National Heart, Lung, and Blood Institute (NHLBI). Percentages for racial/ethnic groups are age adjusted for Americans ≥20 years of age. Age-specific percentages are extrapolated to the 2012 US population estimates. Mortality: Centers for Disease Control and Prevention/NCHS, 2011 Mortality Multiple Cause-of-Death—United States. These data represent underlying cause of death only for International Classification of Diseases, 10th Revision codes I00 to I99 (diseases of the circulatory system) and Q20 to Q28 (congenital malformations of the circulatory system). Hospital discharges: National Hospital Discharge Survey, NCHS. Data include those inpatients discharged alive, dead, or of unknown status. Cost: NHLBI. Data include estimated direct and indirect costs for 2011.
Table 13-2. Age-Adjusted Death Rates per 100,000 Population for CVD, CHD, and Stroke by State, 2009–2011

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>26</td>
<td>306.7</td>
<td>−20.9</td>
<td>26</td>
<td>107.4</td>
<td>−32.1</td>
<td>51</td>
<td>51.5</td>
<td>−26.2</td>
</tr>
<tr>
<td>Alaska</td>
<td>8</td>
<td>208.6</td>
<td>−23.4</td>
<td>8</td>
<td>85.8</td>
<td>−30.4</td>
<td>31</td>
<td>40.6</td>
<td>−32.1</td>
</tr>
<tr>
<td>Arizona</td>
<td>28</td>
<td>199.6</td>
<td>−28.8</td>
<td>28</td>
<td>108.5</td>
<td>−31.1</td>
<td>5</td>
<td>31.4</td>
<td>−37.9</td>
</tr>
<tr>
<td>Arkansas</td>
<td>48</td>
<td>289.8</td>
<td>−24.0</td>
<td>48</td>
<td>143.6</td>
<td>−24.1</td>
<td>52</td>
<td>52.4</td>
<td>−31.5</td>
</tr>
<tr>
<td>California</td>
<td>30</td>
<td>218.7</td>
<td>−31.4</td>
<td>30</td>
<td>110.5</td>
<td>−39.5</td>
<td>20</td>
<td>37.6</td>
<td>−39.2</td>
</tr>
<tr>
<td>Colorado</td>
<td>4</td>
<td>184.2</td>
<td>−32.3</td>
<td>4</td>
<td>78.0</td>
<td>−36.5</td>
<td>12</td>
<td>35.3</td>
<td>−37.3</td>
</tr>
<tr>
<td>Connecticut</td>
<td>35</td>
<td>200.8</td>
<td>−31.3</td>
<td>35</td>
<td>89.5</td>
<td>−41.8</td>
<td>2</td>
<td>30.0</td>
<td>−38.9</td>
</tr>
<tr>
<td>Delaware</td>
<td>30</td>
<td>232.5</td>
<td>−28.9</td>
<td>35</td>
<td>117.1</td>
<td>−38.0</td>
<td>34</td>
<td>41.3</td>
<td>−22.1</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>44</td>
<td>265.2</td>
<td>−29.5</td>
<td>49</td>
<td>147.4</td>
<td>−30.1</td>
<td>10</td>
<td>33.8</td>
<td>−28.2</td>
</tr>
<tr>
<td>Florida</td>
<td>29</td>
<td>207.8</td>
<td>−31.3</td>
<td>29</td>
<td>109.3</td>
<td>−39.7</td>
<td>7</td>
<td>32.5</td>
<td>−32.6</td>
</tr>
<tr>
<td>Georgia</td>
<td>10</td>
<td>257.4</td>
<td>−30.5</td>
<td>10</td>
<td>89.0</td>
<td>−43.2</td>
<td>44</td>
<td>45.3</td>
<td>−35.1</td>
</tr>
<tr>
<td>Hawaii</td>
<td>3</td>
<td>189.0</td>
<td>−29.5</td>
<td>3</td>
<td>72.7</td>
<td>−32.9</td>
<td>18</td>
<td>37.4</td>
<td>−39.1</td>
</tr>
<tr>
<td>Idaho</td>
<td>14</td>
<td>213.7</td>
<td>−26.5</td>
<td>14</td>
<td>93.6</td>
<td>−33.9</td>
<td>33</td>
<td>40.8</td>
<td>−34.6</td>
</tr>
<tr>
<td>Illinois</td>
<td>31</td>
<td>236.2</td>
<td>−30.0</td>
<td>31</td>
<td>110.8</td>
<td>−39.3</td>
<td>24</td>
<td>38.9</td>
<td>−34.7</td>
</tr>
<tr>
<td>Indiana</td>
<td>41</td>
<td>254.6</td>
<td>−27.5</td>
<td>33</td>
<td>116.6</td>
<td>−34.5</td>
<td>41</td>
<td>44.2</td>
<td>−32.6</td>
</tr>
<tr>
<td>Iowa</td>
<td>13</td>
<td>228.8</td>
<td>−25.9</td>
<td>43</td>
<td>125.7</td>
<td>−29.9</td>
<td>22</td>
<td>38.0</td>
<td>−35.2</td>
</tr>
<tr>
<td>Kansas</td>
<td>27</td>
<td>225.4</td>
<td>−28.6</td>
<td>15</td>
<td>95.0</td>
<td>−36.2</td>
<td>35</td>
<td>41.3</td>
<td>−31.8</td>
</tr>
<tr>
<td>Kentucky</td>
<td>45</td>
<td>274.5</td>
<td>−28.6</td>
<td>44</td>
<td>126.2</td>
<td>−34.5</td>
<td>43</td>
<td>45.1</td>
<td>−31.6</td>
</tr>
<tr>
<td>Louisiana</td>
<td>48</td>
<td>288.0</td>
<td>−22.0</td>
<td>39</td>
<td>121.9</td>
<td>−32.3</td>
<td>45</td>
<td>46.0</td>
<td>−28.5</td>
</tr>
<tr>
<td>Maine</td>
<td>13</td>
<td>202.3</td>
<td>−32.4</td>
<td>13</td>
<td>92.3</td>
<td>−40.9</td>
<td>16</td>
<td>36.1</td>
<td>−35.0</td>
</tr>
<tr>
<td>Maryland</td>
<td>31</td>
<td>235.7</td>
<td>−29.5</td>
<td>38</td>
<td>120.1</td>
<td>−35.2</td>
<td>23</td>
<td>38.7</td>
<td>−35.8</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>6</td>
<td>195.9</td>
<td>−30.8</td>
<td>12</td>
<td>92.0</td>
<td>−35.0</td>
<td>4</td>
<td>31.3</td>
<td>−37.4</td>
</tr>
<tr>
<td>Michigan</td>
<td>42</td>
<td>261.2</td>
<td>−27.9</td>
<td>46</td>
<td>135.6</td>
<td>−33.6</td>
<td>27</td>
<td>39.3</td>
<td>−34.3</td>
</tr>
<tr>
<td>Minnesota</td>
<td>1</td>
<td>170.7</td>
<td>−31.4</td>
<td>1</td>
<td>67.5</td>
<td>−40.4</td>
<td>11</td>
<td>35.1</td>
<td>−34.4</td>
</tr>
<tr>
<td>Mississippi</td>
<td>52</td>
<td>323.3</td>
<td>−25.2</td>
<td>41</td>
<td>124.3</td>
<td>−38.2</td>
<td>50</td>
<td>50.2</td>
<td>−30.4</td>
</tr>
<tr>
<td>Missouri</td>
<td>43</td>
<td>262.2</td>
<td>−27.9</td>
<td>45</td>
<td>133.2</td>
<td>−31.9</td>
<td>40</td>
<td>44.1</td>
<td>−30.4</td>
</tr>
<tr>
<td>Montana</td>
<td>17</td>
<td>208.6</td>
<td>−25.6</td>
<td>9</td>
<td>87.7</td>
<td>−27.0</td>
<td>29</td>
<td>39.7</td>
<td>−34.4</td>
</tr>
<tr>
<td>Nebraska</td>
<td>18</td>
<td>208.7</td>
<td>−29.2</td>
<td>7</td>
<td>82.8</td>
<td>−35.0</td>
<td>26</td>
<td>39.1</td>
<td>−30.4</td>
</tr>
<tr>
<td>Nevada</td>
<td>37</td>
<td>249.7</td>
<td>−25.4</td>
<td>21</td>
<td>100.6</td>
<td>−34.0</td>
<td>13</td>
<td>35.4</td>
<td>−37.3</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>9</td>
<td>199.9</td>
<td>−35.1</td>
<td>16</td>
<td>95.1</td>
<td>−47.0</td>
<td>9</td>
<td>33.3</td>
<td>−37.8</td>
</tr>
<tr>
<td>New Jersey</td>
<td>28</td>
<td>227.0</td>
<td>−29.9</td>
<td>36</td>
<td>117.1</td>
<td>−38.6</td>
<td>8</td>
<td>32.9</td>
<td>−28.5</td>
</tr>
<tr>
<td>New Mexico</td>
<td>12</td>
<td>201.2</td>
<td>−24.9</td>
<td>22</td>
<td>102.3</td>
<td>−30.3</td>
<td>14</td>
<td>35.6</td>
<td>−25.2</td>
</tr>
<tr>
<td>New York</td>
<td>36</td>
<td>246.8</td>
<td>−28.5</td>
<td>50</td>
<td>149.5</td>
<td>−35.4</td>
<td>1</td>
<td>27.5</td>
<td>−29.8</td>
</tr>
<tr>
<td>North Carolina</td>
<td>33</td>
<td>236.5</td>
<td>−31.8</td>
<td>27</td>
<td>107.4</td>
<td>−38.6</td>
<td>42</td>
<td>45.0</td>
<td>−38.4</td>
</tr>
<tr>
<td>North Dakota</td>
<td>19</td>
<td>210.7</td>
<td>−27.5</td>
<td>25</td>
<td>106.8</td>
<td>−33.7</td>
<td>28</td>
<td>39.4</td>
<td>−31.2</td>
</tr>
<tr>
<td>Ohio</td>
<td>38</td>
<td>252.4</td>
<td>−29.0</td>
<td>40</td>
<td>123.1</td>
<td>−36.7</td>
<td>37</td>
<td>41.9</td>
<td>−30.1</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>50</td>
<td>299.1</td>
<td>−26.1</td>
<td>52</td>
<td>150.9</td>
<td>−33.9</td>
<td>49</td>
<td>48.6</td>
<td>−28.3</td>
</tr>
<tr>
<td>Oregon</td>
<td>7</td>
<td>198.4</td>
<td>−31.9</td>
<td>6</td>
<td>79.2</td>
<td>−39.3</td>
<td>36</td>
<td>41.7</td>
<td>−41.1</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>35</td>
<td>244.2</td>
<td>−28.2</td>
<td>34</td>
<td>116.9</td>
<td>−36.3</td>
<td>30</td>
<td>39.9</td>
<td>−30.0</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>5</td>
<td>179.6</td>
<td>−27.5</td>
<td>5</td>
<td>80.5</td>
<td>−35.5</td>
<td>15</td>
<td>35.9</td>
<td>−25.8</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>20</td>
<td>212.9</td>
<td>−31.9</td>
<td>42</td>
<td>125.4</td>
<td>−39.8</td>
<td>3</td>
<td>30.7</td>
<td>−34.4</td>
</tr>
<tr>
<td>South Carolina</td>
<td>39</td>
<td>253.8</td>
<td>−28.7</td>
<td>24</td>
<td>106.0</td>
<td>−36.6</td>
<td>48</td>
<td>48.4</td>
<td>−37.4</td>
</tr>
<tr>
<td>South Dakota</td>
<td>24</td>
<td>218.6</td>
<td>−26.4</td>
<td>37</td>
<td>119.4</td>
<td>−24.9</td>
<td>32</td>
<td>40.7</td>
<td>−27.8</td>
</tr>
<tr>
<td>Tennessee</td>
<td>46</td>
<td>280.0</td>
<td>−27.9</td>
<td>51</td>
<td>150.2</td>
<td>−31.0</td>
<td>47</td>
<td>48.3</td>
<td>−35.1</td>
</tr>
</tbody>
</table>

(Continued)
Table 13-2. Continued

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas</td>
<td>34</td>
<td>238.7</td>
<td>−31.2</td>
<td>32</td>
<td>111.2</td>
<td>−40.7</td>
<td>39</td>
<td>43.8</td>
<td>−32.6</td>
</tr>
<tr>
<td>Utah</td>
<td>5</td>
<td>194.8</td>
<td>−28.0</td>
<td>2</td>
<td>71.4</td>
<td>−33.8</td>
<td>19</td>
<td>37.5</td>
<td>−37.9</td>
</tr>
<tr>
<td>Vermont</td>
<td>10</td>
<td>200.1</td>
<td>−32.5</td>
<td>23</td>
<td>103.0</td>
<td>−35.9</td>
<td>6</td>
<td>31.5</td>
<td>−40.1</td>
</tr>
<tr>
<td>Virginia</td>
<td>26</td>
<td>225.4</td>
<td>−30.3</td>
<td>18</td>
<td>95.7</td>
<td>−37.3</td>
<td>38</td>
<td>42.1</td>
<td>−35.5</td>
</tr>
<tr>
<td>Washington</td>
<td>14</td>
<td>203.6</td>
<td>−30.6</td>
<td>19</td>
<td>99.8</td>
<td>−34.6</td>
<td>17</td>
<td>37.1</td>
<td>−45.3</td>
</tr>
<tr>
<td>West Virginia</td>
<td>47</td>
<td>282.4</td>
<td>−27.0</td>
<td>47</td>
<td>136.8</td>
<td>−35.1</td>
<td>46</td>
<td>46.4</td>
<td>−22.9</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>22</td>
<td>217.6</td>
<td>−29.7</td>
<td>20</td>
<td>100.2</td>
<td>−35.8</td>
<td>21</td>
<td>37.9</td>
<td>−37.9</td>
</tr>
<tr>
<td>Wyoming</td>
<td>23</td>
<td>217.9</td>
<td>−24.8</td>
<td>17</td>
<td>95.6</td>
<td>−31.5</td>
<td>25</td>
<td>39.0</td>
<td>−30.2</td>
</tr>
<tr>
<td>Total United States</td>
<td>234.5</td>
<td>−29.4</td>
<td>113.4</td>
<td>−36.9</td>
<td>38.9</td>
<td>−33.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHD indicates coronary heart disease; and CVD, cardiovascular disease.

*CVD is defined here as International Classification of Diseases, 10th Revision (ICD-10) codes I00 to I99.
†CHD is defined here as ICD-10 codes I20 to I25.
‡Stroke is defined here as ICD-10 codes I60 to I69.
§Rank is lowest to highest.

Source: Centers for Disease Control and Prevention (CDC) Wide-Ranging Online Data for Epidemiologic Research (WONDER), 2009 to 2011. Data provided by personal communication with the National Heart, Lung, and Blood Institute. Additional resources: The Agency for Healthcare Research and Quality has released state-level data for heart disease for all 50 states and the District of Columbia; the data are taken from the congressionally mandated National Healthcare Quality Report. In addition, the Women’s Health and Mortality Chartbook of the National Center for Health Statistics has state-related data for women. Metropolitan/micropolitan area risk data are available for 500 such areas nationwide. Behavioral Risk Factor Surveillance System data are also collected within each state. The CDC has the Geographic Information Systems, which provides mortality rates down to the county level, by sex and ethnicity. The 2008 Atlas of Stroke Hospitalizations Among Medicare Beneficiaries is a new resource that provides data down to the county level, by sex and race.
Table 13-3. International Death Rates (Revised March 2014): Death Rates (per 100 000 Population) for Total CVD, CHD, Stroke, and Total Deaths in Selected Countries (Most Recent Year Available)

Men aged 35–74 y

<table>
<thead>
<tr>
<th>Country</th>
<th>CVD</th>
<th>CHD</th>
<th>Stroke</th>
<th>Total</th>
<th>CVD Death Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina (2010)</td>
<td>305.6</td>
<td>88.8</td>
<td>62.9</td>
<td>1062.8</td>
<td>173.3</td>
</tr>
<tr>
<td>Australia (2011)</td>
<td>126.1</td>
<td>76.9</td>
<td>18.7</td>
<td>530.3</td>
<td>1173.3</td>
</tr>
<tr>
<td>Austria (2011)</td>
<td>182.4</td>
<td>108.9</td>
<td>23.7</td>
<td>700.6</td>
<td>1067.2</td>
</tr>
<tr>
<td>Belgium (2010)</td>
<td>167.6</td>
<td>73.5</td>
<td>28.2</td>
<td>751.9</td>
<td>657.9</td>
</tr>
<tr>
<td>Brazil (2010)</td>
<td>347.7</td>
<td>134.5</td>
<td>95.8</td>
<td>1143.9</td>
<td>524.8</td>
</tr>
<tr>
<td>Canada (2009)</td>
<td>154.4</td>
<td>101.9</td>
<td>19.2</td>
<td>607.9</td>
<td>347.7</td>
</tr>
<tr>
<td>Cuba (2010)</td>
<td>347.5</td>
<td>175.4</td>
<td>80.1</td>
<td>957.5</td>
<td>347.5</td>
</tr>
<tr>
<td>Czech Republic (2012)</td>
<td>359.2</td>
<td>192.1</td>
<td>54.2</td>
<td>1001.1</td>
<td>1548.4</td>
</tr>
<tr>
<td>Denmark (2011)</td>
<td>146.0</td>
<td>62.0</td>
<td>29.1</td>
<td>722.0</td>
<td>235.5</td>
</tr>
<tr>
<td>Finland (2011)</td>
<td>261.0</td>
<td>153.9</td>
<td>39.6</td>
<td>772.7</td>
<td>224.1</td>
</tr>
<tr>
<td>France (2010)</td>
<td>127.1</td>
<td>48.9</td>
<td>23.3</td>
<td>740.1</td>
<td>220.5</td>
</tr>
<tr>
<td>Germany (2012)</td>
<td>197.1</td>
<td>97.2</td>
<td>27.3</td>
<td>721.8</td>
<td>210.0</td>
</tr>
<tr>
<td>Hungary (2012)</td>
<td>524.8</td>
<td>280.1</td>
<td>101.0</td>
<td>1459.5</td>
<td>197.5</td>
</tr>
<tr>
<td>Ireland (2009)</td>
<td>210.0</td>
<td>140.6</td>
<td>29.2</td>
<td>701.3</td>
<td>197.1</td>
</tr>
<tr>
<td>Israel (2011)</td>
<td>118.7</td>
<td>60.1</td>
<td>25.4</td>
<td>574.7</td>
<td>184.4</td>
</tr>
<tr>
<td>Italy (2010)</td>
<td>145.6</td>
<td>68.4</td>
<td>27.8</td>
<td>585.1</td>
<td>182.4</td>
</tr>
<tr>
<td>Japan (2011)</td>
<td>142.7</td>
<td>47.0</td>
<td>49.0</td>
<td>611.5</td>
<td>167.6</td>
</tr>
<tr>
<td>Korea, South (2011)</td>
<td>123.4</td>
<td>36.5</td>
<td>54.7</td>
<td>736.3</td>
<td>165.1</td>
</tr>
<tr>
<td>Mexico (2010)</td>
<td>224.1</td>
<td>130.9</td>
<td>46.0</td>
<td>1022.6</td>
<td>224.1</td>
</tr>
<tr>
<td>Netherlands (2011)</td>
<td>136.8</td>
<td>53.1</td>
<td>21.9</td>
<td>586.6</td>
<td>184.4</td>
</tr>
<tr>
<td>New Zealand (2009)</td>
<td>184.4</td>
<td>121.1</td>
<td>26.5</td>
<td>605.2</td>
<td>146.0</td>
</tr>
<tr>
<td>Norway (2012)</td>
<td>136.4</td>
<td>71.1</td>
<td>22.5</td>
<td>555.9</td>
<td>145.6</td>
</tr>
<tr>
<td>Portugal (2011)</td>
<td>148.1</td>
<td>55.0</td>
<td>53.7</td>
<td>777.7</td>
<td>142.7</td>
</tr>
<tr>
<td>Romania (2010)</td>
<td>657.9</td>
<td>268.2</td>
<td>195.9</td>
<td>1548.4</td>
<td>141.5</td>
</tr>
<tr>
<td>Russian Federation (2010)</td>
<td>1173.3</td>
<td>654.8</td>
<td>299.2</td>
<td>2400.7</td>
<td>136.8</td>
</tr>
<tr>
<td>Spain (2011)</td>
<td>141.5</td>
<td>65.3</td>
<td>26.2</td>
<td>651.6</td>
<td>136.4</td>
</tr>
<tr>
<td>Sweden (2010)</td>
<td>165.1</td>
<td>93.1</td>
<td>26.3</td>
<td>556.1</td>
<td>131.6</td>
</tr>
<tr>
<td>Switzerland (2010)</td>
<td>131.6</td>
<td>67.7</td>
<td>16.3</td>
<td>538.1</td>
<td>127.1</td>
</tr>
<tr>
<td>Ukraine (2012)</td>
<td>1067.2</td>
<td>718.1</td>
<td>216.6</td>
<td>2069.3</td>
<td>126.1</td>
</tr>
<tr>
<td>United Kingdom (2010)</td>
<td>197.5</td>
<td>121.1</td>
<td>29.8</td>
<td>673.6</td>
<td>123.4</td>
</tr>
<tr>
<td>United States (2011)</td>
<td>235.5</td>
<td>132.4</td>
<td>27.5</td>
<td>815.9</td>
<td>118.7</td>
</tr>
</tbody>
</table>

Women aged 35–74 y

<table>
<thead>
<tr>
<th>Country</th>
<th>CVD</th>
<th>CHD</th>
<th>Stroke</th>
<th>Total</th>
<th>CVD Death Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina (2010)</td>
<td>139.7</td>
<td>28.4</td>
<td>35.5</td>
<td>574.3</td>
<td>466.0</td>
</tr>
<tr>
<td>Australia (2011)</td>
<td>52.3</td>
<td>21.6</td>
<td>13.5</td>
<td>318.3</td>
<td>454.2</td>
</tr>
<tr>
<td>Austria (2011)</td>
<td>69.7</td>
<td>32.0</td>
<td>14.4</td>
<td>361.3</td>
<td>312.2</td>
</tr>
<tr>
<td>Belgium (2010)</td>
<td>78.5</td>
<td>24.3</td>
<td>20.4</td>
<td>419.8</td>
<td>218.4</td>
</tr>
<tr>
<td>Brazil (2010)</td>
<td>205.1</td>
<td>63.9</td>
<td>63.0</td>
<td>638.9</td>
<td>209.2</td>
</tr>
<tr>
<td>Canada (2009)</td>
<td>65.9</td>
<td>33.1</td>
<td>14.5</td>
<td>388.1</td>
<td>205.1</td>
</tr>
<tr>
<td>Chile (2009)</td>
<td>103.5</td>
<td>29.5</td>
<td>37.4</td>
<td>455.0</td>
<td>142.4</td>
</tr>
<tr>
<td>Cuba (2010)</td>
<td>209.2</td>
<td>90.1</td>
<td>61.0</td>
<td>613.8</td>
<td>139.7</td>
</tr>
<tr>
<td>Czech Republic (2012)</td>
<td>142.4</td>
<td>61.0</td>
<td>27.6</td>
<td>475.4</td>
<td>137.0</td>
</tr>
<tr>
<td>Denmark (2011)</td>
<td>64.6</td>
<td>18.3</td>
<td>20.7</td>
<td>462.9</td>
<td>117.1</td>
</tr>
<tr>
<td>Finland (2011)</td>
<td>74.8</td>
<td>31.4</td>
<td>20.8</td>
<td>358.6</td>
<td>103.5</td>
</tr>
</tbody>
</table>

(Continued)
Table 13-3. Continued

<table>
<thead>
<tr>
<th>Country</th>
<th>CVD</th>
<th>CHD</th>
<th>Stroke</th>
<th>Total</th>
<th>Sorted by Descending CVD Death Rate</th>
<th>CVD</th>
<th>CHD</th>
<th>Stroke</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>France (2010)</td>
<td>46.6</td>
<td>10.5</td>
<td>13.1</td>
<td>339.4</td>
<td>Ireland (2009)</td>
<td>86.8</td>
<td>40.9</td>
<td>21.9</td>
<td>419.8</td>
</tr>
<tr>
<td>Germany (2012)</td>
<td>80.2</td>
<td>28.1</td>
<td>16.7</td>
<td>387.8</td>
<td>United Kingdom (2010)</td>
<td>84.7</td>
<td>36.8</td>
<td>21.6</td>
<td>431.5</td>
</tr>
<tr>
<td>Hungary (2012)</td>
<td>218.4</td>
<td>105.7</td>
<td>48.9</td>
<td>672.1</td>
<td>Germany (2012)</td>
<td>80.2</td>
<td>28.1</td>
<td>16.7</td>
<td>387.8</td>
</tr>
<tr>
<td>Ireland (2009)</td>
<td>86.8</td>
<td>40.9</td>
<td>21.9</td>
<td>419.8</td>
<td>New Zealand (2009)</td>
<td>79.9</td>
<td>35.4</td>
<td>23.0</td>
<td>410.0</td>
</tr>
<tr>
<td>Israel (2011)</td>
<td>51.3</td>
<td>15.3</td>
<td>14.7</td>
<td>347.4</td>
<td>Belgium (2010)</td>
<td>78.5</td>
<td>24.3</td>
<td>20.4</td>
<td>419.8</td>
</tr>
<tr>
<td>Italy (2010)</td>
<td>58.3</td>
<td>18.4</td>
<td>16.1</td>
<td>308.6</td>
<td>Finland (2011)</td>
<td>74.8</td>
<td>31.4</td>
<td>20.8</td>
<td>358.6</td>
</tr>
<tr>
<td>Japan (2011)</td>
<td>53.5</td>
<td>12.6</td>
<td>21.6</td>
<td>284.3</td>
<td>Austria (2011)</td>
<td>69.7</td>
<td>32.0</td>
<td>14.4</td>
<td>361.3</td>
</tr>
<tr>
<td>Korea, South (2011)</td>
<td>55.5</td>
<td>11.6</td>
<td>28.5</td>
<td>288.6</td>
<td>Sweden (2010)</td>
<td>67.8</td>
<td>31.1</td>
<td>16.2</td>
<td>357.1</td>
</tr>
<tr>
<td>Mexico (2010)</td>
<td>137.0</td>
<td>59.6</td>
<td>36.0</td>
<td>638.8</td>
<td>Portugal (2011)</td>
<td>66.6</td>
<td>16.5</td>
<td>29.0</td>
<td>343.2</td>
</tr>
<tr>
<td>Netherlands (2011)</td>
<td>65.9</td>
<td>18.0</td>
<td>16.7</td>
<td>408.8</td>
<td>Canada (2009)</td>
<td>65.9</td>
<td>33.1</td>
<td>14.5</td>
<td>388.1</td>
</tr>
<tr>
<td>New Zealand (2009)</td>
<td>79.9</td>
<td>35.4</td>
<td>23.0</td>
<td>410.0</td>
<td>Netherlands (2011)</td>
<td>65.9</td>
<td>18.0</td>
<td>16.7</td>
<td>408.8</td>
</tr>
<tr>
<td>Norway (2012)</td>
<td>53.1</td>
<td>21.4</td>
<td>14.9</td>
<td>360.9</td>
<td>Denmark (2011)</td>
<td>64.6</td>
<td>18.3</td>
<td>20.7</td>
<td>462.9</td>
</tr>
<tr>
<td>Portugal (2011)</td>
<td>66.6</td>
<td>16.5</td>
<td>29.0</td>
<td>343.2</td>
<td>Italy (2010)</td>
<td>58.3</td>
<td>18.4</td>
<td>16.1</td>
<td>308.6</td>
</tr>
<tr>
<td>Romania (2010)</td>
<td>312.2</td>
<td>105.8</td>
<td>111.4</td>
<td>692.3</td>
<td>Korea, South (2011)</td>
<td>55.5</td>
<td>11.6</td>
<td>28.5</td>
<td>288.6</td>
</tr>
<tr>
<td>Russian Federation (2010)</td>
<td>466.0</td>
<td>226.3</td>
<td>155.0</td>
<td>915.7</td>
<td>Japan (2011)</td>
<td>53.5</td>
<td>12.6</td>
<td>21.6</td>
<td>284.3</td>
</tr>
<tr>
<td>Spain (2011)</td>
<td>50.8</td>
<td>15.2</td>
<td>13.6</td>
<td>280.0</td>
<td>Norway (2012)</td>
<td>53.1</td>
<td>21.4</td>
<td>14.9</td>
<td>360.9</td>
</tr>
<tr>
<td>Sweden (2010)</td>
<td>67.8</td>
<td>31.1</td>
<td>16.2</td>
<td>357.1</td>
<td>Australia (2011)</td>
<td>52.3</td>
<td>21.6</td>
<td>13.5</td>
<td>318.3</td>
</tr>
<tr>
<td>Switzerland (2010)</td>
<td>49.3</td>
<td>19.4</td>
<td>11.1</td>
<td>308.9</td>
<td>Israel (2011)</td>
<td>51.3</td>
<td>15.3</td>
<td>14.7</td>
<td>347.4</td>
</tr>
<tr>
<td>Ukraine (2012)</td>
<td>454.2</td>
<td>294.7</td>
<td>115.8</td>
<td>833.7</td>
<td>Spain (2011)</td>
<td>50.8</td>
<td>15.2</td>
<td>13.6</td>
<td>280.0</td>
</tr>
<tr>
<td>United Kingdom (2010)</td>
<td>84.7</td>
<td>36.8</td>
<td>21.6</td>
<td>431.5</td>
<td>Switzerland (2010)</td>
<td>49.3</td>
<td>19.4</td>
<td>11.1</td>
<td>308.9</td>
</tr>
<tr>
<td>United States (2011)</td>
<td>117.1</td>
<td>51.6</td>
<td>21.0</td>
<td>518.6</td>
<td>France (2010)</td>
<td>46.6</td>
<td>10.5</td>
<td>13.1</td>
<td>339.4</td>
</tr>
</tbody>
</table>

Rates are per 100,000 population, adjusted to the European Standard population. *International Classification of Diseases, 10th Revision* codes used were I00 to I99 for CVD, I20 to I25 for CHD, and I60 to I69 for stroke. CHD indicates coronary heart disease; and CVD, cardiovascular disease. Sources: The World Health Organization, National Center for Health Statistics, and National Heart, Lung, and Blood Institute.

Chart 13-3. Deaths attributable to diseases of the heart (United States: 1900–2011). See Glossary (Chapter 27) for an explanation of “diseases of the heart.” Note: In the years 1900 to 1920, the International Classification of Diseases codes were 77 to 80; for 1925, 87 to 90; for 1930 to 1945, 90 to 95; for 1950 to 1960, 402 to 404 and 410 to 443; for 1965, 402 to 404 and 410 to 443; for 1970 to 1975, 390 to 398 and 404 to 429; for 1980 to 1995, 390 to 398, 402, and 404 to 429; for 2000 to 2011, I00 to I09, I11, I13, and I20 to I51. Before 1933, data are for a death registration area and not the entire United States. In 1900, only 10 states were included in the death registration area, and this increased over the years, so part of the increase in numbers of deaths is attributable to an increase in the number of states. Source: National Center for Health Statistics.

Chart 13-4. Deaths attributable to cardiovascular disease (United States: 1900–2011). Cardiovascular disease (International Classification of Diseases, 10th Revision codes I00–I99) does not include congenital heart disease. Before 1933, data are for a death registration area and not the entire United States. Source: National Center for Health Statistics.
Chart 13-5. Percentage breakdown of deaths attributable to cardiovascular disease (United States: 2011). Total may not add to 100 because of rounding. Coronary heart disease includes International Classification of Diseases, 10th Revision (ICD-10) codes I20 to I25; stroke, I60 to I69; heart failure, I50; high blood pressure, I10 to I15; diseases of the arteries, I70 to I78; and other, all remaining ICD-I0 categories and Q20 to Q28. *Not a true underlying cause. With any-mention deaths, heart failure accounts for 36% of cardiovascular disease deaths. Source: National Heart, Lung, and Blood Institute from National Center for Health Statistics reports and data sets.

Chart 13-6. Cardiovascular disease (CVD) deaths versus cancer deaths by age (United States: 2011). CVD includes International Classification of Diseases, 10th Revision codes I00 to I99 and Q20 to Q28; cancer, C00 to C97. Source: National Center for Health Statistics.
Chart 13-7. Cardiovascular disease (CVD) and other major causes of death: total, <85 years of age, and ≥85 years of age. Deaths among both sexes, United States, 2011. Heart disease includes International Classification of Diseases, 10th Revision codes I00 to I09, I11, I13, and I20 to I51; stroke, I60 to I69; all other CVD, I10, I12, I15, and I70 to I99; cancer, C00 to C97; chronic lower respiratory disease (CLRD), J40 to J47; Alzheimer disease, G30; and accidents, V01 to X59 and Y85 and Y86. Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.

Chart 13-8. Cardiovascular disease (CVD) and other major causes of death in males: total, <85 years of age, and ≥85 years of age. Deaths among males, United States, 2011. Heart disease includes International Classification of Diseases, 10th Revision codes I00 to I09, I11, I13, and I20 to I51; stroke, I60 to I69; all other CVD, I10, I12, I15, and I70 to I99; cancer, C00 to C97; chronic lower respiratory disease (CLRD), J40 to J47; and accidents, V01 to X59 and Y85 and Y86. Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.
Chart 13-9. Cardiovascular disease (CVD) and other major causes of death in females: total, <85 years of age, and ≥85 years of age. Deaths among females, United States, 2011. Heart disease includes International Classification of Diseases, 10th Revision codes I00 to I09, I11, I13, and I20 to I51; stroke, I60 to I69; all other CVD, I10, I12, I15, and I70 to I99; cancer, C00 to C97; chronic lower respiratory disease (CLRD), J40 to J47; and Alzheimer disease, G30. Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.

Chart 13-10. Cardiovascular disease and other major causes of death for all males and females (United States: 2011). A indicates cardiovascular disease plus congenital cardiovascular disease (International Classification of Diseases, 10th Revision codes I00–I99 and Q20–Q28); B, cancer (C00–C97); C, accidents (V01–X59 and Y85–Y86); D, chronic lower respiratory disease (J40–J47); E, diabetes mel- litus (E10–E14); and F, Alzheimer disease (G30). Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.
Chart 13-11. Cardiovascular disease and other major causes of death for white males and females (United States: 2011). A indicates cardiovascular disease plus congenital cardiovascular disease (International Classification of Diseases, 10th Revision codes I00–I99 and Q20–Q28); B, cancer (C00–C97); C, accidents (V01–X59 and Y85–Y86); D, chronic lower respiratory disease (J40–J47); E, diabetes mellitus (E10–E14); and F, Alzheimer disease (G30). Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.

<table>
<thead>
<tr>
<th></th>
<th>White Males</th>
<th>White Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30.9</td>
<td>24.2</td>
</tr>
<tr>
<td>B</td>
<td>24.2</td>
<td>21.5</td>
</tr>
<tr>
<td>C</td>
<td>6.4</td>
<td>6.5</td>
</tr>
<tr>
<td>D</td>
<td>5.7</td>
<td>5.0</td>
</tr>
<tr>
<td>E</td>
<td>2.9</td>
<td>3.8</td>
</tr>
<tr>
<td>F</td>
<td>2.2</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Chart 13-12. Cardiovascular disease and other major causes of death for black males and females (United States: 2011). A indicates cardiovascular disease plus congenital cardiovascular disease (International Classification of Diseases, 10th Revision codes I00–I99 and Q20–Q28); B, cancer (C00–C97); C, accidents (V01–X59 and Y85–Y86); D, diabetes mellitus (E10–E14); E, chronic lower respiratory disease (J40–J47); F, nephritis (N00–N07, N17–N19, and N25–N27). Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.

<table>
<thead>
<tr>
<th></th>
<th>Black Males</th>
<th>Black Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>31.4</td>
<td>32.9</td>
</tr>
<tr>
<td>B</td>
<td>23.1</td>
<td>22.9</td>
</tr>
<tr>
<td>C</td>
<td>5.7</td>
<td>4.8</td>
</tr>
<tr>
<td>D</td>
<td>4.1</td>
<td>3.1</td>
</tr>
<tr>
<td>E</td>
<td>3.2</td>
<td>3.0</td>
</tr>
<tr>
<td>F</td>
<td>2.6</td>
<td>2.9</td>
</tr>
</tbody>
</table>
Chart 13-13. Cardiovascular disease and other major causes of death for Hispanic or Latino males and females (United States: 2011). A indicates cardiovascular disease plus congenital cardiovascular disease (International Classification of Diseases, 10th Revision codes I00–I99, Q20–Q28); B, cancer (C00–C97); C, accidents (V01–X59 and Y85–Y86); D, diabetes mellitus (E10–E14); E, chronic lower respiratory disease (J40–J47); and F, Alzheimer disease (G30). Number of deaths shown may be lower than actual because of underreporting in this population. Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.

Chart 13-14. Cardiovascular disease and other major causes of death for Asian or Pacific Islander males and females (United States: 2011). “Asian or Pacific Islander” is a heterogeneous category that includes people at high cardiovascular disease risk (eg, South Asian) and people at low cardiovascular disease risk (eg, Japanese). More specific data on these groups are not available. A indicates cardiovascular disease plus congenital cardiovascular disease (International Classification of Diseases, 10th Revision codes I00–I99 and Q20–Q28); B, cancer (C00–C97); C, accidents (V01–X59 and Y85–Y86); D, diabetes mellitus (E10–E14); E, chronic lower respiratory disease (J40–J47); F, influenza and pneumonia (J09–J18). Number of deaths shown may be lower than actual because of underreporting in this population. Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.
Chart 13-15. Cardiovascular disease and other major causes of death for American Indian or Alaska Native males and females (United States: 2011). A indicates cardiovascular disease plus congenital cardiovascular disease (International Classification of Diseases, 10th Revision codes I00–I99 and Q20–Q28); B, cancer (C00–C97); C, accidents (V01–X59 and Y85–Y86); D, diabetes mellitus (E10–E14); E, chronic liver disease (K70 and K73–K74); and F, chronic lower respiratory disease (J40–J47). Number of deaths shown may be lower than actual because of underreporting in this population. Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.

Chart 13-16. Age-adjusted death rates for coronary heart disease (CHD), stroke, and lung and breast cancer for white and black females (United States: 2011). CHD includes International Classification of Diseases, 10th Revision codes I20 to I25; stroke, I60 to I69; lung cancer, C33 to C34; and breast cancer, C50. Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.
Major Cardiovascular Disease Age-Adjusted Death Rates by State

Coronary Heart Disease Age-Adjusted Death Rates by State

Stroke Age-Adjusted Death Rates by State

Chart 13-19. Estimated average 10-year cardiovascular disease risk in adults 50 to 54 years of age according to levels of various risk factors (Framingham Heart Study). BP indicates blood pressure; and HDL, high-density lipoprotein. Data derived from D’Agostino et al43 with permission of the publisher. Copyright © 2008, American Heart Association.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>50-54</td>
<td>50-54</td>
<td>50-54</td>
<td>50-54</td>
</tr>
<tr>
<td>HDL Cholesterol (mg/dL)</td>
<td>45-49</td>
<td>45-49</td>
<td>35-44</td>
<td>35-44</td>
</tr>
<tr>
<td>Total Cholesterol (mg/dL)</td>
<td>160-199</td>
<td>200-239</td>
<td>200-239</td>
<td>200-239</td>
</tr>
<tr>
<td>Systolic BP (mmHg, no treatment)</td>
<td>120-129</td>
<td>130-139</td>
<td>130-139</td>
<td>130-139</td>
</tr>
<tr>
<td>Smoker</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Diabetes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

14. Stroke (Cerebrovascular Disease)

ICD-9 430 to 438; ICD-10 I60 to I69. See Tables 14-1 and 14-2 and Charts 14-1 through 14-12.

Stroke Prevalence

(See Table 14-1 and Chart 14-1.)

- An estimated 6.6 million Americans ≥20 years of age have had a stroke (extrapolated to 2012 by use of NHANES 2009–2012 data). Overall stroke prevalence during this period is an estimated 2.6% (NHANES, NHLBI).
- According to data from the 2013 BRFSS (CDC), 2.7% of men and 2.7% of women ≥18 years of age had a history of stroke; 2.5% of non-Hispanic whites, 4.0% of non-Hispanic blacks, 1.3% of Asian/Pacific Islanders, 2.3% of Hispanics (of any race), 4.6% of American Indian/Alaska Natives, and 4.6% of other races or multiracial people had a history of stroke.1
- Over the time period 2006 to 2010, data from BRFSS show that the overall self-reported stroke prevalence did not change. Older adults, blacks, people with lower levels of education, and people living in the southeastern United States had higher stroke prevalence.2
- The prevalence of silent cerebral infarction is estimated to range from 6% to 28%, with higher prevalence with increasing age.3–5 The prevalence estimates also vary depending on the population studied (eg, ethnicity, sex, risk factor profile), definition of silent cerebral infarction, and imaging technique. It has been estimated that 13 million people had prevalent silent stroke in the 1998 US population.6,7
- The prevalence of stroke-related symptoms was found to be relatively high in a general population free of a prior diagnosis of stroke or TIA. On the basis of data from 18,462 participants enrolled in a national cohort study, 17.8% of the population >45 years of age reported at least 1 symptom. Stroke symptoms were more likely among blacks than whites, among those with lower income and lower educational attainment, and among those with fair to poor perceived health status. Symptoms also were more likely in participants with higher Framingham stroke risk score (REGARDS, NINDS).8

Abbreviations Used in Chapter 14

<table>
<thead>
<tr>
<th>ACCORD</th>
<th>Action to Control Cardiovascular Risk in Diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>atrial fibrillation</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>AHI</td>
<td>apnea-hypopnea index</td>
</tr>
<tr>
<td>ARIC</td>
<td>Atherosclerosis Risk in Communities study</td>
</tr>
<tr>
<td>ARHQ</td>
<td>Agency for Healthcare Research and Quality</td>
</tr>
<tr>
<td>BASIC</td>
<td>Brain Attack Surveillance in Corpus Christi</td>
</tr>
<tr>
<td>BNP</td>
<td>B-type natriuretic peptide</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>BRFSS</td>
<td>Behavioral Risk Factor Surveillance System</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CHF</td>
<td>congestive heart failure</td>
</tr>
<tr>
<td>CHS</td>
<td>Cardiovascular Health Study</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CLRD</td>
<td>chronic lower respiratory disease</td>
</tr>
<tr>
<td>CREST</td>
<td>Carotid Revascularization Endarterectomy Versus Stenting Trial</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DALY</td>
<td>disability-adjusted life-year</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>ED</td>
<td>emergency department</td>
</tr>
<tr>
<td>eGFR</td>
<td>estimated glomerular filtration rate</td>
</tr>
<tr>
<td>FHS</td>
<td>Framingham Heart Study</td>
</tr>
<tr>
<td>FRS</td>
<td>Framingham Risk Score</td>
</tr>
<tr>
<td>FUTURE</td>
<td>Follow-up of TIA and Stroke Patients and Unelucidated Risk Factor Evaluation</td>
</tr>
<tr>
<td>GCNKS</td>
<td>Greater Cincinnati/Northern Kentucky Stroke Study</td>
</tr>
<tr>
<td>GFR</td>
<td>glomerular filtration rate</td>
</tr>
<tr>
<td>GWTG</td>
<td>Get With The Guidelines</td>
</tr>
<tr>
<td>HBP</td>
<td>high blood pressure</td>
</tr>
<tr>
<td>HCUP</td>
<td>Healthcare Cost and Utilization Project</td>
</tr>
<tr>
<td>HD</td>
<td>heart disease</td>
</tr>
<tr>
<td>HDL</td>
<td>high-density lipoprotein</td>
</tr>
<tr>
<td>HF</td>
<td>heart failure</td>
</tr>
<tr>
<td>HR</td>
<td>hazard ratio</td>
</tr>
<tr>
<td>ICD-9</td>
<td>International Classification of Diseases, 9th Revision</td>
</tr>
<tr>
<td>ICD-10</td>
<td>International Classification of Diseases, 10th Revision</td>
</tr>
<tr>
<td>ICH</td>
<td>intracerebral hemorrhage</td>
</tr>
<tr>
<td>MEPS</td>
<td>Medical Expenditure Panel Survey</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>NAMCS</td>
<td>National Ambulatory Medical Care Survey</td>
</tr>
<tr>
<td>NCHS</td>
<td>National Center for Health Statistics</td>
</tr>
<tr>
<td>NH</td>
<td>non-Hispanic</td>
</tr>
<tr>
<td>NHAMCS</td>
<td>National Hospital Ambulatory Medical Care Survey</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NHDS</td>
<td>National Hospital Discharge Survey</td>
</tr>
<tr>
<td>NINDS</td>
<td>National Institutes of Neurological Disorders and Stroke</td>
</tr>
<tr>
<td>NOMAS</td>
<td>Northern Manhattan Study</td>
</tr>
<tr>
<td>ONTARGET</td>
<td>Ongoing Telmisartan Alone and in Combination With Ramipril Global Endpoint Trial</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PA</td>
<td>physical activity</td>
</tr>
<tr>
<td>PAR</td>
<td>population attributable risk</td>
</tr>
<tr>
<td>REGARDS</td>
<td>Reasons for Geographic and Racial Differences in Stroke</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
<tr>
<td>SAH</td>
<td>subarachnoid hemorrhage</td>
</tr>
<tr>
<td>SBP</td>
<td>systolic blood pressure</td>
</tr>
<tr>
<td>SHS</td>
<td>Strong Heart Study</td>
</tr>
<tr>
<td>SPS3</td>
<td>Secondary Prevention of Small Subcortical Strokes</td>
</tr>
<tr>
<td>STOP</td>
<td>Stroke Prevention Trial in Sickle Cell Anemia</td>
</tr>
<tr>
<td>TIA</td>
<td>transient ischemic attack</td>
</tr>
<tr>
<td>tPA</td>
<td>tissue-type plasminogen activator</td>
</tr>
</tbody>
</table>
Projections show that by 2030, an additional 3.4 million people aged ≥18 years will have had a stroke, a 20.5% increase in prevalence from 2012. The highest increase (29%) is projected to be in Hispanic men.9

With the increase in the aging population, prevalence of stroke survivors is projected to increase, especially among elderly women.10

Stroke Incidence

(See Table 14-1 and Charts 14-2 through 14-5.)

- Each year, ~795,000 people experience a new or recurrent stroke. Approximately 610,000 of these are first attacks, and 185,000 are recurrent attacks (GCNKSS, NINDS, and NHLBI; GCNKSS and NINDS data for 1999 provided July 9, 2008; estimates compiled by NHLBI).
- Of all strokes, 87% are ischemic and 10% are ICH strokes, whereas 3% are SAH strokes (GCNKSS, NINDS, 1999).
- On average, every 40 seconds, someone in the United States has a stroke (AHA computation based on the latest available data).
- Temporal trend data from the BASIC Project for the time period 2000 through 2010 demonstrated that ischemic stroke rates declined significantly in people aged ≥60 years but remained largely unchanged over time in those aged 45 to 59 years. Rates of decline did not differ significantly for non-Hispanic whites and Mexican Americans in any age group. Therefore, ethnic disparities in stroke rates in the 45- to 59-year-old and 60- to 74-year-old age groups persist.11
- Analysis of data from the FHS suggests that stroke incidence is declining over time in this largely white cohort. Data from 1950 to 1977, 1978 to 1989, and 1990 to 2004 showed that the age-adjusted incidence of first stroke per 1000 person-years in each of the 3 periods was 7.6, 6.2, and 5.3 in men and 6.2, 5.8, and 5.1 in women, respectively. Lifetime risk for incident stroke at 65 years of age decreased significantly in the latest data period compared with the first, from 19.5% to 14.5% in men and from 18.0% to 16.1% in women.12
- In a similar fashion, data from the most recent GCNKSS show that compared with the 1990s, when incidence rates of stroke were stable, stroke incidence in 2005 was decreased for whites. A similar decline was not seen in blacks. These changes for whites were driven by a decline in ischemic strokes. There were no changes in incidence of ischemic stroke for blacks or of hemorrhagic strokes in blacks or whites.13
- In an analysis of temporal trends in ischemic stroke incidence stratified by age, the GCNKSS found an increased incidence of ischemic stroke over time for both blacks and whites aged 20 to 54 years, especially in 2005 compared with earlier time periods. There were declining incidence rates in the oldest age groups for both race groups.14
- Data from the BASIC Project showed that the age-, sex-, and ethnicity-adjusted incidence of ICH decreased from 2000 to 2010 (from an annual incidence rate of 5.21/10,000 [95% CI, 4.36–6.24] to 4.30/10,000 [95% CI, 3.21–5.76]).15
- Each year, ~55,000 more women than men have a stroke (GCNKSS, NINDS).13
- Women have a higher lifetime risk of stroke than men. In the FHS, lifetime risk of stroke among those 55 to 75 years of age was 1 in 5 for women (20% to 21%) and 1 in 6 for men (14% to 17%).16
- Age-specific incidence rates are substantially lower in women than men in younger and middle-age groups, but these differences narrow so that in the oldest age groups, incidence rates in women are approximately equal or even higher than in men.10,17–21
- In the national REGARDS cohort, in 27,744 participants followed up for 4.4 years (2003–2010), the overall age- and sex-adjusted black/white incidence rate ratio was 1.51, but for ages 45 to 54 years, it was 4.02, whereas for those ≥85 years of age, it was 0.86.22 Similar trends for decreasing black/white incidence rate ratio with age were seen in the GCNKSS.23
- The BASIC Project (NINDS) demonstrated an increased incidence of stroke among Mexican Americans compared with non-Hispanic whites in a community in southeast Texas. The crude 3-year cumulative incidence (2000–2002) was 16.8 per 1000 in Mexican Americans and 13.6 per 1000 in non-Hispanic whites. Specifically, Mexican Americans had a higher cumulative incidence of ischemic stroke at younger ages (45–59 years of age: RR, 2.04; 95% CI, 1.55–2.69; 60–74 years of age: RR, 1.58; 95% CI, 1.31–1.91) but not at older ages (≥75 years of age: RR, 1.12; 95% CI, 0.94–1.32). Mexican Americans also had a higher incidence of ICH and SAH than non-Hispanic whites, after adjustment for age.24
- The age-adjusted incidence of first ischemic stroke per 1000 was 0.88 in whites, 1.91 in blacks, and 1.49 in Hispanics according to data from NOMAS (NINDS) for 1993 to 1997. Among blacks, compared with whites, the relative rate of intracranial atherosclerotic stroke was 5.85; of extracranial atherosclerotic stroke, 3.18; of lacunar stroke, 3.09; and of cardioembolic stroke, 1.58. Among Hispanics (primarily Cuban and Puerto Rican), compared with whites, the relative rate of intracranial atherosclerotic stroke was 5.00; of extracranial atherosclerotic stroke, 1.71; of lacunar stroke, 2.32; and of cardioembolic stroke, 1.42.25
- Among 4507 American Indian participants without a prior stroke in the SHS in 1989 to 1992, the age- and sex-adjusted incidence of stroke through 2004 was 6.79 per 100 person-years, with 86% of incident strokes being ischemic.26
- In the REGARDS study, the increased risk of ICH with age differed between blacks and whites: There was a 2.25-fold (95% CI, 1.63–3.12) increase per decade in whites but no age association with ICH risk in blacks (HR, 1.09; 95% CI, 0.70–1.68).27

TIA: Prevalence, Incidence, and Prognosis

- In a nationwide survey of US adults, the estimated prevalence of self-reported physician-diagnosed TIA increased with age and was 2.3% overall, which translates to ~5 million people. The true prevalence of TIA is greater, because many patients who experience neurological symptoms consistent with a TIA fail to report it to their healthcare provider.28
- In the GCNKSS, according to data from 1993 and 1994, the age-, sex-, and race-adjusted incidence rate for TIA was...
0.83 per 10,000. The age- and sex-adjusted incidence rate for TIA in Rochester, MN, was estimated at 0.68 per 1000 for the years 1985 through 1989. In a more recent Italian community-based registry conducted in 2007 to 2009, the crude TIA incidence rate was 0.52 per 1000.

- Incidence of TIA increases with age and varies by sex and race/ethnicity. Men, blacks, and Mexican Americans have higher rates of TIA than their female and non-Hispanic white counterparts.

- Approximately 15% of all strokes are heralded by a TIA.

- TIA confers a substantial short-term risk of stroke, hospitalization for CVD events, and death. Of 1707 TIA patients evaluated in the ED of Kaiser Permanente Northern California, 180 (11%) experienced a stroke within 90 days, and 91 (5%) had a stroke within 2 days. Predictors of stroke included age >60 years, DM, focal symptoms of weakness or speech impairment, and symptoms that lasted >10 minutes.

- Meta-analyses of cohorts of patients with TIA have shown the short-term risk of stroke after TIA to be ≈3% to 10% at 2 days and 9% to 17% at 90 days.

- Individuals who have a TIA and survive the initial high-risk period have a 10-year stroke risk of roughly 19% and a combined 10-year stroke, MI, or vascular death risk of 43% (4% per year).

- In the GCNKSS, the 1-year mortality rate after a TIA was 12%.

- In the population-based Oxford Vascular Study, among patients with TIA, disability levels increased from 14% (modified Rankin scale >2) before the TIA to 23% at 5 years after the TIA (P=0.002). In this same study, the 5-year risk of institutionalization after TIA was 11%.

- In a meta-analysis of 47 studies, it was estimated that approximately one third of TIA patients have an acute diffusion-weight imaging lesion present on magnetic resonance imaging and thus would be classified as having had a stroke under a tissue-based case definition; however, substantial between-study heterogeneity was noted.

Recurrent Stroke

- In a cohort of 10,399 patients discharged with a primary diagnosis of stroke in the state of South Carolina in 2002, recurrent stroke rates were 1.8% at 1 month, 5% at 6 months, 8% at 1 year, and 18.1% at 4 years.

- Annual recurrent stroke rates in control arms of stroke prevention trials fell from 8.71% in trials launched in the 1960s to 6.10% in the 1970s, 5.41% in the 1980s, 4.04% in the 1990s, and 4.98% in the 2000s. If one assumes a continued linear decline, the annual recurrent stroke rate in trial control arms in the coming decade is projected to be 2.25%.

- From 1994 to 2002, 1-year recurrent ischemic stroke rates declined by almost 5% among elderly Medicare beneficiaries, but declines were heterogeneous across geographic regions of the United States.

- Among 600 Scandinavian stroke patients followed up for 2 years, 55 (9.2%) had had a recurrent stroke, 15 (2.5%) had a TIA, 4 (0.7%) had a coronary event, and 24 (4.0%) had died. Recurrent stroke occurred in 19.2% of patients with index stroke caused by large-artery disease, 4.9% with small-vessel disease, 8.2% with cardioembolic cause, 5.6% with cryptogenic cause, and 12.8% with other and undetermined cause combined.

- Recurrent stroke is associated with a greater number of risk factors and a higher incidence of large-artery atherosclerosis than the first stroke.

- Among 1626 first-ever stroke patients in the South London Register, first stroke recurrence rates during the first, second, third, fourth, and fifth years were 8% (95% CI, 6.5%–9.8%), 3.3% (2.2%–4.9%), 3.5% (2.1%–5.8%), 1.2% (0.4%–3.7%), and 1.8% (0.4%–7.4%), respectively. Cumulative risks of first stroke recurrence were 2.6% (95% CI, 1.9%–3.7%) at 3 months, 8.0% (6.5%–9.8%) at 1 year, 14.1% (11.8%–16.7%) at 3 years, and 16.6% (13.5%–20.4%) at 5 years.

- During a median 5.3 years of follow-up among 987 ARIC participants with first-ever strokes, there were 183 recurrent strokes among 147 participants. Approximately 70% of recurrent strokes were of the same subtype; however, 28% were the same when the index stroke was lacunar. One-year stroke recurrence rates by index subtype were 7.9% for thrombotic, 6.5% for cardioembolic and 6.5% for lacunar events.

- In the FUTURE prospective cohort of 724 patients aged 18 to 50 years with first-ever TIA, stroke, or ICH, after a mean follow-up of 9.1 years, cumulative 20-year risk of recurrent stroke was 19.4% (95% CI, 14.6%–24.3%) after ischemic stroke and 9.8% (95% CI, 1.0%–18.7%) after ICH.

Stroke Mortality

(See Table 14-1 and Charts 14-6 and 14-7.)

See “Factors influencing the decline in stroke mortality: a statement from the American Heart Association/American Stroke Association” for more in-depth coverage of factors contributing to the decline in stroke mortality over the past several decades.

- In 2011:
 - On average, every 4 minutes, someone died of a stroke (NCHS, NHLBI).
 - Stroke accounted for ≈1 of every 20 deaths in the United States.
 - When considered separately from other CVDs, stroke ranks No. 4 among all causes of death, behind diseases of the heart, cancer, and CLRD (NCHS mortality data).
 - The number of deaths with stroke as an underlying cause was 128,932; any-mention mortality was 218,352, and the age-adjusted death rate for stroke as an underlying cause of death was 37.9 per 100,000.
 - Approximately 57% of stroke deaths occurred out of the hospital (unpublished NHLBI tabulation from NCHS 2011 mortality data set).
 - More women than men die of stroke each year because of the larger number of elderly women. Women accounted for almost 60% of US stroke deaths (AHA tabulation).
 - From 2001 to 2011, the stroke death rate decreased 35.1% and the actual number of stroke deaths declined 21.2% (NHLBI computation).

- Data from the BASIC Project showed there was no change in ICH case fatality or long-term mortality from 2000 to
2010. Yearly age-sex, and ethnicity-adjusted 30-day case fatality ranged from 28.3% (95% CI, 19.9%–40.3%) in 2006 to 46.5% (95% CI, 35.3%–60.8%) in 2008.15

- Conclusions about changes in stroke death rates from 1981 to 2010 are as follows51:

 - There was a slightly greater decline in age-adjusted stroke death rates in men (~58.5%) than in women (~55.2%).

 - Stroke death rates declined more in people aged 45 to 64 years (~53.1%) than in those ≥65 years of age (~48.9%) or those aged 18 to 44 years (~37.8%).

- In examining trends in stroke mortality by US census divisions between 1999 and 2007 for people ≥24 years of age, the rate of decline varied by geographic region and race/ethnic group. Among black and white women and white men, rates declined by ≥2% annually in every census division, but among black men, rates declined little in the East and West South Central divisions.52

- On the basis of national death statistics for the time period 1990 to 2009, stroke mortality rates among American Indian and Alaska Native people were higher than whites for both men and women in contract health services delivery area counties in the United States and were highest in the youngest age groups (35–44 years old). Stroke mortality rates and the rate ratios for American Indian/Alaska Natives to whites varied by region, with the lowest in the Southwest and the highest in Alaska. Starting in 2001, rates among American Indian/Alaska Native people decreased in all regions.53

- From 1995 to 1998, age-standardized mortality rates for ischemic stroke, SAH, and ICH were higher among blacks than whites. Death rates attributable to ICH also were higher among Asians/Pacific Islanders than among whites. All minority populations had higher death rates attributable to SAH than did whites. Among adults 25 to 44 years of age, blacks and American Indian/Alaska Natives had higher risk ratios for stroke mortality than did whites for all 3 stroke subtypes. Age-standardized mortality rates for ischemic stroke and ICH were lower for Hispanics than for whites.54

- In 2002, death certificate data showed that the mean age at stroke death was 79.6 years; however, males had a younger mean age at stroke death than females. Blacks, American Indian/Alaska Natives, and Asian/Pacific Islanders had younger mean ages than whites, and the mean age at stroke death was also younger among Hispanics than non-Hispanics.55

- A report released by the CDC in collaboration with the Centers for Medicare & Medicaid Services, the Atlas of Stroke Hospitalizations Among Medicare Beneficiaries, found that in Medicare beneficiaries over the time period 1995 to 2002, the 30-day mortality rate varied by age: 9% in patients 65 to 74 years of age, 13.1% in those 74 to 84 years of age, and 23% in those ≥85 years of age.56

- Between 1980 and 2010, the FUTURE study in the Netherlands followed 959 stroke and TIA patients aged 18 to 50 years at enrollment for a mean of 11.1 years (follow-up rate of 97%). Among 30-day survivors, the observed 20-year mortality for each stroke type exceeded the expected mortality in the general population. Among the patients, mortality ranged from 1.2% to 2.9% at 1 year to 2.5% to 6.1% at 5 years, 9.2% to 12.4% at 10 years, and 13.7% to 26.8% at 20 years. Among the stroke cases, the relative excess of deaths compared with the general population was greatest among the youngest subjects, but the absolute excess of deaths was highest among the older subjects.57

- There are substantial geographic disparities in stroke mortality, with higher rates in the southeastern United States, known as the “stroke belt.” This area is usually defined to include the 8 southern states of North Carolina, South Carolina, Georgia, Tennessee, Mississippi, Alabama, Louisiana, and Arkansas. These geographic differences have existed since at least 1940,58 and despite some minor shifts,59 they persist.56,60,61 Within the stroke belt, a “buckle” region along the coastal plain of North Carolina, South Carolina, and Georgia has been identified with an even higher stroke mortality rate than the remainder of the stroke belt. The overall average stroke mortality is ≈20% higher in the stroke belt than in the rest of the nation and ≈40% higher in the stroke buckle.62

Stroke Risk Factors

(See Table 14-2 and Chart 14-8.)

For prevalence and other information on any of these specific risk factors, refer to the specific risk factor chapters.

High BP

(See Chapter 9 for more information.)

- Median SBP declined 16 mm Hg between 1959 and 2010 for different age groups in association with large accelerated reductions in stroke mortality. In clinical trials, antihypertensive therapy has been associated with reductions in stroke incidence, with an average 41% reduction in stroke risks with SBP reductions of 10 mm Hg.49

- BP is a powerful determinant of risk for both ischemic stroke and intracranial hemorrhage.

 - Approximately 77% of those who have a first stroke have BP >140/90 mm Hg (NHLBI unpublished estimates from ARIC, CHS, and FHS Cohort and Offspring studies).

 - Diabetic subjects with BP <120/80 mm Hg have approximately half the lifetime risk of stroke of subjects with hypertension. The treatment and lowering of BP among diabetic hypertensive individuals was associated with a significant reduction in stroke risk.61

- In the REGARDS study (NINDS), between the ages of 45 and 64 years (an age group in which African Americans are at 2 to 3 times the risk of stroke as whites), ≈40% of the excess stroke risk in African Americans is attributable to traditional stroke risk factors, with levels of SBP accounting for approximately one half of this impact.64 For each 10 mm Hg increase in levels of SBP, the increased stroke risk in whites is ≈8%; however, a similar 10 mm Hg increase in SBP in African Americans is associated with a 24% increase in stroke risk, an impact 3 times greater than in whites.65

- Cross-sectional baseline data from the SP3S trial showed that more than half of all symptomatic lacunar stroke patients had uncontrolled hypertension at 2.5 months after stroke.66
Data from the US Nationwide Inpatient Sample revealed that prehypertension is associated with incident stroke. The risk is particularly noted in nonelderly people and for those with BP values in the higher prehypertension range.\(^6^7\)

In cross-sectional analysis from the REGARDS study (NINDS), blacks with hypertension were more aware of their HBP and more frequently received treatment for it than whites but were less likely than whites to have their BP controlled.\(^6^8\)

The higher stroke risk for the stroke belt compared with other regions does not appear to be attributable to hypertension management, because treatment and control rates were similar for the 2 geographic areas.\(^6^8\)

Several studies have shown significantly lower rates of recurrent stroke with lower BPs. Most recently, the BP-reduction component of the SPS3 trial showed that targeting an SBP <130 mm Hg was likely to reduce recurrent stroke by $\approx 20\%$ ($P=0.08$) and significantly reduced ICH by two thirds.\(^6^9\)

Diabetes Mellitus

(See Chapter 10 for more information.)

- DM increases ischemic stroke incidence at all ages, but this risk is most prominent (risk ratio for ischemic stroke conferred by DM ≥ 5) before 65 years of age in both blacks and whites. According to data from the GCNKSS in 2005, the risk ratio for ischemic stroke in blacks ≤ 65 years of age was 5.2 compared with 12.0 for whites; the trend for greater risk conferred by DM at age ≤ 65 years in whites was noted in all 3 prior study periods. Overall, ischemic stroke patients with DM are younger, more likely to be black, and more likely to have HBP, MI, and high cholesterol than nondiabetic patients.\(^7^0\)

- In people with a history of TIA or minor stroke, impaired glucose tolerance nearly doubled the stroke risk compared with those with normal glucose levels and tripled the risks for those with DM.\(^7^1\)

- A meta-analysis of prospective randomized controlled trials of interventions that targeted people with prediabetes revealed a 24% relative risk reduction in fatal and nonfatal strokes (HR, 0.76; 95% CI, 0.58–0.99).\(^7^2\)

- Data from the US Nationwide Inpatient Sample revealed that from 1997 to 2006, the absolute number of acute ischemic stroke hospitalizations declined by 17% (from 489766 in 1997 to 408378 in 2006); however, the absolute number of acute ischemic stroke hospitalizations with comorbid DM rose by 27% (from 97577 [20%] in 1997 to 124244 [30%] in 2006). The rise in comorbid DM was more pronounced in individuals who were relatively younger, black or “other” race, on Medicaid, or admitted to hospitals located in the South. Factors independently associated with higher odds of DM in acute ischemic stroke patients were black or “other” (versus white) race, CHF, peripheral vascular disease, and history of MI, renal disease, or hypertension.\(^7^3\)

- A population-based study of 12375 first-ever stroke patients 25 to 74 years old who were followed up for ≤ 23 years found that diabetic patients had a higher risk of death than nondiabetic patients (adjusted HR, 1.67; 95% CI, 1.58–1.76). The reduced survival of diabetic stroke patients was more pronounced in women ($P=0.02$) and younger individuals ($P<0.001$).\(^7^4\)

- A retrospective analysis of diabetic patients with acute ischemic stroke revealed that those who had been taking and continued taking sulfonylureas were less likely to experience symptomatic hemorrhagic transformation than those who did not take sulfonylureas ($P=0.016$).\(^7^5\)

- The ACCORD study showed that in patients with type 2 DM, targeting SBP to ≤ 120 mm Hg did not reduce the rate of cardiovascular events compared with subjects in whom the SBP target was ≤ 140 mm Hg, except for the end point of stroke, for which intensive therapy reduced the risk of any stroke (HR, 0.59; 95% CI, 0.39–0.89) and nonfatal stroke (HR, 0.63; 95% CI, 0.41–0.96).\(^6^3\)

- The ONTARGET trial revealed that in both patients with and without DM, the adjusted risk of stroke continued to decrease down to achieved SBP values of 115 mm Hg, whereas there was no benefit for other fatal or nonfatal cardiovascular outcomes below an SBP of 130 mm Hg.\(^7^6\)

Disorders of Heart Rhythm

(See Chapter 16 for more information.)

- AF is a powerful risk factor for stroke, independently increasing risk 5-fold throughout all ages. The percentage of strokes attributable to AF increases steeply from 1.5% at 50 to 59 years of age to 23.5% at 80 to 89 years of age.\(^7^7,7^8\)

- Because AF is often asymptomatic\(^7^9,8^0\) and likely frequently undetected clinically,\(^8^1\) the stroke risk attributed to AF may be substantially underestimated.\(^8^2\) Screening for AF in patients with cryptogenic stroke or TIA by use of outpatient telemetry for 21 to 30 days has resulted in an AF detection rate of 12% to 23%.\(^8^1,8^3\)

- Among 2580 participants ≥ 65 years of age with hypertension in whom a cardiac rhythm device that included an atrial lead was implanted, 35% developed subclinical tachyarrhythmias (defined as an atrial rate ≥ 190 beats per minute that lasted 26 minutes). These subclinical events were independently associated with a 2.5-fold increased risk of ischemic stroke or systemic embolism.\(^8^4\)

- Important risk factors for stroke in the setting of AF include advancing age, hypertension, HF, DM, previous stroke or TIA, vascular disease, and female sex.\(^8^5,8^6\) Additional biomarkers, including high levels of troponin and BNP, increase the risk of stroke in the setting of AF independent of those well-established clinical characteristics.\(^8^8\)

High Blood Cholesterol and Other Lipids

(See Chapter 8 for more information.)

For clarity, different types of cholesterol (total cholesterol, subfractions) are described here and are bolded in each bullet point. Overall the association of each cholesterol subfraction with total stroke has shown inconsistent results, and the data are limited on associations with specific ischemic stroke subtypes.

- An association between total cholesterol and ischemic stroke has been found in some prospective studies,\(^8^9–9^1\) but not others.\(^9^2–9^4\) Elevated total cholesterol is inversely associated in multiple studies with hemorrhagic stroke.\(^9^5\)
Data from the Honolulu Heart Program//NHLBI found that in Japanese men 71 to 93 years of age, low concentrations of **HDL cholesterol** were more likely to be associated with a future risk of thromboembolic stroke than were high concentrations.93 However, a meta-analysis of 23 studies performed in the Asia-Pacific Region showed no significant association between low **HDL cholesterol** and stroke risk.94 A Finish study of 27703 men and 30532 women followed up for >20 years for ischemic stroke found an independent inverse association of **HDL cholesterol** with the risks of total and ischemic stroke in women.94

In an analysis by the Emerging Risk Factors Collaboration of individual records on 302430 people without initial vascular disease from 68 long-term prospective studies, HR for ischemic stroke was 1.12 (95% CI, 1.04–1.20) with **non-HDL cholesterol**.98 In a pooled analysis of CHS and ARIC, low **LDL cholesterol** was associated with an increased risk of ICH.99

Among 13951 patients in the Copenhagen Heart Study followed up for 33 years for ischemic stroke, increasing stepwise levels of nonfasting **triglycerides** were associated with increased risk of ischemic stroke in both men and women. In the Rotterdam study (n=9068), increasing quartiles of serum **triglycerides** were associated with a reduced risk of ICH.100

Smoking

(See Chapter 3 for more information.)

- Current smokers have a 2 to 4 times increased risk of stroke compared with nonsmokers or those who have quit for >10 years.101,102
- Cigarette smoking is a risk factor for ischemic stroke and SAH, but the data for ICH are less consistent.101,102
- In a large Danish cohort study, among people with AF, smoking was associated with a higher risk of ischemic stroke/arterial thromboembolism or death, even after adjustment for other traditional risk factors.103
- Smoking is perhaps the most important modifiable risk factor in preventing SAH, with the highest PAR of any SAH risk factor.104
- Data also support a dose-response relationship between smoking and risk of stroke across old and young age groups.101,105
- Discontinuation of smoking has been shown to reduce stroke risk across sex, race, and age groups.105
- Exposure to secondhand smoke (also termed **passive smoking** or **environmental tobacco smoke**) is a risk factor for stroke. Meta-analyses have estimated a pooled RR of 1.25 for exposure to spousal smoking (or nearest equivalent) and risk of stroke. A dose-response relationship between exposure to secondhand smoke and stroke risk has also been reported.106,107

Physical Inactivity

(See Chapter 4 for more information.)

- Results from REGARDS found that participants reporting PA <4 times per week had a 20% increased risk of incident stroke over a mean of 5.7 years compared with those exercising ≥4 times per week. This relationship, which was more pronounced in men than in women, may be explained in large part by the effect of PA on reducing traditional risk factors, such as obesity and DM.108
- Over a mean follow-up of 17 years, the ARIC study found a significant trend among African-Americans toward reduced incidence of stroke with increasing level of PA; a similar trend was observed for Caucasians in the study, although it was not statistically significant. Data from this study showed that although the highest levels of activity were most protective, even modest levels of PA appeared to be beneficial.109
- In NOMAS, a prospective cohort that included white, black, and Hispanic adults in an urban setting followed up for a median of 9 years, moderate to vigorous leisure-time PA was associated with an overall 35% reduction in risk of ischemic stroke.110
- In the Aerobics Center Longitudinal Study of participants who underwent evaluation at the Cooper Clinic in Dallas, TX (46405 men and 15282 women), investigators found that cardiorespiratory fitness as measured by exercise treadmill testing was associated with a reduced risk of fatal and nonfatal stroke. Investigators noted that the effect was mainly notable for a higher intensity level of fitness achieved (7 to 8 maximum metabolic equivalents).111 A prospective cohort study of 22841 men and 24880 women in Finland found a similar dose–response–independent protective effect from vigorous leisure-time PA on ischemic stroke, ICH, and SAH. The effect was more modest for commuting-time PA and was no longer present after adjustment for leisure-time PA.112
- Timing of PA in relation to stroke onset has also been examined in several studies. In a hospital-based case-control study from Heidelberg, Germany, recent activity (within the prior months) was associated with reduced odds of having a stroke or TIA, whereas sports activity during young adulthood that was not continued showed no benefit.113 In a Danish case-control study, ischemic stroke patients were less physically active in the week preceding the stroke than age- and sex-matched control subjects, with the highest activity scores associated with the greatest reduction in odds of stroke.114

Nutrition

(See Chapter 5 for more information.)

- Adherence to a Mediterranean-style diet that was higher in nuts and olive oil was associated with a reduced risk of stroke (HR, 0.54; 95% CI, 0.35–0.84) in a randomized clinical trial conducted in Spain. The protective benefit of the Mediterranean diet observed was greater for strokes than for MI, but stroke subtype was not available.115
- In the Nurses Health and Health Professionals Follow-up Studies, each 1-serving increase in sugar-sweetened soda beverage was associated with a 13% increased risk of ischemic stroke but not hemorrhagic stroke. Conversely, each 1-serving increase in low-calorie or diet soda was associated with a 7% increased risk of ischemic stroke and 27% increased risk of hemorrhagic stroke.116
- A meta-analysis of >94000 people with 34817 stroke events demonstrated that eating ≥5 servings of fish per week versus eating <1 serving per week was associated...
In the setting of AF, women have a significantly higher risk of stroke compared with men (RR, 0.81; 95% CI, 0.62–1.05) but was increased for users of high-dose (>50 µg) patches (RR, 1.89; 95% CI, 1.15–3.11) compared with nonusers.139

Low-estrogen-dose oral contraceptives are associated with a 93% increased risk of ischemic stroke, but the absolute increased risk is small (4.1 ischemic strokes per 100 000 nonsmoking, normotensive women).140,141

Migraine with aura is associated with ischemic stroke in younger women, particularly if they smoke or use oral contraceptives. The combination of all 3 factors increases the risk 9-fold compared with women without any of these factors.142,143

Sleep Apnea

Overall, randomized clinical trial data indicate that the use of estrogen plus progestin, as well as estrogen alone, increases stroke risk in postmenopausal, generally healthy women and provides no protection for postmenopausal women with established CHD134–137 and recent stroke or TIA.138

In a nested case-control study of the United Kingdom’s General Practice Research Database, stroke risk was not increased for users of low-dose (≤50 µg) estrogen patches (RR, 0.81; 95% CI, 0.62–1.05) but was increased for users of high-dose (>50 µg) patches (RR, 1.89; 95% CI, 1.15–3.11) compared with nonusers.139

Low-estrogen-dose oral contraceptives are associated with a 93% increased risk of ischemic stroke, but the absolute increased risk is small (4.1 ischemic strokes per 100 000 nonsmoking, normotensive women).140,141

Migraine with aura is associated with ischemic stroke in younger women, particularly if they smoke or use oral contraceptives. The combination of all 3 factors increases the risk 9-fold compared with women without any of these factors.142,143

In the Baltimore-Washington Cooperative Young Stroke Study, the risk of ischemic stroke or ICH during pregnancy and the first 6 weeks after giving birth was 2.4 times greater than for nonpregnant women of similar age and race. The excess risk of stroke (all types except SAH) attributable to the combined pregnancy/postpregnancy period was 8.1 per 100 000 pregnancies.144

Analyses of the US Nationwide Inpatient Sample from 1994 to 1995 and from 2006 to 2007 show a temporal increase in the proportion of pregnancy hospitalizations that were associated with a stroke, with a 47% increase for antenatal hospitalizations and an 83% increase for postpartum hospitalizations. Increases in the prevalence of HD and hypertensive disorders accounted for almost all the increase in postpartum stroke hospitalizations but not the antenatal stroke hospitalizations.89

Preeclampsia is a risk factor for ischemic stroke remote from pregnancy.145 The increase in stroke risk related to preeclampsia may be mediated by later risk of hypertension and DM.146

Risk Factor Issues Specific to Women

See the “Guidelines for the Prevention of Stroke in Women: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association”126 for more in-depth coverage of stroke risk factors unique to women.126

On average, women are ≈4 years older at stroke onset than men (≈75 years compared with 71 years).14

In the setting of AF, women have a significantly higher risk of stroke than men.127–131

Analysis of data from the FHS found that women with natural menopause before 42 years of age had twice the ischemic stroke risk of women with natural menopause after 42 years of age.132 However, no association was found between age at natural menopause and risk of ischemic or hemorrhagic stroke in the Nurse’s Health Study.133

with a 12% reduction in stroke risk; however, these results were not consistent across all cohort studies.117

Using registry data from Sweden, people eating ≥7 servings of fruits and vegetables per day had a 19% reduced risk of stroke compared with those only eating 1 serving per day. This effect was only seen in people who did not have hypertension.118

Family History and Genetics

(See Chapter 7 for more information.)

In the FHS, a documented parental ischemic stroke by the age of 65 years was associated with a 3-fold increase in ischemic stroke risk in offspring, even after adjustment for other known stroke risk factors. The absolute magnitude of the increased risk was greatest in those in the highest quintile of the FRS. By age 65 years, people in the highest FRS quintile with an early parental ischemic stroke had a 25% risk of stroke compared with a 7.5% risk of ischemic stroke for those without such a history.119

Chronic Kidney Disease

(See Chapter 12 for more information.)

The CHS (NHLBI) showed that people with creatinine ≥1.5 mg/dL were at increased risk for stroke, with an adjusted HR of 1.77 (95% CI, 1.08–2.91).120

Participants in REGARDS with a reduced eGFR were also shown to have increased risk of stroke symptoms,121 and a meta-analysis of >280 000 patients showed a 43% increased incident stroke risk among patients with a GFR <60 mL·min⁻¹·1.73 m⁻².122

In a study of 539 287 Swedish men and women followed up for 12 years,123 HRs for ICH were as follows: for GFR 60 to 90 mL·min⁻¹·1.73 m⁻² (mild), 1.04 (95% CI, 0.93–1.15); for GFR 30 to 60 mL·min⁻¹·1.73 m⁻² (moderate), 1.26 (95% CI, 0.96–1.64); and for GFR 15 to 30 mL·min⁻¹·1.73 m⁻² (severe impairment), 2.31 (95% CI, 1.10–4.87). Among 128 patients with ICH, the presence of GFR <45 mL·min⁻¹·1.73 m⁻² was associated with larger, lobar hematomas and poor outcome.122

A urinary albumin to creatinine ratio >30 mg/g was associated with a 40% increased risk of stroke in black participants but not white participants in the REGARDS study.125

Preeclampsia is a risk factor for ischemic stroke remote from pregnancy.145 The increase in stroke risk related to preeclampsia may be mediated by later risk of hypertension and DM.146

Sleep Apnea

The prevalence of sleep-disordered breathing, defined as an AHI ≥5, has been estimated to be 34% for men and 17% for women aged 30 to 70 years.147

Sleep apnea is common after stroke, with prevalence in excess of 50%.148

In the Sleep Heart Health Study, obstructive sleep apnea measured by the obstructive AHI was associated with risk of incident ischemic stroke in men after adjustment for confounders (P=0.016 for linear trend associated with quartiles of AHI) but not in women. Compared with men in the lowest quartile of AHI, men in the highest quartile (AHI >19) had an adjusted HR of 2.9 (95% CI, 1.1–7.4).149

In a meta-analysis of 5 studies, obstructive sleep apnea was associated with incident stroke with an OR of 2.2 (95% CI, 1.6–3.2). Similar results were found in a second meta-analysis that included additional studies (OR, 2.1; 95% CI, 1.5–2.9).150,151

Overall, randomized clinical trial data indicate that the use of estrogen plus progestin, as well as estrogen alone, increases stroke risk in postmenopausal, generally healthy women and provides no protection for postmenopausal women with established CHD134–137 and recent stroke or TIA.138
Factors

A meta-analysis of 28 prospective cohort studies compared the awareness of stroke warning signs and risk factors. Among 6019 adults followed up for a mean of 16.3 years from the first NHANES, higher levels of anxiety symptoms were associated with increased risk of incident stroke after adjustment for demographic, cardiovascular, and behavioral risk factors (HR, 1.14; 95% CI, 1.03–1.25). This association remained significant with further adjustment for depressive symptoms. In the Chicago Health and Aging Project, higher psychological distress was associated with higher stroke mortality (HR, 1.29; 95% CI, 1.10–1.52) and incident hemorrhagic strokes (HR, 1.70; 95% CI, 1.28–2.25) among 4120 adults after risk adjustment for age, sex, race, and stroke risk factors.

Depression was associated with a nearly 2-fold increased odds of stroke after adjustment for age, socioeconomic status, lifestyle, and physiological risk factors (OR, 1.94; 95% CI, 1.37–2.74) in a cohort of 10,547 women aged 47 to 52 years who were followed up for 12 years as part of the Australian Longitudinal Study on Women’s Health. In a meta-analysis of 17 community-based or population-based prospective studies published between 1994 and 2010 involving 206,641 participants, people with a history of depression experienced a 34% higher risk for the development of subsequent stroke after adjustment for potential confounding factors (pooled RR, 1.34; 95% CI, 1.17–1.54); however, substantial between-study heterogeneity was noted. Associations were similar for men and women.

A meta-analysis of 28 prospective cohort studies comprising 317,540 participants with a follow-up period that ranged from 2 to 29 years found that depression was prospectively associated with an increased risk of total stroke (pooled HR, 1.45; 95% CI, 1.29–1.63), fatal stroke (pooled HR, 1.55; 95% CI, 1.25–1.93), and ischemic stroke (pooled HR, 1.25; 95 CI, 1.11–1.40).

Psychosocial Risk Factors

Among 6019 adults followed up for a mean of 16.3 years from the first NHANES, higher levels of anxiety symptoms were associated with increased risk of incident stroke after adjustment for demographic, cardiovascular, and behavioral risk factors (HR, 1.14; 95% CI, 1.03–1.25). This association remained significant with further adjustment for depressive symptoms. In the Chicago Health and Aging Project, higher psychological distress was associated with higher stroke mortality (HR, 1.29; 95% CI, 1.10–1.52) and incident hemorrhagic strokes (HR, 1.70; 95% CI, 1.28–2.25) among 4120 adults after risk adjustment for age, sex, race, and stroke risk factors.

Depression was associated with a nearly 2-fold increased odds of stroke after adjustment for age, socioeconomic status, lifestyle, and physiological risk factors (OR, 1.94; 95% CI, 1.37–2.74) in a cohort of 10,547 women aged 47 to 52 years who were followed up for 12 years as part of the Australian Longitudinal Study on Women’s Health. In a meta-analysis of 17 community-based or population-based prospective studies published between 1994 and 2010 involving 206,641 participants, people with a history of depression experienced a 34% higher risk for the development of subsequent stroke after adjustment for potential confounding factors (pooled RR, 1.34; 95% CI, 1.17–1.54); however, substantial between-study heterogeneity was noted. Associations were similar for men and women.

A meta-analysis of 28 prospective cohort studies comprising 317,540 participants with a follow-up period that ranged from 2 to 29 years found that depression was prospectively associated with an increased risk of total stroke (pooled HR, 1.45; 95% CI, 1.29–1.63), fatal stroke (pooled HR, 1.55; 95% CI, 1.25–1.93), and ischemic stroke (pooled HR, 1.25; 95 CI, 1.11–1.40).

Awareness of Stroke Warning Signs and Risk Factors

In the 2009 NHIS, 51.2% of subjects were aware of 5 stroke warning symptoms and would first call 9-1-1 if they thought that someone was having a stroke. Awareness of all 5 stroke warning symptoms and calling 9-1-1 was higher among whites than blacks and Hispanics (55.9%, 47.1%, and 36.5%, respectively), women than men (53.6% versus 48.6%), and people with higher versus lower educational attainment (59.0% for people with a bachelor’s degree or more compared with 51.4% for people with a high school diploma or some college and 36.7% for those who had not received a high school diploma; unpublished NHLBI tabulation).

In the BRFSS from 2005 (n=71,994), 43.6% of respondents were aware of the 5 principal stroke symptoms, but only 18.6% responded correctly when they were also asked to identify that chest pain was not a stroke symptom. Respondents who were white and college educated were more likely to identify stroke-related symptoms correctly, and there was significant geographic variability (highest proportion of correct responses in Minnesota, Virginia, and Iowa; lowest in Louisiana, Oklahoma, and Tennessee).

A study was conducted of patients admitted to an ED with possible stroke to determine their knowledge of the signs, symptoms, and risk factors of stroke. Of the 163 patients able to respond, 39% did not know a single sign or symptom. Patients ≥65 years of age were less likely than those <65 years old to know a sign or symptom of stroke (28% versus 47%), and 43% did not know a single risk factor. Overall, almost 40% of patients did not know the signs, symptoms, and risk factors for stroke.

A study of patients who had experienced a stroke found that only 60.5% were able to accurately identify 1 stroke risk factor and that 55.3% were able to identify 1 stroke symptom. Patients’ median delay time from onset of symptoms to admission in the ED was 16 hours, and only 31.6% accessed the ED in <2 hours. Analysis showed that the appearance of nonmotor symptoms as the primary symptom and nonuse of the 9-1-1 system were significant predictors of delay >2 hours. Someone other than the patient made the decision to seek treatment in 66% of the cases.

Spanish-speaking Hispanics are less likely to know all stroke symptoms than English-speaking Hispanics, non-Hispanic blacks, and non-Hispanic whites. Lack of English proficiency is strongly associated with lack of stroke knowledge among Hispanics.

A study of CVD awareness carried out by the AHA among women in the United States who were >75 years old (n=1205) showed that low proportions of women identified severe headache (23%), dizziness (20%), and vision loss/changes (18%) as stroke warning symptoms.

Aftermath

(See Charts 14-9 through 14-11.)

Stroke is a leading cause of serious long-term disability in the United States (Survey of Income and Program Participation, a survey of the US Census Bureau).

Stroke was among the top 18 diseases contributing to years lived with disability in 2010; of these 18 causes, only the age-standardized rates for stroke increased significantly between 1990 and 2010 (p<0.05).

Among Medicare patients discharged from the hospital after stroke, 45% return directly home, 24% are discharged to inpatient rehabilitation facilities, and 31% are discharged to skilled nursing facilities. Of stroke patients returning directly home, 32% use home healthcare services.

The 30-day hospital readmission rate after discharge from postacute rehabilitation for stroke is 12.7% among fee-for-service Medicare patients. The mean rehabilitation length of stay for stroke is 14.6 days.
Stroke in Children

- On the basis of pathogenic differences, pediatric strokes are typically classified as either perinatal (occurring at ≤28 days of life and including in utero strokes) or (later) childhood.
- Estimates of the overall annual incidence of stroke in US children are 6.4 per 100,000 children (0 to 15 years) in 1999 in the GCNKSS and 4.6 per 100,000 children (0 to 19 years) in 1997 to 2003 in a northern California population. Approximately half of all incident childhood strokes are hemorrhagic.
- The prevalence of perinatal strokes is 29 per 100,000 live births, or 1 per 3500 live births in the 1997 to 2003 Kaiser Permanente of Northern California population.
- A history of infarct, preeclampsia, prolonged rupture of membranes, and chorioamnionitis are independent maternal risk factors for perinatal arterial ischemic stroke. However, maternal health and pregnancies are normal in most cases.
- Among children aged 1 month to 18 years presenting with a “brain attack,” defined as sudden onset focal brain dysfunction, 7% have a stroke, whereas more common diagnoses are migraine (28%), seizures (15%), and Bell’s palsy (10%).
- The most common cause of arterial ischemic stroke in children is a cerebral arteriopathy, found in more than half of all cases.
- The annual incidence of new diagnoses of Moyamoya disease—a progressive cerebral arteriopathy that is more common in Asians, particularly Koreans and Japanese—is 0.15 per 100,000 Taiwanese and 2.3 per 100,000 Koreans, with a peak incidence of 3.8 per 100,000 Korean children between 5 and 10 years of age.
- The age-adjusted incidence of stroke in childhood cancer survivors is 77 per 100,000 person-years compared with 9.3 per 100,000 person-years in their siblings. Treatment with cranial radiation therapy increases stroke risk in a dose-dependent fashion.
- HD confers an 8- to 16-fold increased risk of arterial ischemic stroke but was present in only 8% of children with stroke in a population-based cohort. Congenital heart defects are 3-fold more common than acquired HD (eg, cardiomyopathy or endocarditis) in children with arterial ischemic stroke.
- Exposure to minor infection in the prior month is an independent risk factor for childhood arterial ischemic stroke, present in one third of cases (adjusted OR, 3.9; 95% CI, 2.0–7.4). Head or neck trauma in the prior week is an even stronger risk factor (adjusted OR, 36; 95% CI, 5–281), present in 10% of cases.
- Thrombophilias (genetic and acquired) are risk factors for childhood stroke, with summary ORs ranging from 1.6 to 8.8 in a meta-analysis.
- In a prospective Swiss registry, atherosclerotic risk factors were less common in children with arterial ischemic stroke than in young adults; the most common of these factors in children was hyperlipidemia (15%). However, an analysis of the Nationwide Inpatient Sample suggests a low but rising prevalence of these factors among US adolescents and young adults hospitalized for ischemic stroke (1995 versus 2008).
- Compared with girls, US boys have a 25% increased risk of ischemic stroke and a 34% increased risk of ICH, whereas a study in the United Kingdom found no sex difference in childhood ischemic stroke. Compared with white children, black children in both the United States and United Kingdom have a >2-fold risk of stroke. The increased risk among blacks is not fully explained by the presence of sickle cell disease, nor is the excess risk among boys fully explained by trauma.
- The excess ischemic stroke mortality in US black children compared with white children has diminished since 1998 when the STOP trial was published, which established a method for primary stroke prevention in children with sickle cell disease.
- Among young adult survivors of childhood stroke, 37% had a normal modified Rankin score, 42% had mild deficits, 8% had moderate deficits, and 15% had severe deficits. Concomitant involvement of the basal ganglia, cerebral cortex, and posterior limb of the internal capsule predicts a persistent hemiparesis.
- Survivors of childhood arterial ischemic stroke have, on average, low normal cognitive performance, with
poorest performance in visuomotor skills, short-term memory, and processing speed. Younger age at stroke and seizures, but not laterality of stroke (left versus right), predict worse cognitive outcome.200

- Despite current treatment, 1 of 10 children with ischemic or hemorrhagic stroke will have a recurrence within 5 years.201,202 The 5-year recurrence risk is as high as 60% among children with cerebral arteriopathy. The recurrence risk after perinatal stroke, however, is negligible.203

- Among 59 long-term survivors of pediatric brain aneurysms, 41% developed new or recurrent aneurysm during a median follow-up of 34 years; of those, one third developed multiple aneurysms.204

- More than 25% of survivors of perinatal ischemic strokes develop delayed seizures within 3 years; babies with larger strokes are at higher risk.205 The cumulative risk of delayed seizures after later childhood stroke is 13% at 5 years and 30% at 10 years.206 Children with acute seizures (within 7 days of their stroke) have the highest risk for delayed seizures, >70% by 5 years after the stroke.207

Stroke in the Very Elderly

- Stroke patients >85 years of age make up 17% of all stroke patients.208

- Very elderly patients have a higher risk-adjusted mortality,209 have higher disability,209 have longer hospitalizations,210 receive less evidenced-based care,211 and are less likely to be discharged to their original place of residence.210,213

- According to analyses from the US Nationwide Inpatient Sample, over the past decade, in-hospital mortality rates after stroke have declined for every age/sex group except men aged >84 years.214

- Over the next 40 years (2010–2050), the number of incident strokes is expected to more than double, with the majority of the increase among the elderly (aged ≥75 years) and minority groups.215

Organization of Stroke Care

- Among 30,947 patients hospitalized with acute ischemic stroke in the state of New York between 2005 and 2006, admission to a designated stroke center was associated with lower 30-day mortality (10.1% versus 12.5%; adjusted mortality difference, −2.5%; 95% CI, −3.6% to −1.4%) and greater use of thrombolytic therapy (4.8% versus 1.7%; adjusted difference, 2.2%; 95% CI, 1.6%–2.8%), but there was no difference in 30-day all-cause readmission or discharge to a skilled nursing facility.216

- A study using Medicare data found that among 6197 SAH and 31,272 ICH stroke discharges in 2006, patients treated at Joint Commission–certified primary stroke centers had lower 30-day risk-adjusted mortality than patients treated at noncertified centers (SAH OR, 0.66 [95% CI, 0.58–0.76]; ICH OR, 0.86 [95% CI, 0.80–0.92]), but no difference was seen for 30-day all-cause readmission.217

- A Cochrane review of 28 trials involving 5855 participants concluded that stroke patients who receive organized inpatient care in a stroke unit had better outcomes, including a decreased odds of mortality (median of 1 year; OR, 0.87; 95% CI, 0.69–0.94), death or institutionalized care (0.78; 95% CI, 0.68–0.89), and death or dependency (OR, 0.79; 95% CI, 0.68–0.90) than patients treated in an alternative form of inpatient care. The findings were independent of patient age, sex, initial stroke severity, or stroke type.218

- Data have shown a steady increase in the proportion of ischemic stroke patients who are treated with tPA therapy. For example, administrative data in 2009 found that between 3.4% and 5.2% of acute ischemic strokes were treated with tPA, which was approximately double the treatment rate observed in 2005.219 Similarly, analysis of data from the GWTG-Stroke program demonstrated substantial increases in tPA treatment rates over the period from 2003 to 2011.220

- Analysis of tPA-treated patients in the GWTG-Stroke program between 2003 and 2009 found that the majority were not treated within the guideline-recommended interval of 60 minutes from hospital arrival and that this proportion had increased only modestly during this period (from 19% in 2003 to 29% in 2009).221 Paradoxically, door-to-needle times were found to be inversely related to onset to arrival times; thus, tPA-treated patients who arrived earlier were less likely to receive treatment within 60 minutes of arrival.222

- Implementation of Target Stroke, a national quality improvement initiative to improve the timeliness of tPA administration, found that among 71,169 patients with acute ischemic stroke treated with tPA at 1030 GWTG-Stroke participating hospitals, participation in the program was associated with a decreased door-to-needle time, lower in-hospital mortality (OR, 0.89; 95% CI, 0.83–0.94) and intracranial hemorrhage (OR, 0.83; 95% CI, 0.76–0.91), and an increase in the percentage of patients discharged home (OR, 1.14; 95% CI, 1.09–1.19).223

- Approximately 70% of Medicare beneficiaries discharged with acute stroke use Medicare-covered postacute care,224 with most receiving care from more than 1 type of setting.225,226 The majority of stroke patients receive rehabilitation care in a skilled nursing facility after discharge (32%), followed by an inpatient rehabilitation facility (22%), and then home health care (15%).227

- The proportion of stroke patients not referred to any postacute care has increased in recent years,227 with an analysis of 2006 Medicare data finding that proportion to be as high as 42%,228

Hospital Discharges/Ambulatory Care Visits

(See Table 14-1.)

- From 2000 to 2010, the number of inpatient discharges from short-stay hospitals with stroke as the first-listed diagnosis remained about the same, with discharges of 98,100 and 101,050, respectively (NHDS, NHLBI tabulation).229

- Data from 2010 from the NHDS of the NCHS showed that the average length of stay for discharges with stroke as the first-listed diagnosis was 6.1 days (median, 3 days) compared with 9.5 days (median, 6 days) in 1990 (NHDS, NHLBI tabulation).229

- In 2010, men and women accounted for roughly the same number of hospital stays for stroke in the 18- to 44-year-old age group. Among people 45 to 64 years of age, 57.1% of
stroke patients were men. After 65 years of age, women were the majority. Among people 65 to 84 years of age, 53.4% of stroke patients were women, whereas among those ≥85 years of age, women constituted 66.2% of all stroke patients.230

- A first-ever county-level Atlas of Stroke Hospitalizations Among Medicare Beneficiaries was released in 2008 by the CDC in collaboration with the Centers for Medicare & Medicaid Services. It found that the stroke hospitalization rate for blacks was 27% higher than for the US population in general, 30% higher than for whites, and 36% higher than for Hispanics. In contrast to whites and Hispanics, the highest percentage of strokes in blacks (42.3%) occurred in the youngest Medicare age group (65–74 years of age).238

- In 2010, there were 671,000 ED visits and 257,000 outpatient department visits with stroke as the first-listed diagnosis (NHAMCS, unpublished NHLBI tabulation). In 2010, physician office visits for a first-listed diagnosis of stroke totaled 2,207,000 (NAMCS, unpublished NHLBI tabulation).239

Operations and Procedures

(See Chart 14-12.)

- In 2010, an estimated 100,000 inpatient endarterectomy procedures were performed in the United States. Carotid endarterectomy is the most frequently performed surgical procedure to prevent stroke (NHDS, NHLBI tabulation).

- Although rates of carotid endarterectomy have decreased between 1997 and 2010, the use of carotid stenting has increased dramatically (Nationwide Inpatient Sample, HCUP, AHRQ).

- The practice of carotid stenting in the United States is expanding, from <3% of all carotid artery revascularization procedures in 1998 to 13% in 2008.231

- The randomized CREST study compared carotid endarterectomy and stenting for symptomatic and asymptomatic carotid stenosis. There was no overall difference in the primary end point of stroke, MI, or death; however, carotid endarterectomy showed superiority with increasing age, with the crossover point at approximately age 70 years, and was associated with fewer strokes, which had a greater impact on quality of life than MI.232,233

- In-hospital mortality for carotid endarterectomy has decreased steadily from 1993 to 2010 (Nationwide Inpatient Sample, HCUP, AHRQ).

- In the Medicare population, in-hospital stroke rate and mortality are similar for carotid endarterectomy and carotid stenting.234

- Carotid stenting is associated with significantly higher costs than carotid endarterectomy in asymptomatic patients235 and may be less cost-effective in general.236

- The percentage of patients undergoing carotid endarterectomy within 2 weeks of the onset of stroke increased from 13% in 2007 to 47% in 2010.237

Cost

(See Table 14-1.)

- In 2011:
 - The direct and indirect cost of stroke was $33.6 billion (MEPS, NHLBI tabulation).
 - The estimated direct medical cost of stroke was $17.5 billion. This includes hospital outpatient or office-based provider visits, hospital inpatient stays, ED visits, prescribed medicines, and home health care.238
 - The mean expense per patient for direct care for any type of service (including hospital inpatient stays, outpatient and office-based visits, ED visits, prescribed medicines, and home health care) in the United States was estimated at $4692.238

- Between 2012 and 2030, total direct medical stroke-related costs are projected to triple, from $71.6 billion to $184.1 billion, with the majority of the projected increase in costs arising from those 65 to 79 years of age.9

- The total cost of stroke from 2005 to 2050, in 2005 dollars, is projected to be $1.52 trillion for non-Hispanic whites, $313 billion for Hispanics, and $379 billion for blacks. The per capita cost of stroke estimate is highest in blacks ($257,822), followed by Hispanics ($17,201) and non-Hispanic whites ($15,597). Loss of earnings is expected to be the highest cost contributor in each race/ethnic group.239

- During 2001 to 2005, the average cost for outpatient stroke rehabilitation services and medications the first year after inpatient rehabilitation discharge was $11,145. The corresponding average yearly cost of medication was $3376, whereas the average cost of yearly rehabilitation service utilization was $7318.240

- Recurrent stroke patients had 38% higher costs per patient 1 year after discharge from index hospitalization than new stroke patients.241

- In adjusted models that controlled for relevant covariates, the attributable 1-year cost of poststroke aphasia was estimated at $1703 in 2004 dollars.242

- Data from Sweden show that healthcare costs associated with stroke survivors with spasticity are 4-fold higher than for stroke survivors without spasticity.243

- The estimated cost of acute pediatric stroke in the United States was $42 million in 2003. The mean cost of short-term hospital care was $20,927 per discharge.244

- After adjustment for routine healthcare costs, the average 5-year cost of a neonatal stroke was $51,719 and that of a childhood stroke was $135,161. Costs among children with stroke continued to exceed those in age-matched control children even in the fifth year by an average of $2016.245

Global Burden of Stroke

Although global age-adjusted mortality rates for ischemic and hemorrhagic stroke decreased between 1990 and 2010, the absolute number of people who have strokes annually, as well as related deaths and DALYs lost, increased. The majority of global stroke burden is in low-income and middle-income countries.246

- Worldwide in 2010
 - Prevalence of stroke was 33 million, with 16.9 million people having a first stroke.247
 - 5.2 million (31%) first strokes were in those <65 years of age.247
 - There were an estimated 11.6 million events of incident ischemic stroke and 5.3 million events of incident hemorrhagic stroke.
hemorrhagic stroke, 63% and 80%, respectively, in low- and middle-income countries. Stroke was the second-leading global cause of death behind ischemic HD, accounting for 11.13% of total deaths worldwide. Stroke was the second-leading global cause of death behind ischemic HD, accounting for 11.13% of total deaths worldwide.

—Incidence of ischemic stroke was significantly reduced by 13% (95% CI, 6%–18%) in high-income countries. No significant change was seen in low- or middle-income countries.

—Incidence of hemorrhagic stroke decreased by 19% (95% CI, 9%–15%) in high-income countries. Rates increased by 22% (95% CI, 5%–30%) in low- and middle-income countries, with a 19% (95% CI, 5%–30%) increase in those aged <75 years.

—Ischemic stroke mortality decreased 37% in high-income countries and by 14% in low- and middle-income countries.

—Hemorrhagic stroke mortality decreased 38% in high-income countries and by 23% in low- and middle-income countries.

References

Heart Disease and Stroke Statistics—2015 Update: Chapter 14   e191

Downloaded from http://circ.ahajournals.org/ by guest on November 6, 2017

Russo V, Barbone F, Valente M. Incidence of transient ischemic attack and
32. Hankey GJ. Impact of treatment of people with transient ischemic attack
on stroke incidence and public health. Cerebrovasc Dis. 1996;6(suppl
1):26–33.
34. Wu CM, McLaughlin K, Lorenzetti DL, Hill MD, Manns BJ, Ghali WA.
Early risk of stroke after transient ischemic attack: a systematic review and
SJ, Cuthbertson FC, Rothwell PM; Oxford Vascular Study. Populationbased study of disability and institutionalization after transient ischemic
Wilde J, Dennis M, Sandercock P, Wardlaw JM. Clinical and imaging services for TIA and minor stroke: results of two surveys of practice across
the UK. BMJ Open. 2013;3;e003359.
E, Hatsukami TS, Higashida RT, Johnston SC, Kidwell CS, Lutsep
HL,Miller E, Sacco RL. Definition and evaluation of transient ischemic
attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council;
Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing;
40. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A,
Elkind MS, George MG, Hamdan AD, Higashida RT, Hoh BL, Janis LS,
Kase CS, Kleindorfer DO, Lee JM, Moseley ME, Peterson ED, Turan TN,
Valderrama AL, Vinters HV; American Heart Association Stroke Council, Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular and
Stroke Nursing; Council on Epidemiology and Prevention; Council on
Peripheral Vascular Disease; Council on Nutrition, Physical Activity and
Metabolism. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/
2010;74:588–593.
42. Hong KS, Yegiaian S, Lee M, Lee J, Saver JL. Declining stroke and
vascular event recurrence rates in secondary prevention trials over the
past 50 years and consequences for current trial design. Circulation.
2011;123:2111–2119.
Y, Lichtman JH. Trends in one-year recurrent ischemic stroke among the
44. Redfors P, Jood K, Holmegaard L, Rosengren A, Blomstrand C, Jern C.
45. Lee BI, Nam HS, Heo JH, Kim DI. Yonsei Stroke Registry: Analysis of 1,000 patients with acute cerebral infarctions. Cerebrovasc Dis.
Cause of stroke recurrence is multifactorial: patterns, risk factors, and outcomes of stroke recurrence in the South London Stroke Register. Stroke.
2003;34:1457–1463.

47. Jones SB, Sen S, Lakshminarayan K, Rosamond WD. Poststroke outcomes vary by pathogenic stroke subtype in the Atherosclerosis Risk in
of recurrent vascular events after young stroke: the FUTURE study. Ann
49. Lackland DT, Roccella EJ, Deutsch A, Fornage M, George MG, Howard
EE, Towfighi A; on behalf of the American Heart Association Stroke
Council, Council on Cardiovascular Nursing, Council on Quality of Care
and Outcomes and Research, and Council on Functional Genomics and
Translational Biology. Factors influencing the decline in stroke mortality:
50. National Center for Health Statistics. Mortality multiple cause micro-data
51. National Center for Health Statistics. Health Data Interactive. Centers for
52. Gillum RF, Kwagyan J, Obisesan TO. Ethnic and geographic variation in
53. Schieb LJ, Ayala C, Valderrama AL, Veazie MA. Trends and disparities in
stroke mortality by region for American Indians and Alaska Natives. Am J
54. Ayala C, Greenlund KJ, Croft JB, Keenan NL, Donehoo RS, Giles
55. Centers for Disease Control and Prevention (CDC). Disparities in deaths
from stroke among persons aged <75 years: United States, 2002. MMWR
56. Casper ML, Nwaise IA, Croft JB, Nilasena DS. Atlas of Stroke Hospitalizations Among Medicare Beneficiaries. Atlanta, GA: US Department of
Health and Human Services, Centers for Disease Control and Prevention;
2008.
57. Rutten-Jacobs LC, Arntz RM, Maaijwee NA, Schoonderwaldt HC,
­Dorresteijn LD, van Dijk EJ, de Leeuw FE. Long-term mortality after
58. Lanska D. Geographic distribution of stroke mortality in the United States:
59. Casper ML, Wing S, Anda RF, Knowles M, Pollard RA. The shifting
stroke belt: changes in the geographic pattern of stroke mortality in the
60. Howard G, Evans GW, Pearce K, Howard VJ, Bell RA, Mayer EJ, Burke
GL. Is the stroke belt disappearing? An analysis of racial, temporal, and
61. Perry HM, Roccella EJ. Conference report on stroke mortality in the
Evaluation of social status as a contributing factor to the stroke belt region
63. ACCORD Study Group. Effects of intensive blood-pressure control in
64. Howard G, Cushman M, Kissela BM, Kleindorfer DO, McClure LA,
­Safford MM, Rhodes JD, Soliman EZ, Moy CS, Judd SE, Howard VJ;
for the REasons for Geographic and Racial Differences in Stroke (REGARDS) Investigators. Traditional risk factors as the underlying cause
of racial disparities in stroke: lessons from the half-full (empty?) glass.
65. Howard G, Lackland DT, Kleindorfer DO, Kissela BM, Moy CS, Judd SE,
Safford MM, Cushman M, Glasser SP, Howard VJ. Racial differences in
the impact of elevated systolic blood pressure on stroke risk. JAMA Intern
66. White CL, Pergola PE, Szychowski JM, Talbert R, Cervantes-Arriaga A,
Clark HD, Del Brutto OH, Godoy IE, Hill MD, Pelegri A, Sussman CR,
Taylor AA, Valdivia J, Anderson DC, Conwit R, Benavente OR; for the
SPS3 Investigators. Blood pressure after recent stroke: baseline findings
from the Secondary Prevention of Small Subcortical Strokes Trial. Am J
of baseline prehypertension and risk of incident stroke: a meta-analysis.



e194 Circulation January 27, 2015

164. Żerwic J, Young Hwang S, Tucco L. Interpretation of symptoms and delay in seeking treatment by patients who have had a stroke: exploratory study. Heart Lung. 2007;36:25–34.

Prospective data from a stroke unit. \(2013;80:29–38.\)

Sacquegna T. Independent predictors of ischemic stroke in the elderly: \(2013;74:249–256.\)

Acute seizures predict epilepsy after childhood stroke. \(2011;127:e1550–e1557.\)

Berger K, Intrator O. Postacute care following stroke or hip fracture: single factor. \(2011;237:750–758.\)

Stevenson MD, Escare JJ. Effects of payment changes on trends in post-acute care. \(2009:44:1188–1210.\)

Table 14-1. Stroke

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes</td>
<td>6600 000 (2.6%)</td>
<td>795 000</td>
<td>128 932</td>
<td>1 015 000</td>
<td>$33.6 Billion</td>
</tr>
<tr>
<td>Males</td>
<td>3 000 000 (2.5%)</td>
<td>370 000 (46.5%)†</td>
<td>52 335 (40.6%)†</td>
<td>485 000</td>
<td>...</td>
</tr>
<tr>
<td>Females</td>
<td>3 600 000 (2.7%)</td>
<td>425 000 (53.5%)†</td>
<td>76 597 (59.4%)†</td>
<td>530 000</td>
<td>...</td>
</tr>
<tr>
<td>NH white males</td>
<td>2.2%</td>
<td>325 000‡</td>
<td>43 264</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NH white females</td>
<td>2.5%</td>
<td>365 000‡</td>
<td>65 278</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NH black males</td>
<td>4.2%</td>
<td>45 000‡</td>
<td>70 39</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NH black females</td>
<td>4.7%</td>
<td>60 000‡</td>
<td>88 14</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic males</td>
<td>2.8%</td>
<td>...</td>
<td>*</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic females</td>
<td>2.0%</td>
<td>...</td>
<td>*</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Asian</td>
<td>...</td>
<td>...</td>
<td>3937§</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>2.7%</td>
<td></td>
<td>¶</td>
<td>...</td>
<td>600</td>
</tr>
</tbody>
</table>

Ellipses (…) indicate data not available; and NH, non-Hispanic.

*Mortality data for the white, black, Asian or Pacific Islander, and American Indian or Alaska Native populations include deaths of people of Hispanic and non-Hispanic origin. Death rates for Hispanic, American Indian or Alaska Native, and Asian and Pacific Islander people should be interpreted with caution because of inconsistencies in reporting Hispanic origin or race on the death certificate compared with censuses, surveys, and birth certificates. Studies have shown underreporting on death certificates of American Indian or Alaska Native, Asian and Pacific Islander, and Hispanic decedents, as well as undercounts of these groups in censuses.

†These percentages represent the portion of total stroke incidence or mortality that applies to males vs females.

‡Estimates include Hispanics and non-Hispanics. Estimates for whites include other nonblack races.

§Includes Chinese, Filipino, Hawaiian, Japanese, and other Asian or Pacific Islander.

¶National Health Interview Survey (2013), National Center for Health Statistics; data are weighted percentages for Americans ≥18 years of age.

¶Estimate considered unreliable or does not meet standards of reliability or precision.

Sources: Prevalence: National Health and Nutrition Examination Survey 2009 to 2012, National Center for Health Statistics (NCHS) and National Heart, Lung, and Blood Institute (NHLBI). Percentages for racial/ethnic groups are age adjusted for Americans ≥20 years of age. Age-specific percentages are extrapolated to the 2012 US population. Incidence: Greater Cincinnati/Northern Kentucky Stroke Study/National Institutes of Neurological Disorders and Stroke data for 1999 provided on August 1, 2007. US estimates compiled by NHLBI. See also Kissela et al. Data include children. Mortality: Centers for Disease Control and Prevention/NCHS, 2011 Mortality Multiple Cause-of-Death—United States. These data represent underlying cause of death only. Mortality data for white and black males and females include Hispanics. Hospital discharges: National Hospital Discharge Survey, NCHS. Data include those inpatients discharged alive, dead, or status unknown. Cost: NHLBI. Data include estimated direct and indirect costs for 2011.
<table>
<thead>
<tr>
<th>Factor</th>
<th>Prevalence, %</th>
<th>PAR, %*</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cigarette smoking</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>19.8</td>
<td>12–14†</td>
<td>1.9</td>
</tr>
<tr>
<td>Men</td>
<td>22.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>17.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Ages 20–34 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>13.4</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>6.2</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Ages 35–44 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>23.2</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>16.5</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Ages 45–54 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>36.2</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>35.9</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Ages 55–64 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>53.7</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>55.8</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Ages 65–74 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>64.7</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>69.6</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Ages ≥75 y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>64.1</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>76.4</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>7.3</td>
<td>5–27</td>
<td>1.8–6.0</td>
</tr>
<tr>
<td>High total cholesterol</td>
<td>Data calculated for highest quintile (20%) vs lowest quintile</td>
<td>9.1 (5.7–13.8)</td>
<td>1.5 (95% CI, 1.3–1.8)</td>
</tr>
<tr>
<td></td>
<td>Continuous risk for ischemic stroke</td>
<td>…</td>
<td>1.25 per 1-mmol/L (38.7 mg/dL) increase</td>
</tr>
<tr>
<td>Low HDL cholesterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><40 mg/dL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data calculated for highest quintile (20%) vs lowest quintile</td>
<td>23.7</td>
<td>0.4</td>
</tr>
<tr>
<td><35 mg/dL</td>
<td>26</td>
<td>20.6 (10.1–30.7)</td>
<td>2.00 (95% CI, 1.43–2.70)</td>
</tr>
<tr>
<td></td>
<td>Continuous risk for ischemic stroke</td>
<td>…</td>
<td>=0.5–0.6 for each 1-mmol/L increase</td>
</tr>
<tr>
<td>AF (nonvalvular)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall age, y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50–59</td>
<td>0.5</td>
<td>1.5</td>
<td>4.0</td>
</tr>
<tr>
<td>60–69</td>
<td>1.8</td>
<td>2.8</td>
<td>2.6</td>
</tr>
<tr>
<td>70–79</td>
<td>4.8</td>
<td>9.9</td>
<td>3.3</td>
</tr>
<tr>
<td>80–89</td>
<td>8.8</td>
<td>23.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Asymptomatic carotid stenosis</td>
<td>2–8</td>
<td>2–7‡</td>
<td>2.0</td>
</tr>
<tr>
<td>Sickle cell disease</td>
<td>0.25 (of blacks)</td>
<td>…</td>
<td>200–400</td>
</tr>
<tr>
<td>Postmenopausal hormone therapy</td>
<td>25 (Women 50–74 y of age)</td>
<td>9</td>
<td>1.4</td>
</tr>
<tr>
<td>Oral contraceptive use</td>
<td>13 (women 25–44 y)</td>
<td>9.4</td>
<td>2.3</td>
</tr>
</tbody>
</table>

(Continued)
Table 14-2. Continued

<table>
<thead>
<tr>
<th>Factor</th>
<th>Prevalence, %</th>
<th>PAR, %*</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na intake >2300 mg</td>
<td>75–90</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>K intake <4700 mg</td>
<td>90–99</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Physical inactivity</td>
<td>25</td>
<td>30</td>
<td>2.7</td>
</tr>
<tr>
<td>Obesity</td>
<td></td>
<td></td>
<td>1.39 Stroke death per increase of 5 kg/m²</td>
</tr>
<tr>
<td>Men</td>
<td>33.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>35.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>8.4</td>
<td>5.8</td>
<td>1.73 (1.68–1.78)</td>
</tr>
<tr>
<td>Women</td>
<td>5.6</td>
<td>3.9†</td>
<td>1.55 (1.17–2.07)</td>
</tr>
<tr>
<td>Heart failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>2.6</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>2.1</td>
<td>1.1‡</td>
<td></td>
</tr>
<tr>
<td>Peripheral arterial disease</td>
<td>4.9</td>
<td>3.0¶</td>
<td></td>
</tr>
</tbody>
</table>

AF indicates atrial fibrillation; CHD, coronary heart disease; CI, confidence interval; HDL, high-density lipoprotein; PAR, population attributable risk; and RR, relative risk.

*PAR is the proportion of ischemic stroke in the population that can be attributed to a particular risk factor (see Goldstein et al101 for formula).
†PAR is for stroke deaths, not ischemic stroke incidence.
‡PAR percent=100×[(prevalence (RR−1)/prevalence (RR−1)+1)].
§Calculated on the basis of referenced data provided in the table or text.
¶Relative to stroke risk in children without sickle cell disease.
¶Calculated on the basis of point estimates of referenced data provided in the table. For peripheral arterial disease, calculation was based on average RR for men and women.

Adapted from Goldstein et al101 with permission. Copyright © 2011, American Heart Association, Inc.

Chart 14-3. Annual rate of first cerebral infarction by age, sex, and race (Greater Cincinnati/Northern Kentucky Stroke Study: 1999). Rates for black men and women 45 to 54 years of age and for black men ≥75 years of age are considered unreliable. Source: Unpublished data from the Greater Cincinnati/Northern Kentucky Stroke Study.
Chart 14-4. Annual rate of all first-ever strokes by age, sex, and race (Greater Cincinnati/Northern Kentucky Stroke Study: 1999). Rates for black men and women 45 to 54 years of age and for black men ≥75 years of age are considered unreliable.

Chart 14-5. Age-adjusted incidence of stroke/transient ischemic attack by race and sex, ages 45 to 44 years, Atherosclerosis Risk in Communities study cohort, 1987 to 2001. Data derived from the National Heart, Lung, and Blood Institute’s 2006 Chart Book on Cardiovascular and Lung Diseases.251
Chart 14-6. Age-adjusted death rates for stroke by sex and race/ethnicity, 2011. Death rates for the American Indian/Alaska Native and Asian or Pacific Islander populations are known to be underestimated. Stroke includes International Classification of Diseases, 10th Revision codes I60 through I69 (cerebrovascular disease). Source: National Center for Health Statistics and National Heart, Lung, and Blood Institute.

Chart 14-8. Estimated 10-year stroke risk in adults 55 years of age according to levels of various risk factors (Framingham Heart Study). AF indicates atrial fibrillation; and CVD, cardiovascular disease. Data derived from Wolf et al\(^{252}\) with permission of the publisher. Copyright © 1991, American Heart Association.

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cigarette Smoking</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prior AF</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prior CVD</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Closest ranges for women are: 95-104 and 115-124.

15. Congenital Cardiovascular Defects and Kawasaki Disease

Congenital cardiovascular defects, also known as congenital heart defects, are structural problems that arise from abnormal formation of the heart or major blood vessels. ICD-9 lists 25 congenital heart defect codes, of which 21 designate specific anatomic or hemodynamic lesions; however, there are many more lesions that are not well described by ICD-9 or ICD-10 codes because of the wide diversity of congenital heart malformations. Defects range in severity from tiny pinholes between chambers that may resolve spontaneously to major malformations that can require multiple surgical procedures before school age and may result in death in utero, in infancy, or in childhood. As such, congenital heart defects are serious and common conditions that have a significant impact on morbidity, mortality, and healthcare costs in children and in adults. Some types of congenital heart defects are associated with depression and diminished quality of life. Health outcomes are improving for congenital cardiovascular defects and survival is increasing, leading to a population shift toward adulthood, which means there are many more adults with both congenital heart disease and adult medical diagnoses, adding to the complexity of their management and emphasizing the need for coordinated care by an adult congenital heart defects specialist.

Incidence

The incidence of congenital heart defects in the United States is commonly reported as being between 4 and 10 per 1000, clustering around 8 per 1000 live births. Incidence (birth prevalence) in Europe is reported as 6.9 per 1000 births; birth prevalence in Asia is reported as 9.3 per 1000. Variations in incidence rates may be related to the age at detection; major defects may be apparent in the prenatal or neonatal period, but minor defects may not be detected until adulthood, making it challenging to estimate incidence and prevalence. To distinguish more serious defects, some studies report the number of new cases of sufficient severity to result in death or an invasive procedure within the first year of life, in addition to overall birth prevalence. Incidence rates are likely to increase over time because of better detection by fetal cardiac ultrasound, screening pulse oximetry, and echocardiography during infancy.

Overall Incidence

(See Table 15-2.)

- Population-based data from the MACDP in Atlanta, GA: Congenital heart defects occurred in 5 of every 111 to 125 births (live, still, or >20 weeks’ gestation) from 1995 to 1997 and from 1998 to 2005. Some defects showed variations by sex and racial distribution.
- Population-based data from Alberta, Canada: Total prevalence of 12.42 per 1000 total births (live, still, or >20 weeks’ gestation).
- An estimated minimum of 40000 infants are expected to be affected by congenital heart defects each year in the United States. Of these, ≈25%), or 2.4 per 1000 live births, require invasive treatment in the first year of life.

Incidence of Specific Defects

- The National Birth Defects Prevention Network for 13 states in the United States from 2004 to 2006 showed the average prevalence of 21 selected major birth defects. These data indicated that there are >6100 estimated annual cases of 5 cardiovascular defects: truncus arteriosus (0.07/1000 births), TOF (0.3/1000 births), A V septal defect (0.47/1000 births), and HLHS (0.23/1000 births).
- MACDP data for specific defects at birth: VSD, 4.2/1000 births; ASD, 1.3/1000 births; valvar pulmonic stenosis, 0.6/1000 births; TOF, 0.5/1000 births; aortic coarctation, 0.4/1000 births; AV septal defect, 0.4/1000 births; and TGA (0.2/1000 births).
- Bicuspid aortic valve occurs in 13.7 per 1000 people; these defects may not require treatment in infancy but can cause problems later in adulthood.

Prevalence

(See Tables 15-1 through 15-3.)

The 32nd Bethesda Conference estimated that the total number of adults living with congenital HD in the United States in 2000 was 800000. In the United States, 1 in 150 adults are expected to have some form of congenital HD. In population data from Canada, the measured prevalence of congenital heart defects in the general population was 11.89
per 1000 children and 4.09 per 1000 adults in the year 2000. Extrapolated to the US population in the same year, this yields published estimates of 859,000 children and 850,000 adults for the year 2000. The expected growth rates of the congenital heart defects population vary from 1% to 5% per year depending on age and the distribution of lesions. Limited information is available about the prevalence of congenital heart defects outside the United States. The overall birth prevalence of congenital heart defects at the Bhabha Atomic Research Centre Hospital in Mumbai from 2006 through 2011 was 13.28 per 1000 live births.

Estimates of the distribution of lesions in the congenital heart defects population using available data vary with assumptions made. If all those born with congenital heart defects between 1940 and 2002 were treated, there would be 750,000 survivors with simple lesions, 400,000 with moderate lesions, and 180,000 with complex lesions; in addition, there would be 3.0 million subjects alive with bicuspid aortic valves. Without treatment, the number of survivors in each group would be 400,000, 220,000, and 30,000, respectively. The actual numbers surviving were projected to be between these 2 sets of estimates as of 1 decade ago. Using measurements from population data in Canada, the prevalence of severe forms of congenital heart defects increased 85% in adults and 22% in children from 1985 to 2000. The most common types of defects in children are VSD, 620,000 people; ASD, 235,000 people; valvar pulmonary stenosis, 185,000 people; and patent ductus arteriosus, 173,000 people. The most common lesions seen in adults are ASD and TOF.

Mortality
(See Tables 15-1 and 15-4.)

Overall mortality attributable to congenital heart defects:

—In 2011:
 - Mortality related to congenital cardiovascular defects was 3166 deaths. Any-mention mortality related to congenital cardiovascular defects was 4900 deaths.
 - In 2011, congenital cardiovascular defects (ICD-10 Q20–Q28) were the most common cause of infant deaths resulting from birth defects (ICD-10 Q00–Q99); 23.8% of infants who died of a birth defect had a heart defect.
 - The age-adjusted death rate (deaths per 100,000 people) attributable to congenital cardiovascular defects was 1.0.

—In population-based data from Canada, 8123 deaths occurred among 71,686 patients with congenital heart defects followed up for nearly 1 million patient-years.

—In 2007, 189,000 life-years were lost before 55 years of age because of deaths attributable to congenital cardiovascular defects. This is almost as many life-years as were lost from leukemia and asthma combined (NHLBI tabulation of NCHS mortality data).

—Death rates attributed to congenital heart defects decrease as gestational age advances toward 40 weeks, and similarly, in-hospital death of infants with major congenital HDs is independently associated with late-preterm birth (OR, 2.70; 95% CI, 1.69–4.33) compared with delivery at later gestational ages. The presence of congenital heart defects substantially increases mortality of very low-birth-weight infants; in a study of very low-birth-weight infants, the mortality rate with serious congenital heart defects was 44% compared with 12.7% in very low-birth-weight infants without serious congenital HD.

Congenital heart defect–related mortality varies substantially by age, with infants showing the highest mortality rates.

—Analysis of the STS Congenital Heart Surgery Database, a voluntary registry with self-reported data for a 4-year cycle (2007–2010) from 103 centers performing congenital heart defects surgery (98 from the United States, 3 from Canada, and 1 from Japan), showed that of 95,357 total operations, the aggregate hospital discharge mortality rate was 3.5%. The mortality rate was 10.1% for neonates (0–30 days of age), 2.9% for infants (31 days to 1 year of age), 1.1% for children (>1 year to 18 years of age), and 1.9% for adults (>18 years of age).

Congenital heart defect mortality varies by race/ethnicity and sex.

—The US 2011 age-adjusted death rate (deaths per 100,000 people) attributable to congenital cardiovascular defects was 1.2 for white males, 1.3 for black males, 0.9 for white females, and 1.1 for black females. Infant (<1 year of age) death rates were 33.7 for white infants, 40.3 for black infants, 26.6 for Asian or Pacific Islander infants, and 31.1 for American Indian or Alaska Natives.

—Mortality after congenital heart surgery also differs between races/ethnicity, even after adjustment for access to care. The risk of in-hospital mortality for minority patients compared with white patients is 1.22 (95% CI, 1.05–1.41) for Hispanics, 1.27 (95% CI, 1.09–1.47) for non-Hispanic blacks, and 1.56 (95% CI, 1.37–1.78) for other non-Hispanics. Similarly, another study found that a higher risk of in-hospital mortality was associated with nonwhite race (OR, 1.36; 95% CI, 1.19–1.54), as well as Medicaid insurance (OR, 1.26; 95% CI, 1.09–1.46). One center’s experience suggested race was independently associated with neonatal surgical outcomes only in the patients with less complex congenital heart defects.

—Data from HCUP’s Kids’ Inpatient Database from 2000, 2003, and 2006, show male children had more congenital heart defects surgeries in infancy, more high-risk surgeries, and more procedures to correct multiple cardiac defects. Female infants with high-risk congenital heart defects had a 39% higher adjusted mortality than males. According to CDC multiple-cause death data from 1999 to 2006, sex differences in mortality over time varied with age. Between the ages of 18 and 34 years, mortality over time decreased significantly in females but not in males.

Congenital heart defect mortality is declining.

—In studies looking at trends since 1979, age-adjusted death rates declined 22% for critical congenital heart defects, 39% for all congenital heart defects,
and deaths tended to occur at progressively older ages. CDC mortality data from 1979 to 2005 show all-age death rates have declined by 60% for VSD and 40% for TOF.39 Population-based data from Canada show overall mortality has decreased by 31%, and the median age of death has increased from 2 to 23 years between 1987 and 2005.5

—Further analysis of the Kids’ Inpatient Database from 2000 to 2009 showed a decrease in HLHS stage 3 mortality by 14% and a decrease in stage 1 mortality by 6%.60 Surgical interventions are the primary treatment for reducing mortality. A Pediatric Heart Network study of 15 North American centers revealed that even in lesions associated with the highest mortality, such as HLHS, aggressive palliation can lead to an increase in the 12-month survival rate, from 64% to 74%.31 Surgical interventions are common in adults with congenital heart defects. Mortality rates for 12 congenital heart defect procedures were examined using data from 1988 to 2003 reported in the Nationwide Inpatient Sample. A total of 30,250 operations were identified, which yielded a national estimate of 152,776±7875 operations. Of these, 27% were performed in patients ≥18 years of age. The overall in-hospital mortality rate for adult patients with congenital heart defects was 4.71% (95% CI, 4.19%–5.23%), with a significant reduction in mortality observed when surgery was performed on such adult patients by pediatric versus nonpediatric heart surgeons (1.87% versus 4.84%; \(P < 0.0001 \)).42

Risk Factors

- Numerous intrinsic and extrinsic nongenetic risk factors contribute to congenital heart defects.43

- Intrinsic risk factors for congenital heart defects include various genetic syndromes. Twins are at higher risk for congenital heart defects;44 one report from Kaiser Permanente data showed monochorionic twins were at particular risk (RR, 11.6; CI, 9.2–14.5).45 Known risks generally focus on maternal exposures, but a study of paternal occupational data showed monochorionic twins were at particular risk (RR, 11.6; CI, 9.2–14.5).45 Known risks generally focus on maternal exposures, but a study of paternal occupational

- Other paternal exposures that increase risk for congenital heart defects include paternal anemia, which has been implicated in TOF (3.6%); sympathectomy medication and coarctation of the aorta (5.8%); pesticides and VSDs (5.5%); and solvents and HLHS (4.6%).47 Known maternal risks include maternal smoking48 during the first trimester of pregnancy, which has also been associated with a ≥30% increased risk of the following lesions in the fetus: ASD, pulmonary valvar stenosis, truncus arteriosus, TGA,49 and septal defects (particularly for heavy smokers [≥25 cigarettes daily]).50

- Exposure to secondhand smoke has also been implicated as a risk factor.51 Maternal binge drinking52 is also associated with an increased risk of congenital cardiac defects, and the combination of binge drinking and smoking may be particularly dangerous: Mothers who smoke and report any binge drinking in the 3 months before pregnancy are at an increased risk of giving birth to a child with congenital heart defects (adjusted OR, 12.65).52

- A greater risk of congenital heart defects is also seen in women who both have a high BMI.53,54 Gestational DM has also been associated with cardiac defects, both isolated and multiple.55 Folate deficiency is a well-accepted risk for congenital defects, including congenital heart defects, and folic acid supplementation is recommended during pregnancy.43

- A US population-based case-control study showed an inverse relationship between folic acid use and the risk of TGA (Baltimore-Washington Infant Study, 1981–1989).57 An observational study from Quebec, Canada, of 1.3 million births from 1990 to 2005 found a 6% per year reduction in severe congenital heart defects using a time-trend analysis before and after public health measures were instituted that mandated folic acid fortification of grain and flour products in Canada.58

- High altitude has also been described as a risk factor for congenital heart defects; Tibetan children living at 4200 to 4900 m had a higher prevalence of congenital heart defects, 12.09 per 1000 versus lower altitudes of 3500 to 4100 m; patent ductus arteriosus and ASD contributed to the increased prevalence.59

Screening

Pulse oximetry screening for critical congenital heart disease, a group of defects that cause severe and life-threatening symptoms and require intervention within the first days or first year of life, was recommended by the US Department of Health and Human Services on October 15, 2010,60 was incorporated as part of the US recommended uniform screening panel for newborns in 2011, and has been endorsed by the AHA and the American Academy of Pediatrics.61 The recommendation has been controversial, yet several studies demonstrate benefit.62–64

- Several key factors contribute to effective screening, including probe placement (postductal), oximetry cutoff (<95%), timing (>24 hours of life), and altitude (<2643 ft, 806 m).

- If fully implemented, screening would identify 1189 additional infants with critical congenital heart defects and would result in 1975 false-positive results.55

- The cost of identifying a newborn with critical congenital heart defects has been estimated at $20862 per newborn detected and $40385 per life-year gained (2011 US dollars).

- A meta-analysis of 13 studies that included 229,421 newborns found pulse oximetry had a sensitivity of 76.5% (95% CI, 67.7%–83.5%) for detection of critical congenital heart defects and a specificity of 99.9% (95% CI, 99.7%–99.9%) with a false-positive rate of 0.14% (95% CI, 0.06%–0.33%).66

Hospitalizations

(See Table 15-1.)

- In 2004, birth defects accounted for >139,000 hospitalizations, representing 47.4 stays per 100,000 people. Cardiac and circulatory congenital anomalies accounted for 34% of all hospital stays for birth defects. Between 1997 and 2004,
hospitalization rates increased by 28.5% for cardiac and circulatory congenital anomalies.57

- Although the most common congenital heart defect lesions were shunts, including patent ductus arteriosus, VSDs, and ASOs, TOF accounted for a higher proportion of in-hospital death than any other birth defect.

Cost

- Hospital costs for congenital heart defects totaled $2.6 billion in 2004. The highest aggregate costs were for stays related to cardiac and circulatory congenital anomalies, which accounted for $1.4 billion, more than half of all hospital costs for birth defects.67

- Data from the HCUP 2003 Kids’ Inpatient Database and 2003 information on birth defects in the Congenital Malformations Surveillance Report found the most expensive average neonatal hospital charges were for 2 congenital heart defect lesions: HLHS ($199,597) and truncus arteriosus ($192,781). Two other congenital heart defect diagnoses, coarctation of the aorta and TGA, were associated with average hospital charges in excess of $150,000. For the 11 selected congenital heart defect diagnoses (of 35 birth defects considered), there were 11,578 hospitalizations in 2003 and 1,550 in-hospital deaths (13.4%). Estimated total hospital charges for these 11 conditions were $1.4 billion in 2003.68

- Other studies confirm the high cost of HLHS. An analysis of 1941 neonates with HLHS showed a median cost of $99,070 for stage 1 palliation (Norwood or Sano procedure), $35,674 for stage 2 palliation (Glenn procedure), $36,928 for stage 3 palliation (Fontan procedure), and $289,292 for transplantation.69

- Other congenital heart defect lesions are less costly. In 2124 patients undergoing congenital heart operations between 2001 and 2007, total costs for the surgeries were $127,661 (ASD repair), $18,834 (VSD repair), $28,223 (TOF repair), and $55,430 (arterial switch operation).70

Kawasaki Disease

ICD-9 446.1; ICD-10 M30.3.

- KD is an acute inflammatory illness characterized by fever, rash, nonexudative limbal sparing conjunctivitis, extremity changes, red lips and strawberry tongue, and a swollen lymph node. The most feared consequence of this vasculitis is coronary artery aneurysms.71 The cause of KD is unknown, but it may be an immune response to an acute infectious illness based in part on genetic susceptibilities.72,73 This is supported by variation in incidence related to geography, race/ethnicity, sex, age, and season.74

- The incidence of KD is highest in Japan, at 239.6 cases per 100,000 children aged <5 years,75 followed by Taiwan at 164.6/100,000 in children <5 years old76 and Korea, where the rate reached 113.1/100,000 children <5 years old in 2008.77 KD is much less common in the United States, with an incidence of 20.8/100,000 children aged <5 years in 2006. The incidence of KD is rising worldwide, including in the United States. US hospitalizations for KD rose from 17.5/100,000 children aged <5 years in 2000 to 19/100,000 children <5 years of age in 2009.78,79 Japan experienced its highest-ever incidence rate in 2010.75 In addition to geographic variation in the incidence of KD, the age of children affected may also differ. In northern Europe (Finland, Sweden, and Norway), 67.8% of patients with KD were <5 years of age, compared with 86.4% of patients in Japan (P<0.001).80

- Race-specific incidence rates indicate that KD is most common among Americans of Asian and Pacific Island descent (30.3/100,000 children <5 years of age), occurs with intermediate frequency in non-Hispanic blacks (17.5/100,000 children <5 years of age) and Hispanics (15.7/100,000 children <5 years of age), and is least common in whites (12.0/100,000 children <5 years of age).81 US states with higher Asian American populations have higher rates of KD; for example, rates are 2.5-fold higher in Hawaii than in the continental United States.79

- Boys have a 1.5-fold higher incidence of KD than girls.79 Although KD can be seen as late as adolescence, 76.8% of children with KD are <5 years of age.78,79,81 There are seasonal variations in KD: KD is more common during the winter and early spring months, except in Hawaii, where no clear seasonal trend is seen.82

- Treatment of KD rests on diminishing the inflammatory response with intravenous immunoglobulin infusion, which reduces the incidence of coronary artery aneurysms from ≥25% to ≥2%. Addition of prednisolone to the standard regimen of intravenous immunoglobulin for patients with severe KD appears to result in further reductions in the incidence of coronary artery anomalies (RR, 0.20; 95% CI, 0.12–0.28),81 a result supported by a meta-analysis of steroid treatment in 9 trials that included 1011 patients with KD.82 Successful surgical treatment of late sequelae of symptomatic coronary artery stenoses (eg, CABG) has been described.83

References

Heart Disease and Stroke Statistics—2015 Update: Chapter 15 e211
Table 15-1. Congenital Cardiovascular Defects

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes</td>
<td>650,000 to 1.3 million</td>
<td>3166</td>
<td>62,000</td>
</tr>
<tr>
<td>Males</td>
<td>...</td>
<td>1725 (54.5%)†</td>
<td>38,000</td>
</tr>
<tr>
<td>Females</td>
<td>...</td>
<td>1441 (45.5%)†</td>
<td>24,000</td>
</tr>
<tr>
<td>White males</td>
<td>...</td>
<td>1342</td>
<td>...</td>
</tr>
<tr>
<td>White females</td>
<td>...</td>
<td>1117</td>
<td>...</td>
</tr>
<tr>
<td>Black males</td>
<td>...</td>
<td>291</td>
<td>...</td>
</tr>
<tr>
<td>Black females</td>
<td>...</td>
<td>258</td>
<td>...</td>
</tr>
<tr>
<td>Asian or Pacific Islander</td>
<td>...</td>
<td>116</td>
<td>...</td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>...</td>
<td>42</td>
<td>...</td>
</tr>
</tbody>
</table>

Ellipses (...) indicate data not available.

*Mortality data for the white, black, Asian or Pacific Islander, and American Indian or Alaska Native populations include deaths among people of Hispanic and non-Hispanic origin. Death rates for Hispanic, American Indian or Alaska Native, and Asian and Pacific Islander people should be interpreted with caution because of inconsistencies in reporting Hispanic origin or race on the death certificate compared with censuses, surveys, and birth certificates. Studies have shown underreporting on death certificates of American Indian or Alaska Native, Asian and Pacific Islander, and Hispanic decedents, as well as undercounts of these groups in censuses.

†These percentages represent the portion of total congenital cardiovascular mortality that is for males vs females.

Sources: Mortality: Centers for Disease Control and Prevention/National Center for Health Statistics, 2011 Mortality Multiple Cause-of-Death —United States. These data represent underlying cause of death only; data include Hispanics. Hospital discharges: National Hospital Discharge Survey, National Center for Health Statistics; data include those inpatients discharged alive, dead, or status unknown.

Table 15-2. Annual Birth Prevalence of Congenital Cardiovascular Defects in the United States

<table>
<thead>
<tr>
<th>Type of Presentation</th>
<th>Rate per 1000 Live Births</th>
<th>Estimated Number (Variable With Yearly Birth Rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal loss</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Invasive procedure during the first year</td>
<td>2.4</td>
<td>9200</td>
</tr>
<tr>
<td>Detected during first year*</td>
<td>8</td>
<td>36000</td>
</tr>
<tr>
<td>Bicuspid aortic valve</td>
<td>13.7</td>
<td>54800</td>
</tr>
</tbody>
</table>

*Includes stillbirths and pregnancy termination at <20 weeks gestation; includes some defects that resolve spontaneously or do not require treatment.
Table 15-3. Estimated Prevalence of Congenital Cardiovascular Defects and Percent Distribution by Type, United States, 2002* (in Thousands)

<table>
<thead>
<tr>
<th>Type</th>
<th>Prevalence, n</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Children</td>
</tr>
<tr>
<td>Total</td>
<td>994</td>
<td>463</td>
</tr>
<tr>
<td>VSD†</td>
<td>199</td>
<td>93</td>
</tr>
<tr>
<td>ASD</td>
<td>187</td>
<td>78</td>
</tr>
<tr>
<td>Patent ductus arteriosus</td>
<td>144</td>
<td>58</td>
</tr>
<tr>
<td>Valvular pulmonic stenosis</td>
<td>134</td>
<td>58</td>
</tr>
<tr>
<td>Coarctation of aorta</td>
<td>76</td>
<td>31</td>
</tr>
<tr>
<td>Valvular aortic stenosis</td>
<td>54</td>
<td>25</td>
</tr>
<tr>
<td>TOF</td>
<td>61</td>
<td>32</td>
</tr>
<tr>
<td>AV septal defect</td>
<td>31</td>
<td>18</td>
</tr>
<tr>
<td>TGA</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>Hypoplastic right heart syndrome</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>Double-outlet right ventricle</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Single ventricle</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Anomalous pulmonary venous connection</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Truncus arteriosus</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>HLHS</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Other</td>
<td>22</td>
<td>12</td>
</tr>
</tbody>
</table>

Average of the low and high estimates, two thirds from low estimate.21

ASD indicates atrial septal defect; AV, atrioventricular; HLHS, hypoplastic left heart syndrome; TGA, transposition of the great arteries; TOF, tetralogy of Fallot; and VSD, ventricular septal defect.

*Excludes an estimated 3 million bicuspid aortic valve prevalence (2 million in adults and 1 million in children).
‡Small VSD, 117,000 (65,000 adults and 52,000 children); large VSD, 82,000 (41,000 adults and 41,000 children).

Table 15-4. Surgery for Congenital Heart Disease

<table>
<thead>
<tr>
<th></th>
<th>Sample</th>
<th>Population, Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery for congenital heart disease, n</td>
<td>14888</td>
<td>25831</td>
</tr>
<tr>
<td>Deaths, n</td>
<td>736</td>
<td>1253</td>
</tr>
<tr>
<td>Mortality rate, %</td>
<td>4.9</td>
<td>4.8</td>
</tr>
</tbody>
</table>

By sex (81 missing in sample)

<table>
<thead>
<tr>
<th></th>
<th>Male, n</th>
<th>Female, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths, n</td>
<td>420</td>
<td>315</td>
</tr>
<tr>
<td>Mortality rate, %</td>
<td>5.2</td>
<td>4.7</td>
</tr>
</tbody>
</table>

By type of surgery

<table>
<thead>
<tr>
<th></th>
<th>ASD secundum surgery, n</th>
<th>Norwood procedure for HLHS, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths, n</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>Mortality rate, %</td>
<td>0.4</td>
<td>26.1</td>
</tr>
</tbody>
</table>

In 2003, 25,000 cardiovascular operations for congenital cardiovascular defects were performed on children <20 years of age. Inpatient mortality rate after all types of cardiac surgery was 4.8%. Nevertheless, mortality risk varies substantially for different defect types, from 0.4% for ASD repair to 25.2% for first-stage palliation for HLHS. Fifty-five percent of operations were performed in males. In unadjusted analysis, mortality after cardiac surgery was somewhat higher for males than for females (5.1% vs 4.6%).

ASD indicates atrial septal defect; and HLHS, hypoplastic left heart syndrome.

Source: Data derived from Ma et al.89
16. Disorders of Heart Rhythm

See Table 16-1 and Charts 16-1 through 16-10.

Bradyarrhythmias

ICD-9 426.0, 426.1, 427.81; ICD-10 I44.0 to I44.3, I49.5.

AV Block

Prevalence and Incidence

(See Chart 16-1.)

- In a healthy sample of participants from the ARIC study (mean age 53 years), the prevalence of first-degree AV block was 7.8% in black men, 3.0% in black women, 2.1% in white men, and 1.3% in white women.\(^1\) Lower prevalence estimates were noted in the relatively younger population (mean age 45 years) of the CARDIA study at its year 20 follow-up examination: 2.6% in black men, 1.9% in black women, 1.2% in white men, and 0.1% in white women.\(^1\)

- The prevalence of PR interval prolongation was observed to be 2.1% in Finnish middle-aged people, but the authors noted that the PR interval normalized in follow-up in 30% of these people.\(^2\)

- Mobitz II second-degree AV block is rare in healthy individuals (\(\approx 0.003\%\)), whereas Mobitz I (Wenckebach) is observed in 1% to 2% of healthy young people, especially during sleep.\(^1\)

- The prevalence of third-degree AV block in the general adult population is \(\approx 0.02\%\) to 0.04%.\(^3,4\)

- Third-degree AV block is very rare in apparently healthy individuals. Johnson et al\(^5\) found only 1 case among >67000 symptom-free individuals; Rose et al,\(^6\) in their study of >18000 civil servants, did not find any cases. On the other hand, among 293124 patients with DM and 552624 with hypertension enrolled with Veterans Health Administration hospitals, third-degree AV block was present in 1.1% and 0.6% of those patients, respectively.\(^7\)

- Congenital complete AV block is estimated to occur in 1 of 15000 to 20000 live births.\(^8\) An English register study estimated the incidence of infant complete AV block as 2.1 per 100000 live births.\(^9\) Congenital complete heart block may be attributable to transplacental transfer of maternal anti-SSA/Ro-SSB/La antibodies.\(^8\)

Abbreviations Used in Chapter 16

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>atrial fibrillation</td>
</tr>
<tr>
<td>AMI</td>
<td>acute myocardial infarction</td>
</tr>
<tr>
<td>ARIC</td>
<td>Atherosclerosis Risk in Communities study</td>
</tr>
<tr>
<td>ASSERT</td>
<td>Asymptomatic Atrial Fibrillation and Stroke Evaluation in Pacemaker Patients and the Atrial Fibrillation Reduction Atrial Pacing Trial</td>
</tr>
<tr>
<td>AV</td>
<td>atrioventricular</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>CABG</td>
<td>coronary artery bypass graft</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery disease</td>
</tr>
<tr>
<td>CARDIA</td>
<td>Coronary Artery Risk Development in Young Adults</td>
</tr>
<tr>
<td>CHADS(_2)</td>
<td>clinical prediction rule for estimating the risk of stroke based on congestive heart failure, hypertension, age (\geq 75) y, diabetes mellitus (1 point each), and prior stroke/transient ischemic attack/thromboembolism (2 points)</td>
</tr>
<tr>
<td>CHA(_2)DS(_2)-VASc</td>
<td>clinical prediction rule for estimating the risk of stroke based on congestive heart failure, hypertension, diabetes mellitus, and sex (1 point each); age (\geq 75) y and stroke/ transient ischemic attack/thromboembolism (2 points each); plus history of vascular disease, age 65 to 74 y, and (female) sex category</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CHS</td>
<td>Cardiovascular Health Study</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CKD</td>
<td>chronic kidney disease</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DALY</td>
<td>disability-adjusted life-year</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>ED</td>
<td>emergency department</td>
</tr>
</tbody>
</table>

EF ejection fraction
EMPHASIS-HF Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure
ESRD end-stage renal disease
FHS Framingham Heart Study
GBD Global Burden of Diseases, Injuries, and Risk Factors Study
HD heart disease
HF heart failure
HR hazard ratio
ICD-9 International Classification of Diseases, 9th Revision
ICD-10 International Classification of Diseases, 10th Revision
LV left ventricular
MI myocardial infarction
MESA Multi-Ethnic Study of Atherosclerosis
NCHS National Center for Health Statistics
NHDS National Hospital Discharge Survey
NHLBI National Heart, Lung, and Blood Institute
OR odds ratio
ORBIT-HF Outcomes Registry for Better Informed Treatment of Atrial Fibrillation
PAR population attributable risk
PVT polymorphic ventricular tachycardia
REGARDS Reasons for Geographic and Racial Differences in Stroke study
RR relative risk
SBP systolic blood pressure
SVT supraventricular tachycardia
TdP torsade de pointes
VF ventricular fibrillation
VT ventricular tachycardia
Risk Factors

- In healthy individuals without CVD or its risk factors from the MESA study, PR interval was longer with advancing age, in men compared with women, and in blacks compared with whites.10
- Although first-degree AV block and Mobitz type I second-degree AV block can occur in apparently healthy individuals, presence of Mobitz II second-degree or third-degree AV block usually indicates underlying HD, including CHD and HF.1
- Reversible causes of AV block include electrolyte abnormalities, drug-induced AV block, perioperative AV block attributable to hypothermia, or inflammation near the AV conduction system after surgery in this region. Some conditions may warrant pacemaker implantation because of the possibility of disease progression even if the AV block reverses transiently (eg, sarcoidosis, amyloidosis, and neuromuscular diseases).11
- Long sinus pauses and AV block can occur during sleep apnea. In the absence of symptoms, these abnormalities are reversible and do not require pacing.12

Prevention

- Detection and correction of reversible causes of acquired AV block could be of potential importance in preventing symptomatic bradycardia and other complications of AV block.11
- In utero detection of congenital AV block is possible by echocardiography.13

Aftermath

- In the FHS, PR interval prolongation (>200 ms) was associated with an increased risk of AF (HR, 2.06; 95% CI, 1.36–3.12),14,15 pacemaker implantation (HR, 2.89; 95% CI, 1.83–4.57),15 and all-cause mortality (HR, 1.44; 95% CI, 1.36–1.52).15 Compared with individuals with a PR ≤200 ms, individuals with a PR interval >200 ms had an absolute increased risk per year of 1.04% for AF, 0.55% for pacemaker implantation, and 2.05% for death.
- Patients with abnormalities of AV conduction may be asymptomatic or may experience serious symptoms related to bradycardia, ventricular arrhythmias, or both.
- Decisions about the need for a pacemaker are influenced by the presence or absence of symptoms directly attributable to bradycardia. Permanent pacing improves survival in patients with third-degree AV block, especially if syncope has occurred.11 Nevertheless, the overall prognosis depends to a large extent on the underlying HD.
- Although there is little evidence to suggest that pacemakers improve survival in patients with isolated first-degree AV block,16 it is now recognized that marked first-degree AV block (PR >300 ms) can lead to symptoms even in the absence of higher degrees of AV block.17

Prognosis

- Investigators at Northwestern University compared older adult (age >60 years) outpatients with (n=470) and without (n=2090) asymptomatic bradycardia. Over a mean follow-up of 7.2 years, patients with asymptomatic bradycardia had a higher adjusted incidence of pacemaker insertion (HR, 2.14; 95% CI, 1.30–3.51; P=0.003), which appeared after a lag time of 4 years. However, the absolute rate of pacemaker implantation was low (<1% per year), and asymptomatic bradycardia was not associated with a higher risk of death.18

Sinus Node Dysfunction

Prevalence and Incidence

- The prevalence of sinus node dysfunction has been estimated to be between 403 and 666 per million, with an incidence rate of 63 per million per year requiring pacemaker therapy.19
- Sinus node dysfunction occurs in 1 of every 600 cardiac patients >65 years of age and accounts for ≈50% of implantations of pacemakers in the United States.20,21
- Sinus node dysfunction is commonly present with other causes of bradyarrhythmias (carotid sinus hypersensitivity in 33% of patients and advanced AV conduction abnormalities in 17%).22,23

Risk Factors

- The causes of sinus node dysfunction can be classified as intrinsic (secondary to pathological conditions involving the sinus node) or extrinsic (caused by depression of sinus node function by external factors such as drugs or autonomic influences).24
- Sinus node dysfunction may occur at any age but is primarily a disease of the elderly, with the average being ≈68 years of age.20
- Idiopathic degenerative disease is probably the most common cause of sinus node dysfunction.25
- Collected data from 28 different studies on atrial pacing for sinus node dysfunction showed a median annual incidence of complete AV block of 0.6% (range, 0%–4.5%) with a total prevalence of 2.1% (range, 0%–11.9%). This suggests that the degenerative process also affects the specialized conduction system, although the rate of progression is slow and does not dominate the clinical course of disease.26
- Ischemic HD can be responsible for one third of cases of sinus node dysfunction. Transient sinus node dysfunction can complicate MI; it is common during inferior MI and is caused by autonomic influences. Cardiomyopathy, longstanding hypertension, infiltrative disorders (eg, amyloidosis and sarcoidosis), collagen vascular disease, and surgical trauma can also result in sinus node dysfunction.27,28

Aftermath

(See Chart 16-2.)

- The course of sinus node dysfunction is typically progressive, with 57% of patients experiencing symptoms over a 4-year period if untreated, and a 23% prevalence of syncope over the same time frame.29
- Approximately 50% of patients with sinus node dysfunction develop tachy-brady syndrome over a lifetime; such patients have a higher risk of stroke and death. The survival of patients with sinus node dysfunction appears to depend
primarily on the severity of underlying cardiac disease and is not significantly changed by pacemaker therapy.30,32

- In a retrospective study,33 patients with sinus node dysfunction who had pacemaker therapy were followed up for 12 years; at 8 years, mortality among those with ventricular pacing was 59% compared with 29% among those with atrial pacing. This discrepancy may be attributed to selection bias. For instance, the physiological or anatomic disorder (eg, fibrosis of conductive tissue) that led to the requirement for the particular pacemaker may have influenced prognosis, rather than the type of pacemaker used.

- In a multicenter study from the Netherlands of individuals with bradycardia treated with pacemaker implantation, the actuarial 1-, 3-, 5-, and 7-year survival rates were 93%, 81%, 69%, and 61%, respectively. Individuals without CVD at baseline had similar survival rates as age- and sex-matched control subjects.34

- The incidence of sudden death is extremely low, and sinus node dysfunction does not appear to affect survival whether untreated or treated with pacemaker therapy.11

- SVT including AF occurs in 47% to 53% of patients with sinus node dysfunction.32,35

- On the basis of records from the NHDS, age-adjusted pacemaker implantation rates increased progressively from 370 per million in 1990 to 612 per million in 2002. This escalating implantation rate is attributable to increasing implantation for isolated sinus node dysfunction; implantation for sinus node dysfunction increased by 102%, whereas implantation for all other indications did not increase.36

- In patients paced for sick sinus syndrome, CHA2DS2-VASc score is associated with an increased risk of stroke and death, even in individuals without AF at baseline.37

SVT (Excluding AF and Atrial Flutter)

ICD-9 427.0; ICD-10 147.1.

Prevalence and Incidence

(See Chart 16-3.)

- Data from the Marshfield Epidemiologic Study Area in Wisconsin suggested the incidence of documented paroxysmal SVT is 35 per 100,000 person-years. The mean age at SVT onset was 57 years, and both female sex and age >65 years were significant risk factors.38

- A review of ED visits from 1993 to 2003 revealed that 550,000 visits were for SVT (0.05% of all visits; 95% CI, 0.04%–0.06%), or ≈50,000 visits per year. Of these patients, 24% (95% CI, 15%–34%) were admitted to the hospital, and 44% (95% CI, 32%–56%) were discharged without specific follow-up.39

- The prevalence of SVT that is clinically undetected is likely much greater than the estimates from ED visits and electrophysiology procedures would suggest. For example, among a random sample of 604 participants in Finland, 7 (1.2%) fulfilled the diagnostic criteria for inappropriate sinus tachycardia.40

- Of 1383 participants in the Baltimore Longitudinal Study of Aging undergoing maximal exercise testing, 6% exhibited SVT during the test; increasing age was a significant risk factor. Only 16% exhibited >10 beats of SVT, only 4% were symptomatic, and the SVT participants were more likely to develop spontaneous SVT or AF.41

- From the surface ECG, the prevalence of atrial tachycardia is estimated to be 0.34% in asymptomatic patients and 0.46% in symptomatic patients.42

Aftermath

- Rare cases of incessant SVT can lead to a tachycardia-induced cardiomyopathy,43 and rare cases of sudden death attributed to SVT as a trigger have been described.44

- A California administrative database study suggested that after the exclusion of people with diagnosed AF, SVT was associated with an adjusted doubling of the risk of stroke in follow-up (HR, 2.10; 95% CI, 1.69–2.62). The absolute stroke rate was low, however. The cumulative stroke rate was 0.94% (95% CI, 0.76%–1.16%) in patients with SVT versus 0.21% (95% CI, 0.21%–0.22%; P < 0.001, log-rank test) in those without SVT.45

Specific Types

- Among those presenting for invasive electrophysiological study and ablation, AV nodal reentrant tachycardia (a circuit that requires 2 AV nodal pathways) is the most common mechanism of SVT46,47 and usually represents the majority of cases (56% of 1 series of 1754 cases from Loyola University Medical Center).47

- AV reentrant tachycardia (an arrhythmia that requires the presence of an extranodal connection between the atria and ventricles or specialized conduction tissue) is the second most common type of SVT (27% in the Loyola series),47 and atrial tachycardia is the third most common (17% in the Loyola series).47

- In the pediatric population, AV reentrant tachycardia is the most common SVT mechanism, followed by AV nodal reentrant tachycardia and then atrial tachycardia.50

- AV reentrant tachycardia prevalence decreases with age, whereas AV nodal reentrant tachycardia and atrial tachycardia prevalences increase with advancing age.47

- The majority of AV reentrant tachycardia patients in the Loyola series were men (55%), whereas the majority of patients with AV nodal reentrant tachycardia (70%) or atrial tachycardia (62%) were women.47

- Multifocal atrial tachycardia is an arrhythmia that is commonly confused with AF and is characterized by 3 distinct P-wave morphologies, irregular R-R intervals, and a rate >100 beats per minute. It is uncommon in both children and adults,49 with a prevalence in hospitalized adults estimated at 0.05% to 0.32%.51,52 The average age in adults is 70 to 72 years. Adults with multifocal atrial tachycardia have a mortality rate that is high, with estimates around 45%, but this is generally ascribed to the underlying condition(s).49,53

Wolff-Parkinson-White Syndrome

- Wolff-Parkinson-White syndrome, a diagnosis reserved for those with both ventricular preexcitation (evidence of an anterograde conducting AV accessory pathway on a 12-lead ECG) and tachyarrhythmias,54 deserves special attention because of the associated risk of sudden death.
Sudden death is generally attributed to rapid heart rates in AF conducting down an accessory pathway and leading to VF. Of note, AF is common in Wolff-Parkinson-White patients, and surgical or catheter ablation of the accessory pathway often results in elimination of the AF.

- Ventricular preexcitation with or without tachyarrhythmia was observed in 0.11% of 47,358 ECGs in adults participating in 4 large Belgian epidemiological studies and in 0.17% of 32,837 Japanese high school students in ECGs obtained by law before the students entered school.

- Asymptomatic adults with ventricular preexcitation appear to be at no increased risk of sudden death compared with the general population, although certain characteristics found during invasive electrophysiological study (including inducibility of AV reentrant tachycardia or AF, accessory pathway refractory period, and the shortest R-R interval during AF) can help risk stratify these patients.

- In a meta-analysis of 20 studies involving 1869 asymptomatic patients with a Wolff-Parkinson-White ECG pattern followed up for a total of 11,722 person-years, the risk of sudden death in a random effects model that was used because of heterogeneity across studies was estimated to be 1.25 (95% CI, 0.57–2.19) per 1000 person-years. Risk factors for sudden death included male sex, inclusion in a study of children (<18 years of age), and inclusion in an Italian study.

- Symptomatic adult patients with the Wolff-Parkinson-White syndrome are at a higher risk of sudden death. In a study of 60 symptomatic patients in Olmsted County, MN, including some who underwent curative surgery, 2 (3.3%) experienced sudden death over a 13-year period. Of 690 Wolff-Parkinson-White syndrome patients referred to a single hospital in the Netherlands, 15 (2.2%) had aborted sudden death, and VF was the first manifestation of the disease in 8 patients.

- Of 379 Wolff-Parkinson-White patients with induced AV reentrant tachycardia during electrophysiology study who did not undergo ablation, 29 (8%) exhibited a "malignant presentation" over a mean 3.6 years of follow-up: syncpe/presyncope in 25 patients, rapid preexcited AF causing hemodynamic collapse in 3 patients, and VF in 1 patient. Those with such a presentation were more often male, had a shorter accessory pathway effective refractory period during electrophysiology study, more often had AV reentrant tachycardia that triggered AF during electrophysiology study, and more often had >1 accessory pathway.

- Although some studies in asymptomatic children with ventricular preexcitation suggest a benign prognosis, others suggest that electrophysiological testing can identify a group of asymptomatic children with a risk of sudden death or VF as high as 11% over 19 months of follow-up. In a pediatric hospital retrospective review of 444 children with Wolff-Parkinson-White, 64% were symptomatic at presentation, and 20% had onset of symptoms in follow-up. The incidence of sudden death was 1.1 per 1000 person years in patients without structural HD.

Subclinical Atrial Tachyarrhythmias, Unrecognized AF, Screening for AF

Device-Detected AF

- Pacemakers and defibrillators have increased clinician awareness of the frequency of subclinical AF and atrial high-rate episodes in individuals without a documented history of AF. Several studies have suggested that device-detected high-rate atrial tachyarrhythmias are surprisingly frequent and are associated with an increased risk of AF, thromboembolism, and total mortality.

- Investigators in the ASSERT study prospectively enrolled 2580 patients with a recent pacemaker or defibrillator implantation who were ≥65 years of age, had a history of hypertension, and had no history of AF. They classified individuals by presence versus absence of subclinical atrial tachyarrhythmias (defined as atrial rate >190 beats per minute for >6 minutes in the first 3 months) and conducted follow-up for 2.5 years. Subclinical atrial tachyarrhythmias in the first 3 months occurred in 10.1% of the patients and were associated with the following:
 - An almost 6-fold higher risk of clinical AF (HR, 5.56; 95% CI, 3.78–8.17; P<0.001)
 - A more than doubling in the adjusted risk of the primary end point, ischemic stroke or systemic embolism (HR, 2.50; 95% CI, 1.28–4.89; P<0.008)
 - An annual ischemic stroke or systemic embolism rate of 1.69% (versus 0.69% in those without)
 - A 13% PAR for ischemic stroke or systemic embolism

- Over the subsequent 2.5 years of follow-up, an additional 34.7% of the patients had subclinical atrial tachyarrhythmias, which were 8-fold more frequent than clinical AF episodes.

- A pooled analysis of 5 prospective studies in patients without permanent AF revealed that over 2 years of follow-up, cardiac implanted electronic devices detected ≥5 minutes of AF in 43% of the patients (total n=10016). Adjustment for CHADS₂ score and anticoagulation revealed that AF burden was associated with an increased risk of stroke.

Community Screening

- In a community-based study in Sweden, all inhabitants aged 75 to 76 years were invited to a stepwise screening program for AF. Of 848 participants, 10 had clinically unrecognized AF diagnosed on a 12-lead ECG. Of 403 individuals with ≥2 stroke risk factors who completed a 2-week, once-a-day handheld ECG event recorder, an additional 30 were diagnosed with paroxysmal AF. The study suggests that the burden of unrecognized AF in the community is higher than appreciated.

- There have been 2 recent systematic reviews regarding the effectiveness of screening to detect unknown AF.
 - Lowres et al identified 30 separate studies that included outpatient clinics or community screening. In individuals without a prior diagnosis of AF, they observed that 1.0% (95% CI, 0.89%–1.04%) of those screened had AF (14 studies, n=67772), whereas among those individuals ≥65 years of age, 1.4% (95% CI, 1.2%–1.6%; 8 studies, n=18189) had AF.
 - Another systematic review by Moran et al observed that in individuals >65 years of age, systematic screening (OR, 1.57; 95% CI, 1.08–2.26) and opportunistic screening (OR, 1.58; 95% CI, 1.10–2.29) were associated with
enhanced detection of AF. The number needed to screen by either method was 170 individuals.

- There has been increasing interest in the use of smart phone technology to aid in community screening.73,74

AF and Atrial Flutter

ICD-9 427.3; ICD-10 I48.

Prevalence

(See Chart 16-4.)

- Estimates of the prevalence of AF in the United States ranged from 2.7 million to 6.1 million in 2010, and AF prevalence is expected to rise to between 5.6 and 12 million in 2050.75,76
- In the European Union, the prevalence of AF in adults >55 years of age was estimated to be 8.8 million (95% CI, 6.5–12.3 million) in 2010 and was projected to rise to 17.9 million (95% CI, 13.6–23.7 million).77
- Data from a California health plan suggest that compared with whites, blacks (OR, 0.49; 95% CI, 0.47–0.52), Asians (OR, 0.68; 95% CI, 0.64–0.72), and Hispanics (OR, 0.58; 95% CI, 0.55–0.61) have significantly lower adjusted prevalences of AF.78
- Data from the NHDS/NCHS (1996–2001) on cases that included AF as a primary discharge diagnosis found the following:
 - Approximately 44.8% of patients were men.
 - The mean age for men was 66.8 years versus 74.6 years for women.
 - The racial breakdown for admissions was 71.2% white, 5.6% black, and 2.0% other races (20.8% were not specified).
 - Black patients were much younger than patients of other races.
- Among Medicare patients aged ≥65 years, diagnosed from 1993 to 2007, the prevalence of AF increased 5% per year, from 4.11 per 1000 beneficiaries to 8.55 per 1000 beneficiaries.79

Incidence

(See Table 16-1 and Chart 16-5.)

- Data from the NHDS/NCHS (1996–2001) on cases that included AF as a primary discharge diagnosis found the following:
 - The incidence in men ranged from 20.6 per 100000 people per year for patients between 15 and 44 years of age to 1077.4 per 100000 people per year for patients ≥85 years of age.
 - In women, the incidence ranged from 6.6 per 100000 people per year for patients between 15 and 44 years of age to 203.7 per 100000 people per year for those ≥85 years of age.
- Data from California administrative databases were analyzed regarding racial variation in incidence of AF. After adjustment for AF risk factors, compared with their white counterparts, lower incidence rates were found in blacks (HR, 0.84; 95% CI, 0.82–0.85; P<0.001), Hispanics (HR, 0.78; 95% CI, 0.77–0.79; P<0.001), and Asians (HR, 0.78; 95% CI, 0.77–0.79; P<0.001).80
- In a Medicare sample, the incidence of AF was 28 per 1000 person-years and did not change substantively between 1993 and 2007. Of individuals with incident AF in 2007, 55% were women, 91% were white, 84% had hypertension, 36% had HF, and 30% had cerebrovascular disease.79
- Using data from a health insurance claims database covering 5% of the United States, the incidence of AF was estimated at 1.6 million cases in 2010 and was projected to increase to 2.6 million cases in 2030.81

Mortality

- In 2011, AF was mentioned on 116247 US death certificates and was the underlying cause in 17729 of those deaths (NCHS, NHLBI).
- In adjusted analyses from the FHS, AF was associated with an increased risk of death in both men (OR, 1.5; 95% CI, 1.2–1.8) and women (OR, 1.9; 95% CI, 1.5–2.2).82 Furthermore, there was an interaction with sex, such that AF appeared to diminish the survival advantage typically observed in women.
- In Medicare beneficiaries ≥65 years of age with new-onset AF, mortality decreased modestly but significantly between 1993 and 2007. In 2007, the age- and sex-adjusted mortality at 30 days was 11%, and at 1 year, it was 25%.79
- A study of >4600 patients diagnosed with first AF showed that risk of death within the first 4 months after the AF diagnosis was high. The most common causes of CVD death were CAD, HF, and ischemic stroke, which accounted for 22%, 14%, and 10%, respectively, of the early deaths (within the first 4 months) and 15%, 16%, and 7%, respectively, of the late deaths.83
- Although stroke is the most feared complication of AF, a recent clinical trial reported that stroke accounted for only 7.0% of deaths in AF, with sudden cardiac death (22.25%), progressive HF (15.1%), and noncardiovascular death (35.8%) accounting for the majority of deaths.84
- AF is also associated with increased mortality in individuals with other cardiovascular conditions and procedures, including HF,85,86 HF with preserved EF,87 MI,88,89 CABG,90,91 and stroke,92 and with noncardiovascular conditions such as sepsis and noncardiac surgery.84

Lifetime Risk and Cumulative Risk

(See Chart 16-6.)

- Largely European ancestry participants in the NHLBI-sponsored FHS were followed up from 1968 to 1999. At 40 years of age, remaining lifetime risks for AF were 26.0% for men and 23.0% for women. At 80 years of age, lifetime risks for AF were 22.7% for men and 21.6% for women. In further analysis, counting only those who had development of AF without prior or concurrent HF or MI, lifetime risk for AF was 16%.95 Estimates of lifetime risks of AF were similar in the Rotterdam Study.96
- Investigators from the NHLBI-sponsored ARIC study observed that the cumulative risk of AF was 21% in white men, 17% in white women, and 11% in African Americans of both sexes by 80 years of age.97
Risk Factors

- **Standard risk factors**
 - Both ARIC\(^9\) and FHS ([http://www.framinghamheartstudy.org/risk-functions/atrial-fibrillation/10-year-risk-risk.php]\(^9\)\(^,9\)\(^8\)) have developed risk prediction models to predict new-onset AF. Predictors of increased risk of new-onset AF include advancing age, European ancestry, body size (greater height and BMI), electrocardiography features (LV hypertrophy, left atrial enlargement), DM, BP (SBP and hypertension treatment), and presence of CVD (CHD, HF, valvular HD).
 - More recently, the ARIC, CHS, and FHS investigators developed and validated a risk prediction model.\(^9\)\(^1\)
 - Other consistently reported risk factors for AF include clinical and subclinical hyperthyroidism,\(^9\)\(^9\)\(^,\)\(^1\(^0\)\(^1\) and heavy alcohol consumption.\(^9\)\(^1\(^2\)

- **Family history**
 - Although unusual, early-onset familial lone AF has long been recognized as a risk factor.\(^1\(^0\)\(^3\),\(^1\(^0\)\(^4\)
 - In the past decade, the heritability of AF in the community has been appreciated. In studies from the FHS
 - Adjusted for coexistent risk factors, having at least 1 parent with AF was associated with a 1.85-fold increased risk of AF in the adult offspring (multivariable-adjusted 95% CI, 1.12–3.06; \(P=0.02\)).\(^1\(^0\)\(^5\)
 - A history of a first-degree relative with AF also was associated with an increased risk of AF (HR, 1.40; 95% CI, 1.13–1.74).\(^9\)\(^0\) The risk was greater if the first-degree relative’s age of onset was \(\leq\) 65 years (HR, 2.01; 95% CI, 1.49–2.71) and with each additional affected first-degree relative (HR, 1.24; 95% CI, 1.05–1.46).\(^1\(^0\)\(^6\)

 - Similar findings were reported from Sweden.\(^1\(^0\)\(^7\)

- **Genetics**
 - Mutations in genes coding channels (sodium and potassium), gap junction proteins, and signaling have been described, often in lone AF or familial AF series, but they are responsible for few cases of AF in the community.\(^1\(^0\)\(^8\)
 - Meta-analyses of genome-wide association studies have revealed single-nucleotide polymorphisms on chromosomes 4q12 (upstream of PITX2),\(^1\(^0\)\(^9\)\(^,\)\(^1\(^1\)\(^0\)\(^,\)\(^1\(^1\)\(^1\)\(^,\)\(^1\(^1\)\(^2\) 16q22 (ZFHX3),\(^1\(^1\)\(^1\)\(^0\)\(^,\)\(^1\(^1\)\(^2\) and 1q21 (KCNN3),\(^1\(^1\)\(^1\)\(^2\) as well as 6 other novel susceptibility loci (near PRRX1, CAV1, C9orf73, SYNPO2L, SYNE2, and HCN4),\(^1\(^1\)\(^3\) are associated with AF in individuals of European and Japanese ancestry.\(^1\(^1\)\(^4\) Although an area of intensive inquiry, the causative single-nucleotide polymorphisms and the functional basis of the associations have not been revealed.
 - Some studies suggest that genetic markers of AF may improve risk prediction for AF over models that include clinical factors.\(^1\(^1\)\(^5\)

Awareness

- In a US national biracial study of individuals with AF, compared with whites, blacks had approximately one third the likelihood (OR, 0.32; 95% CI, 0.20–0.52) of being aware that they had AF.\(^1\(^1\)\(^6\)

Prevention

(See Chart 16-7.)

- Data from the ARIC study indicated that having at least 1 elevated risk factor explained 50% and having at least 1 borderline risk factor explained 6.5% of incident AF cases. The estimated overall incidence rate per 1000 person-years at a mean age of 54.2 years was 2.19 for those with optimal risk, 3.68 for those with borderline risk, and 6.59 for those with elevated risk factors.\(^1\(^1\)\(^7\)
- Hypertension accounted for \(\approx\)14% to 22% of AF cases.
- Observational data from the CHS suggested that moderate-intensity exercise (such as regular walking) was associated with a lower risk of AF (HR, 0.72).\(^1\(^1\)\(^8\) However, data from many studies suggested that vigorous-intensity exercise 5 to 7 days a week was associated with a slightly increased risk of AF (HR, 1.20; \(P=0.04\)).\(^1\(^2\)\(^0\)
- Meta-analyses have suggested that renin-angiotensin system blockers may be useful in primary and secondary (recurrences) prevention of AF in trials of hypertension, after MI, in HF, and after cardioversion.\(^9\)\(^2\)\(^,\)\(^1\(^2\)\(^1\) However, the studies were primarily secondary or post hoc analyses, and the results were fairly heterogeneous. Recently, in an analysis of the EMPHASIS-HF trial, in one of many secondary outcomes, eplerenone was nominally observed to reduce the incidence of new-onset AF.\(^1\(^2\)\(^2\)
- Although heterogeneous in their findings, modest-sized short-term studies suggested that the use of statins might prevent AF; however, larger longer-term studies do not provide support for the concept that statins are effective in AF prevention.\(^1\(^2\)\(^3\)
- Treatment of obstructive sleep apnea has been noted to decrease risk of recurrent AF, after cardioversion and ablation,\(^1\(^2\)\(^4\) but its role in primary prevention is unproven.
- In a national outpatient registry of AF patients (ORBIT-AF), 93.5% had indications for guideline-based primary or secondary prevention in addition to oral anticoagulants; however, only 46.6% received all guideline-indicated therapies, consistent with an underutilization of evidenced-based preventive therapies for comorbid conditions in individuals with AF.\(^1\(^2\)\(^5\) Predictors of not receiving all guideline-indicated therapies included frailty, comorbid illness, geographic region, and antiarrhythmic drug therapy.

Aftermath

(See Chart 16-8.)

- **Stroke**
 - Stroke rates per 1000 patient-years declined in AF patients taking anticoagulants, from 46.7 in 1992 to 19.5 in 2002, for ischemic stroke but remained fairly steady for hemorrhagic stroke (1.6–2.9).\(^1\(^2\)\(^6\)
 - When standard stroke risk factors were accounted for, AF was associated with a 4- to 5-fold increased risk of ischemic stroke.\(^1\(^2\)\(^7\)
 - Although the RR of stroke associated with AF did not vary (\(\approx\)3- to 5-fold increased risk) substantively with advancing age, the proportion of strokes attributable to AF increased significantly. In FHS, AF accounted for \(\approx\)1.5% of strokes in individuals 50 to 59 years of age and \(\approx\)23.5% in those 80 to 89 years of age.\(^1\(^2\)\(^7\)
—Paroxysmal, persistent, and permanent AF all appeared to increase the risk of ischemic stroke to a similar degree.121
—AF was also an independent risk factor for ischemic stroke severity, recurrence, and mortality.82 In one study, individuals who had AF and were not treated with anticoagulants had a 2.1-fold increase in risk for recurrent stroke and a 2.4-fold increase in risk for recurrent severe stroke.128
—Studies have demonstrated an underutilization of warfarin therapy. In a recent meta-analysis, men and individuals with prior stroke were more likely to receive warfarin, whereas factors associated with lower use included alcohol and drug abuse, noncompliance, warfarin contraindications, dementia, falls, both gastrointestinal and intracranial hemorrhage, renal impairment, and advancing age.129 The underutilization of anticoagulation in AF has been demonstrated to be a global problem.130

- Cognition
—Individuals with AF have an adjusted 2-fold increased risk of dementia.131
—A meta-analysis of 21 studies indicated that AF was associated with an increased risk of cognitive impairment in patients after stroke (RR, 2.70; 95% CI, 1.82–4.00) and in patients without a history of stroke (RR, 1.37; 95% CI, 1.08–1.73). The risk of dementia was similarly increased (RR, 1.38; 95% CI, 1.22–1.56)).132
—In individuals with AF in Olmsted County, MN, the cumulative rate of dementia at 1 and 5 years was 2.7% and 10.5%, respectively.122

- Physical disability and subjective health
—AF has been associated with physical disability and poor subjective health.133,134 A recent systematic review suggested that among individuals with AF, moderate-intensity activity improved exercise capacity and quality of life.120

- Heart failure
—AF and HF share many antecedent risk factors, and ≥40% of individuals with either AF or HF will develop the other condition.85
—In the community, estimates of the incidence of HF in individuals with AF ranged from 3.35 to 4.4152 per 100 person-years of follow-up.
—Among older adults with AF in Medicare, the 5-year event rate was high, with rates of death and HF exceeding stroke. Higher event rates after new-onset AF were associated with older age and higher mean CHADS2 score.136

- Myocardial infarction
—In the REGARDS study, in models that adjusted for standard risk factors, AF was associated with a 70% increased risk of incident MI (HR, 1.96; 95% CI, 1.52–2.52); the risk was higher in women and blacks. In individuals with AF, the age-adjusted incidence rate per 1000 person-years was 12.0 (95% CI, 9.6–14.9) in those with compared with 6.0 (95% CI, 5.6–6.6) in those without AF.137
—Chronic kidney disease
—In a Japanese community-based study, individuals with AF had approximately a doubling in increased risk of developing kidney dysfunction or proteinuria, even in individuals without baseline DM or hypertension. Per 1000 person-years of follow-up, the incidence of kidney dysfunction was 6.8 in individuals without and 18.2 in individuals with AF at baseline.138
—In a Kaiser Permanente Study of individuals with CKD, new-onset AF was associated with an adjusted 1.67-fold increased risk of developing ESRD compared with those without AF (74 versus 64 per 1000 person-years of follow-up).139

- Sudden cardiac death
—In a study that examined data from 2 population-based studies, AF was associated with a doubling in the risk of sudden cardiac death after accounting for baseline and time-varying confounders. In ARIC, the unadjusted incidence rate was 1.30 (95% CI, 1.14–1.47) in those without AF and 2.89 (95% CI, 2.00–4.05) in those with AF; corresponding rates in CHS were 3.82 (95% CI, 3.35–4.35) and 12.00 (95% CI, 9.45–15.25), respectively.140

Global Burden of AF
(See Chart 16-9.)
—The vast majority of research on the epidemiology of AF has been conducted in Europe and North America. Investigators from the GBD project noted that the global prevalence, incidence, mortality, and DALYs increased from 1990 to 2010.141
—The 2010 worldwide prevalence of AF was estimated at 33.5 million: 20.9 million men (95% uncertainty interval, 19.5–22.2 million) and 12.6 million women (95% uncertainty interval, 12.0–13.7). In 2010, the age-adjusted AF prevalence per 100000 people was estimated to be 596.2 (95% uncertainty interval, 558.4–636.7) in men and 373.1 (95% uncertainty interval, 347.9–402.2) in women.
—The 2010 estimated annual AF incidence per 100000 person-years was estimated to be 77.5 (95% uncertainty interval, 65.2–95.4) in men and 59.5 (95% uncertainty interval, 49.9–74.9) in women.
—Although AF accounted for <1% of global deaths, the age-adjusted mortality rate was 1.6 (95% uncertainty interval, 1.0–2.4) in men and 1.7 (95% uncertainty interval, 1.4–2.2) in women in 2010.
—The 2010 estimated DALYs per 100000 population from AF were 64.5 (95% uncertainty interval, 46.8–84.2) and 45.9 (95% uncertainty interval, 35.7–58.5) in 2010; DALYs were higher in developed than in developing countries.

Hospitalization
—Data from the NHDS/NCHS 2010 on cases that included AF as a primary discharge diagnosis found the following142:
—Hospital discharges—479000.
—Approximately 50.8% of patients were males.
—The mean age for males was 65.5 years versus 74.1 years for females.
—The rate of AF hospitalization in males ranged from 32.6 per 100,000 people per year for patients between 15 and 44 years of age to 1,275.8 per 100,000 people per year for patients ≥85 years of age.
—The rate of AF hospitalization in females ranged from 5.4 per 100,000 people per year for patients between 15 and 44 years of age to 1,323.4 per 100,000 people per year for those ≥85 years of age.
• From 1996 to 2001, hospitalizations with AF as the first-listed diagnosis increased by 34%.143
• On the basis of Medicare and MarketScan databases, annually, individuals with AF (37.5%) are approximately twice as likely to be hospitalized as age- and sex-matched control subjects (17.5%).144

Cost
(See Chart 16-10.)
• Investigators examined Medicare and MarketScan databases (2004–2006) to estimate costs attributed to AF in 2008 US dollars144:
 —Annual total direct costs for AF patients were $206,700 versus $11,965 in the control group, for an incremental per-patient cost of $8705.
 —Extrapolating to the US population, it is estimated that the incremental cost of AF was $26 billion, of which $6 billion was attributed to AF, $9.9 billion to other cardiovascular expenses, and $10.1 billion to noncardiovascular expenses.

Tachycardia
ICD-9: 427.0, 427.1, 427.2; ICD-10: I47.1, I47.2, I47.9.
Mortality—688; Any-mention mortality—6213; Hospital discharges—78,000.

Monomorphic VT
Prevalence and Incidence
• The true prevalence and incidence of monomorphic VT in the US general population are not known.
• Of 150 consecutive patients with wide-complex tachycardia subsequently studied by invasive electrophysiological study, 122 (81%) had VT; the remainder had SVT.145
• Of patients with ventricular arrhythmias presenting for invasive electrophysiological studies, 11% to 21% had no structural HD, and the majority of those with structural HD had CAD.146,147
• In 634 patients with implantable cardioverter-defibrillators who had structural HD (including both primary and secondary prevention patients) followed up for a mean 11±3 months, 80% of potentially clinically relevant ventricular tachyarrhythmias were attributable to VT amenable to antitachycardia pacing (implying a stable circuit and therefore monomorphic VT).148 Because therapy may have been delivered before spontaneous resolution occurred, the proportion of these VT episodes with definite clinical relevance is not known.
• Of those with VT in the absence of structural HD, right ventricular outflow tract VT is the most common form.149

—Among 2099 subjects (mean age, 52; 52.2% male) without known CVD, exercise-induced nonsustained VT occurred in nearly 4% and was not independently associated with total mortality.150

Aftermath
• Although the prognosis of those with VT or frequent premature ventricular contractions in the absence of structural HD is good,164,165 a potentially reversible cardiomyopathy may develop in patients with very frequent premature ventricular contractions,151,152 and some cases of sudden death attributable to short-coupled premature ventricular contractions have been described.153,154

Polymorphic VT
Prevalence and Incidence
• The true prevalence and incidence of PVT in the US general population are not known.
• During ambulatory cardiac monitoring, PVT prevalence ranged from 0.01% to 0.15%;155,156 however, among patients who developed sudden cardiac death during ambulatory cardiac monitoring, PVT was detected in 30% to 43%;156,158
• In the setting of AMI, the prevalence of PVT ranged from 1.2% to 2%.159,160
• Out-of-hospital PVT is estimated to be present in ≥25% of all cardiac arrest cases involving VT.161,162
• A prevalence range of 15% to 19% was reported during electrophysiological studies in patients resuscitated from cardiac arrest.158,163,164

Risk Factors
• PVT in the setting of a normal QT interval is most frequently seen in the context of acute ischemia or MI.163,166
• Less frequently, PVT with a normal QT interval can occur in patients without apparent structural HD. Catecholaminergic VT, which is discussed under inherited arrhythmic syndromes, is one such disorder.
• A prolonged QT interval, whether acquired (drug induced) or congenital, is a common cause of PVT. Drug-induced prolongation of the QT interval that causes PVT is discussed under TdP, whereas congenital prolonged QT interval is discussed under inherited arrhythmic syndromes.

Aftermath
• The presentation of PVT can range from a brief, asymptomatic, self-terminating episode to recurrent syncope or sudden cardiac death.167
• The overall hospital discharge rate (survival) of PVT has been estimated to be ≥28%.168

Torsade de Pointes
Prevalence and Incidence
• The true incidence and prevalence of drug-induced TdP in the US general population are largely unknown.
• By extrapolating data from non-US registries,169 it has been estimated that 12,000 cases of drug-induced TdP occur annually in the United States.159
• The prevalence of drug-induced prolongation of QT interval and TdP is 2 to 3 times higher in women than in men.160
● With the majority of QT-interval–prolonging drugs, drug-induced TdP may occur in 3% to 15% of patients.158
● Antiarrhythmic drugs with QT-interval–prolonging potential carry a 1% to 3% risk of TdP over 1 to 2 years of exposure.170

Risk Factors
● TdP is usually related to administration of QT-interval–prolonging drugs.171 An up-to-date list of drugs with the potential to cause TdP may be found at http://www.azcert.org/medical-pros/drug-lists/drug-lists.cfm, a Web site maintained by the University of Arizona Center for Education and Research on Therapeutics.
● Specific risk factors for drug-induced TdP include prolonged QT interval, female sex, advanced age, bradycardia, hypokalemia, hypomagnesemia, LV systolic dysfunction, and conditions that lead to elevated plasma concentrations of causative drugs, such as kidney disease, liver disease, drug interactions, or some combination of these.159,172,173
● Predisposition was also noted in patients who had a history of ventricular arrhythmia and who experienced a recent symptomatic increase in the frequency and complexity of ectopy.174
● Drug-induced TdP rarely occurs in patients without comitant risk factors. An analysis of 144 published articles describing TdP associated with noncardiac drugs revealed that 100% of the patients had at least 1 risk factor, and 71% had at least 2 risk factors.175
● Both common and rare genetic variants have been shown to increase the propensity to drug-induced QT interval prolongation.176,177

Aftermath
● Drug-induced TdP may result in morbidity that requires hospitalization and in mortality attributable to sudden cardiac death in ≤31% of patients.178
● Patients with advanced HF with a history of drug-induced TdP had a significantly higher risk of sudden cardiac death during therapy with amiodarone than amiodarone-treated patients with no history of drug-induced TdP (55% versus 15%).179
● Current use of antipsychotic drugs was associated with a significant increase in the risk of sudden cardiac death attributable to TdP (OR, 3.3; 95% CI, 1.8–6.2).180
● In a cohort of 459,614 Medicaid and Medicaid-Medicare enrollees 30 to 75 years of age who were taking antipsychotic medications, the incidence of sudden death or ventricular arrhythmia was 3.4 per 1000 person-years.181
● Hospitalization was required in 47% and death occurred in 8% of patients with QT interval prolongation and TdP caused by administration of methadone.182

Prevention
● Keys to reducing the incidence of drug-induced cardiac arrhythmias include increased awareness among the medical, pharmaceutical, and nursing professions of the potential problems associated with the use of certain agents.
● Appropriate monitoring when a QT-interval–prolonging drug is administered is essential. Also, prompt withdrawal of the offending agent should be initiated.183

References

Kanell H, Elkind MS, Bhave PD, Navi BB, Okin PM, Iademorco C, De-
vinne RB, Fink ME. Paroxysmal supraventricular tachycardia and the risk

Brembilla-Perrot B, Houriez P, Beurrier D, Claudon O, Burger G, Van-
çon AC, Mock L. Influence of age on the electrophysiological mecha-

Porter MJ, Jordan MB, Bennett R, Lin AC, Tierney S, Santucci PA, Cai JJ,
Madsen N, Wilber DJ. Influence of age and gender on the mechanism of

Bradley DJ, Fischbach PS, Law IH, Serwer GA, Dick M 2nd. The clinical
course of multifocal atrial tachycardia in infants and children. J Am Coll
Cardiol. 2001;38:401–408.

Anand RG, Rosenthal GL, Van Hare GF, Snyder CS. Is the mechanism
of supraventricular tachycardia in pediatrics influenced by age, gender

De Bacquer D, De Backer G, Kornitzer M. Prevalences of ECG find-
ings in large population based samples of men and women. Heart.

Sano S, Komori S, Amano T, Koihno I, Ishihara T, Sawanobori T, Ijiri H,
Tamura K. Prevalence of supraventricular paroxysmic preexcitation in Japanese

Blomstrom-Lundqvist C, Scheinman MM, Almot EM, Alperts JS, Calkins H,
Camm AJ, Campbell WB, Haines DE, Kuck KH, Lerman BB, Miller DD,
Sheafer CW Jr, Stevenson WG, Tomasselli GF, Antman EM, Smith
SC Jr, Faxon DF, Fuster V, Gibbons RJ, Gregoratos G, Hiratzka LF, Hunt
SA, Jacobs AK, Russell RO Jr, Priori SG, Blanc JJ, Budzaj A, Burgos EF,
Cox JL, Decker JW, Garcia MA, Klein WK, Lifshitz J, Lindblad B,
Mazzotta G, Morais JC, Otto A, Smiseth O, Trappe HJ. ACC/AHA/ESC
guidelines for the management of patients with supraventricular arrhyth-
mas: executive summary: a report of the American College of Cardiology/
American Heart Association Task Force on Practice Guidelines and the
European Society of Cardiology Committee for Practice Guidelines (Writ-
ing Committee to Develop Guidelines for the Management of Patients

Munger TM, Packer DL, Hammill SC, Feldman BJ, Bailey KR, Ballard DJ,
Holmes DR Jr, Gersh BJ. A population study of the natural history of
Wolff-Parkinson-White syndrome in Olmsted County, Minnesota, 1953–

Leitch JW, Klein GJ, Yee R, Murdock C. Prognostic value of electro-
physiology testing in asymptomatic patients with Wolf-Parkinson-White
pattern [published correction appears in Circulation. 1991;83:1124].

Dagres N, Clague JR, Lottkamp G, Breithardt G, Borggreve M. Impac-
t of radiofrequency catheter ablation of accessory pathways on the frequency
of atrial fibrillation during long-term follow-up: high recurrence rate of atrial

Goudevenos JA, Katsouzas CS, Graekas G, Argiri O, Giogiakas V, Sideris
DA. Ventricular pre-excitation in the general population: a study on the

Krahn AD, Manfreda J, Tate RB, Mathewson FA, Cuddy TE. The natural
history of electrocardiographic preexcitation in men: the Manitoba Fol-

Glotzer TV, Hellkamp AS, Zimmerman J, Sweeney MO, Yee R, Marinich
R, Cook J, Parashos A, Love J, Rodolosovitch G, Lee KL, Larsa DJ, for the
MOST Investigators. Atrial high rate episodes detected by pacemaker diagnos-
tics predict death and stroke: report of the Atrial Diagnostics Ancillary Study

Obeysereken ME, Leong-Sit P, Massel D, Manuku J, Modi S, Krahn AD,
Skanes AC, Yee R, Gula LJ, Klein GJ. Risk of arrhythmia and sudden
death in patients with asymptomatic preexcitation: a meta-analysis. Circu-

Timmermans C, Smeets JL, Rodriguez LM, Vrouchos G, van den Doel
A, Wellens HJ. Aborted sudden death in the Wolff-Parkinson-White

L, Santinelli V. Risk of malignant arrhythmias in initially symp-
tomatic patients with Wolff-Parkinson-White syndrome: results of a

Ellinor PT, MacRae CA. Ion channel mutations in AF: signal or noise? *Heart Rhythm* 2009;6:436–437.

Table 16-1. Cumulative Incidence Rate (%) Over 5 Years After AF Diagnosis by Age

<table>
<thead>
<tr>
<th>Age Group, y</th>
<th>Mortality</th>
<th>Heart Failure</th>
<th>Myocardial Infarction</th>
<th>Stroke</th>
<th>Gastrointestinal Bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>67–69</td>
<td>28.8</td>
<td>11.0</td>
<td>3.3</td>
<td>5.0</td>
<td>4.4</td>
</tr>
<tr>
<td>70–74</td>
<td>32.3</td>
<td>12.1</td>
<td>3.6</td>
<td>5.7</td>
<td>4.9</td>
</tr>
<tr>
<td>75–79</td>
<td>40.1</td>
<td>13.3</td>
<td>3.9</td>
<td>6.9</td>
<td>5.9</td>
</tr>
<tr>
<td>80–84</td>
<td>52.1</td>
<td>15.1</td>
<td>4.3</td>
<td>8.1</td>
<td>6.4</td>
</tr>
<tr>
<td>85–89</td>
<td>67.0</td>
<td>15.8</td>
<td>4.4</td>
<td>8.9</td>
<td>6.6</td>
</tr>
<tr>
<td>≥90</td>
<td>84.3</td>
<td>13.7</td>
<td>3.6</td>
<td>6.9</td>
<td>5.4</td>
</tr>
</tbody>
</table>

AF indicates atrial fibrillation.

Data derived from Puccini et al. by permission of the European Society of Cardiology.

Chart 16-1. Long-term outcomes in individuals with prolonged PR interval (>200 ms; first-degree atrioventricular block) compared with individuals with normal PR interval in the Framingham Heart Study. Data derived from Cheng et al.15
Table 16-2. Reason for pacemaker implantation. Primary indications (in thousands) for pacemaker placement between 1990 and 2002 from National Hospital Discharge Survey. AV indicates atrioventricular. Data derived from Birnie et al.36

Chart 16-3. Incidence rate of paroxysmal supraventricular tachycardia per 100 000 person-years by age and sex. Data derived from Orejarena et al.37
Chart 16-4. Current and future US prevalence projections for atrial fibrillation (AF). Projections assume no increase (red dashed line) or logarithmic growth (blue dashed line) in incidence of AF from 2007. Data derived from Go et al75 and modified from Colilla et al,81 copyright 2013, with permission from Elsevier.

Chart 16-5. Atrial fibrillation (AF) incidence by race. Incidence of AF increases with age among different races and sexes in the United States. Data derived from Dewland et al.80
Chart 16-6. Lifetime risk for atrial fibrillation (AF) at different ages by sex. Cumulative risk for AF through age 94 years at selected ages by sex. With increasing incidence of AF with aging, lifetime risk is unchanged. Reprinted with permission from Lloyd-Jones et al.95 Copyright © 2004, American Heart Association, Inc.

Chart 16-7. Population attributable fraction of major risk factors for atrial fibrillation in the Atherosclerosis Risk in Communities study, BMI indicates body mass index; cardiac disease, patients with history of coronary artery disease or heart failure; and smoking, current smoker. Data derived from Huxley et al.117
Chart 16-8. Cumulative incidence of events in the 5 years after diagnosis of incident atrial fibrillation in Medicare patients. Reprinted from Puccini et al136 by permission of the European Society of Cardiology.

Chart 16-9. Global age-adjusted atrial fibrillation prevalence rates (per 100 000 population) in the 2010 Global Burden of Disease Study. Reprinted with permission from Chugh et al.141 Copyright © 2014, American Heart Association, Inc.
Chart 16-10. Atrial fibrillation (AF) cost estimates. Costs where AF is primary diagnosis in inpatient and outpatient encounters. Indirect costs are incremental costs of inpatient and outpatient visits. Data derived from Kim et al144 and Coyne et al.184
17. Sudden Cardiac Arrest

See Tables 17-1 and 17-2 and Charts 17-1 and 17-2.

Cardiac Arrest (Including VF and Ventricular Flutter)

ICD-9 427.4, 427.5; ICD-10 I46.0, I46.1, I46.9, I49.0

Cardiac arrest is defined as the cessation of cardiac mechanical activity, as confirmed by the absence of signs of circulation. Cardiac arrest is traditionally categorized as being of cardiac or noncardiac origin. An arrest is presumed to be of cardiac origin unless it is known or likely to have been caused by trauma, submersion, drug overdose, asphyxia, exsanguination, or any other noncardiac cause as best determined by rescuers. In practice, the accuracy of this classification is difficult, and some data sets do not attempt to make the distinction. Because of fundamental differences in underlying causes and the system of care, epidemiological data for out-of-hospital and in-hospital cardiac arrest are typically collected and reported separately. For similar reasons, data for adults and children (age 1–18 years) are commonly reported separately.

There are a number of ongoing challenges to understanding the epidemiology of cardiac arrest in the United States. Despite being a leading cause of HD death, there are currently no nationwide standards for surveillance to monitor the incidence and outcomes of cardiac arrest. In addition, it is challenging to define what is “unexpected” or “sudden” death. Sudden cardiac death has been defined as unexpected death without an obvious noncardiac cause that occurs within 1 hour of symptom onset (witnessed) or within 24 hours of last being observed in normal health (unwitnessed). However, this definition is difficult to apply in the real-world setting. Out-of-hospital cardiac arrest registries and clinical trials typically include patients in cardiac arrest who were either assessed by EMS providers or treated by EMS providers. Regional and cultural differences in EMS system access and decision to treat are potential sources of variability in these data sets. Similar challenges exist related to the epidemiology of in-hospital cardiac arrest.

Out-of-Hospital Cardiac Arrest

For additional details on out-of-hospital cardiac arrest treatment, please refer to Chapter 23, Quality of Care, Tables 23-8 and 23-9.

There are wide variations in the reported incidence of and outcomes for out-of-hospital cardiac arrest. These differences are caused in part by differences in definition and ascertainment of cardiac arrest data, as well as differences in treatment after the onset of cardiac arrest.

Children

(See Table 17-1.)

Incidence and Risk Factors

- Most sudden deaths in young athletes were attributable to CVD (56%). Of the cardiovascular deaths that occurred, 29% occurred in blacks, 54% in high school students, and 82% with physical exertion during competition/training; only 11% occurred in females, although this proportion has increased over time.
- A longitudinal study of students 17 to 24 years of age participating in National Collegiate Athletic Association sports showed that the incidence of nontraumatic out-of-hospital cardiac arrest was 1 per 22,903 athlete participant-years. The incidence of cardiac arrest tended to be higher among blacks than among whites and among men than among women.
- In the state of Minnesota between 1993 and 2012, the incidence of sudden cardiac death in high school athletes screened every 3 years with standard preparticipation evaluations during Minnesota State High School League activities was 0.24 per 100,000 athlete-years.

Aftermath

- In the ROC Epistry, survival to hospital discharge in 2011 after EMS-treated nontraumatic cardiac arrest with any
first recorded rhythm was 7.3% (95% CI, 5.0%–9.6%) for children (ROC Investigators, unpublished data, August 12, 2014). Survival after bystander-witnessed VF was 53.3% (95% CI, 28.1%–78.6%) for children (ROC Investigators, unpublished data, August 14, 2014).

Adults

Incidence

(See Table 17-1 and Charts 17-1 and 17-2.)

- The incidence of EMS-assessed, EMS-treated nontraumatic cardiac arrest and bystander-witnessed VF among individuals of any age during 2011 in the United States is best characterized by an ongoing registry from ROC.
- The total resident population of the United States is 316,128,839 individuals. Extrapolation of the incidence of EMS-assessed out-of-hospital cardiac arrest reported by ROC (ROC Investigators, unpublished data, August 12, 2014) to the total population of the United States suggests that each year, 326,200 (quasi-CI, 320,200–332,200) people (320,157 adults) experience EMS-assessed out-of-hospital cardiac arrests in the United States.
- Approximately 60% of out-of-hospital cardiac arrests are treated by EMS personnel.7
- Twenty-five percent of those with EMS-treated out-of-hospital cardiac arrest have no symptoms before the onset of arrest.8
- Among EMS-treated out-of-hospital cardiac arrests, 23% have an initial rhythm of VF or VT or are shockable by an automated external defibrillator.9
- The incidence of cardiac arrest with an initial rhythm of VF is decreasing over time; however, the incidence of cardiac arrest with any initial rhythm is not decreasing.10
- On the basis of extrapolation of data from the Oregon Sudden Unexpected Death Study, the estimated risk-adjusted incidence of sudden cardiac arrest was 76/100,000 per year (234,085 per year in the United States) and the estimated risk-adjusted incidence of sudden cardiac death was 69/100,000 per year (212,910 per year in the United States).11 This data set excluded cases that were judged to have a noncardiac cause of arrest. In the same study, the estimated societal burden of premature death was 2 million years of potential life lost for men and 1.3 million years of potential life lost for women.
- The median age for out-of-hospital cardiac arrest is 66 years.12
- Cardiac arrest is witnessed by a bystander in 38.7% of cases and by an EMS provider in 10.9% of cases and is unwitnessed in 50.4% of cases.12
- According to the CARES registry, in 2013 the majority of out-of-hospital cardiac arrests occurred at a home or residence (69.5%).12
- Among 10.9 million registered participants in 40 marathons and 19 half marathons, the overall incidence of cardiac arrest was 0.54 per 100,000 participants (95% CI, 0.41–0.70).13 Those with cardiac arrest were more often male and were running a marathon versus a half marathon. Seventy-one percent of those with cardiac arrest died; those who died were younger (mean 39±9 years of age) than those who did not die (mean 49±10 years of age), were more often male, and were more often running a full marathon.

Risk Factors

- A study conducted in New York City found the age-adjusted incidence of out-of-hospital cardiac arrest per 10,000 adults was 10.1 among blacks, 6.5 among Hispanics, and 5.8 among whites.14
- Prior HD is a major risk factor for cardiac arrest. A study of 1275 health maintenance organization enrollees 50 to 79 years of age who had cardiac arrest showed that the incidence of out-of-hospital cardiac arrest was 6.0 per 1000 person-years in subjects with any clinically recognized HD compared with 0.8 per 1000 person-years in subjects without HD. In subgroups with HD, incidence was 13.6 per 1000 person-years in subjects with prior MI and 21.9 per 1000 person-years in subjects with HF.15
- A family history of cardiac arrest in a first-degree relative is associated with an ≈2-fold increase in risk of cardiac arrest.3,4
- In a study of 81,722 women in the Nurses’ Health Study, the PAR of sudden death associated with 4 lifestyle factors (smoking, PA, diet, and weight) was 81% (95% CI, 52%–93%).16
- A study of 1275 health maintenance organization enrollees 50 to 79 years of age who had cardiac arrest showed that the incidence of out-of-hospital cardiac arrest was 6.0/1000 subject-years in subjects with any clinically recognized HD compared with 0.8/1000 subject-years in subjects without HD. Among enrollees with HD, incidence was 13.6 and 21.9 per 1000 subject-years in those with prior MI and with HF, respectively.15

Aftermath

- In the ROC Epistry, survival to hospital discharge in 2011 after nontraumatic EMS-treated cardiac arrest with any first recorded rhythm was 10.6% (95% CI, 10.1%–11.2%) for patients of any age (Table 17-2; ROC Investigators, unpublished data, August 12, 2014). Survival after bystander-witnessed VF was 31.4% (95% CI, 29.2%–33.7%) for patients without HD. In subgroups with HD, incidence was 13.6% and 21.9 per 1000 subject-years in those with prior MI and with HF, respectively.15
- In CARES, 31,127 out-of-hospital cardiac arrests were treated in 2013. Survival to hospital discharge was 10.6%, and survival with good neurological function (Cerebral Performance Category 1 or 2) was 8.3%. For bystander-witnessed arrest with a shockable rhythm, survival to hospital discharge was 33.0%.12
- In a study using the US Nationwide Inpatient Sample data, in-hospital mortality for patients hospitalized after treatment for cardiac arrest declined 11.8%, from 69.6% in 2001 to 57.8% in 2009.17
- A study conducted in New York City found the age-adjusted survival to 30 days after discharge was more than twice as poor for blacks as for whites, and survival among Hispanics was also lower than among whites.14
- A study in Denmark of 1218 out-of-hospital cardiac arrest patients between 2002 and 2010 demonstrated that transport to a non–tertiary care center versus a tertiary care center after return of spontaneous circulation or with ongoing resuscitation was independently associated with increased risk of death (HR, 1.32; 95% CI, 1.09–1.59; P=0.004).18
In-Hospital Cardiac Arrest

For additional details on in-hospital arrest treatment outcomes, please refer to Chapter 23, Quality of Care.

Children

Aftermath

- Survival rates are not available for children with in-hospital cardiac arrest due to small sample size.
- Among 1031 children at 12 hospitals in the GWTG-Resuscitation Registry between 2001 and 2009, the initial cardiac arrest rhythm was asystole and pulseless electrical activity in 874 children (84.8%) and VF and pulseless VT in 157 children (15.2%). Risk-adjusted rates of survival to discharge increased from 14.3% in 2000 to 43.4% in 2009 (adjusted rate ratio per year, 1.08; 95% CI, 1.01–1.16; P for trend=0.02) without an increased rate of neurological disability among survivors over time (unadjusted P for trend=0.32).20

Adults

Incidence

- Extrapolation of the incidence of in-hospital cardiac arrest reported by GWTG-Resuscitation to the total population of hospitalized patients in the United States suggests that each year, 209,000 (quasi-CI, 192,000–211,000) people are treated for in-hospital cardiac arrest.19
- Analysis of the UK National Cardiac Arrest Audit database between 2011 and 2013 (144 acute hospitals and 22,628 patients ≥16 years of age) revealed an incidence of in-hospital cardiac arrest of 1.6 per 1000 hospital admissions, with a median across hospitals of 1.5 (interquartile range, 1.2–2.2). The overall unadjusted survival rate was 18.4%.21

Aftermath

- According to the GWTG-Resuscitation Investigators (unpublished data, September 4, 2014), 25.5% (95% CI, 24.9%–26.1%) of adults who experienced in-hospital cardiac arrest with any first recorded rhythm in 2013 survived to discharge.
- Chan et al22 demonstrated that rates of survival to discharge were lower for black patients (25.2%) than for white patients (37.4%) after in-hospital cardiac arrest. Lower rates of survival to discharge for blacks reflected lower rates of both successful resuscitation (55.8% versus 67.4% for blacks versus whites, respectively) and postresuscitation survival (45.2% versus 55.5%, respectively). Adjustment for the hospital site at which patients received care explained a substantial portion of the racial differences in successful resuscitation (adjusted RR, 0.92; 95% CI, 0.88–0.96; P<0.001) and eliminated the racial differences in postresuscitation survival (adjusted RR, 0.99; 95% CI, 0.92–1.06; P=0.68).
- In the United Kingdom National Cardiac Arrest Audit database between 2011 and 2013, the overall unadjusted survival rate was 18.4%. Survival was 49% when the initial rhythm was shockable and 10.5% when the initial rhythm was not shockable.21

Inherited Syndromes Associated With Sudden Cardiac Death

Long-QT Syndrome

- The hereditary LQTS is a genetic channelopathy characterized by prolongation of the QT interval (typically >460 ms) and susceptibility to ventricular tachyarrhythmias that lead to syncope and sudden cardiac death. Investigators have identified mutations in 13 genes leading to this phenotype (LQT1 through LQT13), LQT1 (KCNQ1), LQT2 (KCNH2), and LQT3 (SCN5A) mutations account for the majority (>80%) of the typed mutations.23,24
- Prevalence of LQTS is estimated at 1 per 2000 live births from ECG-guided molecular screening of ≈44,000 infants (mostly white) born in Italy.25 A similar prevalence was found among nearly 8000 Japanese school children screened by use of an ECG-guided molecular screening approach.26
- LQTS has been reported among those of African descent, but its prevalence is not well assessed.27
- There is variable penetrance and a sex-time interaction for LQTS symptoms. Risk of cardiac events is higher among boys than girls (21% among boys and 14% among girls by 12 years of age). Risk of events during adolescence is equivalent between sexes (≈25% for both sexes from ages 12–18 years). Conversely, risk of cardiac events in young adulthood is higher among women than men (39% among women from ages 18–40 years and 16% among men).24
- In addition to age and sex, the clinical course is influenced by prior syncope or aborted cardiac arrest, family history, QT-interval duration, genotype, number of mutations, and congenital deafness.23,24,28
- Risk of cardiac events is decreased during pregnancy but increased during the 9-month postpartum period.29
- The mainstay of therapy and prevention is β-blockade treatment.24,30 Implantable defibrillators are considered for high-risk individuals.31
- Individuals may be risk stratified for increased risk of sudden cardiac death5 according to their specific long-QT mutation and their response to β-blockers.30
- Among 403 patients from the LQTS Registry from birth through age 40 years, multivariate analysis demonstrated that patients with multiple LQTS gene mutations had a 2.3-fold (P=0.015) increased risk for life-threatening cardiac events (comprising aborted cardiac arrest, implantable defibrillator shock, or sudden cardiac death) compared with patients with a single mutation.33

Short-QT Syndrome

- Short-QT syndrome is a recently described inherited mendelian condition characterized by shortening of the QT interval (typically QT <320 ms) and predisposition to AF, ventricular tachyarrhythmias, and sudden death. Mutations in 5 ion channel genes have been described (SQT1–SQT5).34
- In a population of 41,767 young, predominantly male Swiss transcripts, 0.02% of the population had a QT interval shorter than 320 ms.35
- Among 53 patients from the European Short QT Syndrome Registry (75% males, median age 26 years),36 a familial or personal history of cardiac arrest was present in 89%.
Twenty-four patients received an implantable cardioverter-defibrillator, and 12 received long-term prophylaxis with hydroquinidine. During a median follow-up of 64 months, 2 patients received an appropriate implantable cardioverter-defibrillator shock, and 1 patient experienced syncope. Nonsustained PVT was recorded in 3 patients.36

- In a cohort of 25 patients with short-QT syndrome ≤21 years of age followed up for 5.9 years, 6 patients had aborted sudden death (24%).37 Sixteen patients (84%) had a familial or personal history of cardiac arrest. A gene mutation associated with short-QT syndrome was identified in 5 (24%) of 21 probands.

Arrhythmogenic Right Ventricular Cardiomyopathy

- Arrhythmogenic right ventricular cardiomyopathy is a form of genetically inherited structural HD that presents with fibrofatty replacement of the myocardium, with clinical presentation of palpitations, syncope, and sudden death.50
- Twelve arrhythmogenic right ventricular cardiomyopathy loci have been described (ARVC1–ARVC12). Disease-causing genes for 8 of these loci have been identified, the majority of which are in desmosomally related proteins.50
- Prevalence is estimated at 2 to 10 per 10,000 individuals.53,54 Of 100 patients reported on from the Johns Hopkins Arrhythmogenic Right Ventricular Dysplasia Registry, 51 were men and 95 were white, with the rest being of black, Hispanic, or Middle Eastern origin. Twenty-two percent of index cases had evidence of the familial form of arrhythmogenic right ventricular cardiomyopathy.51
- The most common presenting symptoms were palpitations (27%), syncope (26%), and sudden cardiac death (23%).51
- During a median follow-up of 6 years, 47 patients received an implantable cardioverter-defibrillator, 29 of whom received appropriate implantable cardioverter-defibrillator shocks. At the end of follow-up, 66 patients were alive. Twenty-three patients died at study entry, and 11 died during follow-up (91% of deaths were attributable to sudden cardiac arrest).51 Similarly, the annual mortality rate was 2.3% for 130 patients with arrhythmogenic right ventricular cardiomyopathy from Paris, France, who were followed up for a mean of 8.1 years.52

Hypertrophic Cardiomyopathy

(Please refer to Chapter 20, Cardiomyopathy and Heart Failure, for statistics regarding the general epidemiology of HCM.)

- Over a mean follow-up of 8.7 years, 6% of HCM patients experienced sudden cardiac death.55
- Among 1866 sudden deaths in athletes between 1980 and 2006, HCM was the most common cause of cardiovascular sudden death (in 251 cases, or 36% of the 690 deaths that could be reliably attributed to a cardiovascular cause).3
- The risk of sudden death increases with increasing maximum LV wall thickness,56,57 and the risk for those with wall thickness ≥30 mm is 18.2 per 1000 patient-years (95% CI, 7.3–37.6),56 or approximately twice that of those with maximal wall thickness <30 mm.56,57 Of note, an association between maximum wall thickness and sudden death has not been found in every HCM population.56
- Nonsustained VT is a risk factor for sudden death,34,58 particularly in younger patients. Nonsustained VT in those ≤30 years of age is associated with a 4.35–greater odds of sudden death (95% CI, 1.5–12.3).54
- A history of syncope is also a risk factor for sudden death in these patients,59 particularly if the syncope was recent before the initial evaluation and not attributable to a neurally mediated event.60
- The presence of LV outflow tract obstruction ≥30 mmHg appears to increase the risk of sudden death by 2-fold.61,62
The presence of LV outflow tract obstruction has a low positive predictive value (7%–8%) but a high negative predictive value (92%–95%) for predicting sudden death.61,63

- The rate of malignant ventricular arrhythmias detected by implantable cardioverter-defibrillators appears to be similar between those with a family history of sudden death in ≥1 first-degree relatives and those with at least 1 of the risk factors described above.64

- The risk of sudden death increases with the number of risk factors.55

Early Repolarization Syndrome
(See Table 17-1.)

- Early repolarization, observed in 4% to 19% of the population65–69 (more commonly in young men66,68,70 and in athletes67), has conventionally been considered a benign finding.

- A clinically relevant syndrome was initially described in which ≥1-mm positive deflections (sometimes referred to as “J waves”) in the S wave of ≥2 consecutive inferior or lateral leads were found in 31% of 206 patients with idiopathic VF compared with 5% of control subjects (P<0.001).67 These findings have been validated in a second study demonstrating similar J-point elevation in 42% of 45 patients with idiopathic VF compared with 13% of age- and sex-matched control subjects (P=0.001).67 Given an estimated risk of idiopathic VF in the general population (among those aged 35–45 years) of 3.4 per 100,000, the positive predictive value of such J-wave findings in a person 35 to 45 years of age increases the chances of having idiopathic VF to 11 of 100,000.67

- In an analysis of the Social Insurance Institution’s Coronary Disease Study in Finland, J-point elevation was identified in 5.8% of 10864 people.68 Those with inferior-lead J-point elevation more often were male and more often were smokers; had a lower resting heart rate, lower BMI, lower BP, shorter corrected QT interval, and longer QRS duration; and were more likely to have ECG evidence of CAD. Those with lateral J-point elevation were more likely to have LV hypertrophy. Before and after multivariable adjustment, subjects with J-point elevation ≥1 mm in the inferior leads (n=384) had a higher risk of cardiac death (adjusted RR, 1.28; 95% CI, 1.04–1.59; P=0.03) and arrhythmic death (adjusted RR, 1.43; 95% CI, 1.06–1.94; P=0.03). However, these patients did not have a significantly higher rate of all-cause mortality. Before and after multivariable adjustment, subjects with J-point elevation ≥2 mm (n=36) had an increased risk of cardiac death (adjusted RR, 2.98; 95% CI, 1.85–4.92; P=0.03), arrhythmic death (adjusted RR, 3.94; 95% CI, 1.96–7.90; P=0.03), and death of any cause (adjusted RR, 1.54; 95% CI, 1.06–2.24; P=0.03).

- In CARDIA, 18.6% of 5069 participants had early repolarization restricted to the inferior and lateral leads at baseline; by year 20, only 4.8% exhibited an early repolarization pattern.69 Younger age, black race, male sex, longer exercise duration and QRS duration, and lower BMI, heart rate, QT index, and Cornell voltage were associated cross-sectionally with the presence of baseline early repolarization. Predictors of maintenance of the ECG pattern from baseline to year 20 were black race (OR, 2.62; 95% CI, 1.61–4.25), BMI (OR, 0.62 per 1 SD; 95% CI, 0.40–0.94), serum triglyceride levels (OR, 0.66 per 1 SD; 95% CI, 0.45–0.98), and QRS duration (OR, 1.68 per 1 SD; 95% CI, 1.37–2.06) at baseline.

- Evidence from families with a high penetrance of the early repolarization syndrome associated with a high risk of sudden death suggests that the syndrome can be inherited in an autosomal dominant fashion.71 A meta-analysis of genome-wide association studies performed in population-based cohorts failed to identify any genetic variants that met criteria for statistical significance.72

References

Table 17-1. Incidence of Out-of-Hospital Cardiac Arrest in US Sites of Resuscitation Outcomes Consortium

<table>
<thead>
<tr>
<th></th>
<th>Incidence per 100,000 (95% CI)</th>
<th>Annual No. of Cases (Quasi-CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMS assessed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any age</td>
<td>103.2 (101.3, 105.1)</td>
<td>326,200 (320,200, 332,300)</td>
</tr>
<tr>
<td>Adults</td>
<td>132.0 (129.5, 134.5)</td>
<td>320,200 (314,100, 326,200)</td>
</tr>
<tr>
<td>Children</td>
<td>8.6 (7.5, 9.6)</td>
<td>6,300 (5,500, 7,100)</td>
</tr>
<tr>
<td>EMS treated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any age</td>
<td>55.7 (54.3, 57.1)</td>
<td>176,100 (171,700, 180,500)</td>
</tr>
<tr>
<td>Adults</td>
<td>71.5 (69.7, 73.3)</td>
<td>173,400 (169,100, 177,800)</td>
</tr>
<tr>
<td>Children</td>
<td>6.4 (7.3, 5.4)</td>
<td>4,700 (4,000, 5,400)</td>
</tr>
<tr>
<td>VF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any age</td>
<td>11.0 (10.4, 11.7)</td>
<td>34,800 (32,900, 37,000)</td>
</tr>
<tr>
<td>Adults</td>
<td>14.5 (13.7, 15.3)</td>
<td>35,200 (33,200, 37,100)</td>
</tr>
<tr>
<td>Children</td>
<td>0.4 (0.1, 0.6)</td>
<td>300 (100, 400)</td>
</tr>
<tr>
<td>Bystander-witnessed VF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any age</td>
<td>6.1 (5.7, 6.6)</td>
<td>19,300 (18,000, 20,900)</td>
</tr>
<tr>
<td>Adults</td>
<td>8.1 (7.4, 8.7)</td>
<td>19,600 (17,900, 21,100)</td>
</tr>
<tr>
<td>Children</td>
<td>0.2 (0.1, 0.4)</td>
<td>100 (100, 300)</td>
</tr>
</tbody>
</table>

Time frame: June 1, 2012 to May 31, 2013.
EMS indicates emergency medical services; and VF, ventricular fibrillation.

*The estimated number of annual VF cases of any age is less than the estimated number of cases in adults alone due to rounding as well as missing information about patient age.

Table 17-2. Survival After Out-of-Hospital Cardiac Arrest in US Sites of Resuscitation Outcomes Consortium

<table>
<thead>
<tr>
<th></th>
<th>Survival to Discharge (95% CI), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMS assessed</td>
<td></td>
</tr>
<tr>
<td>Any age</td>
<td>5.6 (5.3–5.8)</td>
</tr>
<tr>
<td>Adults</td>
<td>6.4 (6.1–6.7)</td>
</tr>
<tr>
<td>Children</td>
<td>6.2 (4.2–8.1)</td>
</tr>
<tr>
<td>Unknown age</td>
<td>0.1 (0–0.1)</td>
</tr>
<tr>
<td>EMS treated</td>
<td></td>
</tr>
<tr>
<td>Any age</td>
<td>10.6 (10.1–11.2)</td>
</tr>
<tr>
<td>Adults</td>
<td>10.8 (10.3–11.3)</td>
</tr>
<tr>
<td>Children</td>
<td>7.3 (5.0–9.6)</td>
</tr>
<tr>
<td>Unknown age</td>
<td>3.3 (0–7.9)</td>
</tr>
<tr>
<td>VF</td>
<td></td>
</tr>
<tr>
<td>Any age</td>
<td>29.0 (27.3–30.7)</td>
</tr>
<tr>
<td>Adults</td>
<td>29.0 (27.3–30.7)</td>
</tr>
<tr>
<td>Children</td>
<td>36.0 (17.2–54.8)</td>
</tr>
<tr>
<td>Bystander-witnessed VF</td>
<td></td>
</tr>
<tr>
<td>Any age</td>
<td>31.4 (29.2–33.7)</td>
</tr>
<tr>
<td>Adults</td>
<td>31.2 (28.9–33.5)</td>
</tr>
<tr>
<td>Children</td>
<td>53.3 (28.1–78.6)</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; EMS, emergency medical services; and VF, ventricular fibrillation.

Chart 17-1. Location of out-of-hospital cardiac arrest, 2013. Data derived from 2013 Cardiac Arrest Registry to Enhance Survival National Summary Report.¹²

18. Subclinical Atherosclerosis

See Table 18-1 and Charts 18-1 through 18-6.

Atherosclerosis, a systemic disease process in which fatty deposits, inflammation, cells, and scar tissue build up within the walls of arteries, is the underlying cause of the majority of clinical cardiovascular events. Atherosclerosis can develop in large and small arteries supplying a variety of end-organs, including the heart, brain, kidneys, and extremities. There can be significant variability in which size arteries and locations are affected in individual patients, although atherosclerosis is often a systemic disease. In recent decades, advances in imaging technology have allowed for improved ability to detect and quantify atherosclerosis at all stages and in multiple different vascular beds. Early identification of subclinical atherosclerosis could lead to more aggressive lifestyle modifications and medical treatment to prevent clinical manifestations of atherosclerosis such as MI, stroke, or renal failure. Two modalities, CT of the chest for evaluation of CAC and B-mode ultrasound of the neck for evaluation of carotid artery IMT, have been used in large studies with outcomes data and may help define the burden of atherosclerosis in individuals before they develop clinical events such as heart attack or stroke. Another commonly used method for detecting and quantifying atherosclerosis in the peripheral arteries is the ABI. Data on cardiovascular outcomes are beginning to emerge for additional modalities that measure anatomic and functional measures of subclinical disease, including brachial artery reactivity testing, aortic and carotid magnetic resonance imaging, and tonometric methods of measuring vascular compliance or microvascular reactivity. Further research may help to define the role of these techniques in cardiovascular risk assessment. Some guidelines have recommended screening for subclinical atherosclerosis, especially by CAC, or IMT may be appropriate in people at intermediate risk for HD (eg, 10-year estimated risk of 10%–20%) but not for lower-risk general population screening or for people with preexisting HD or most other high-risk conditions. Recent guideline notes those with DM who are ≥40 years of age may be suitable for screening of risk by coronary calcium. There are still limited data demonstrating whether screening with these and other imaging modalities can improve patient outcomes or whether it only increases downstream medical care costs. A recently published report in a large cohort randomly assigned to coronary calcium screening or not showed such screening to result in an improved risk factor profile without increasing downstream medical costs. In addition, a recent cost-effectiveness analysis based on data from MESA reported that CAC testing and statin treatment for those with CAC ≥0 was cost-effective (<$50000 per quality-adjusted life year) in intermediate-risk scenarios (CHD risk 5%–10%) considering less favorable statin assumptions ($1.00 per pill).

Coronary Artery Calcification

Background

- CAC is a measure of the burden of atherosclerosis in the heart arteries and is measured by CT. Other components of the atherosclerotic plaque, including fatty (eg, cholesterol-rich components) and fibrotic components, often accompany CAC and may be present even in the absence of CAC.
- The presence of any CAC, which indicates that at least some atherosclerotic plaque is present, is defined by an Agatston score >0. Clinically significant plaque, frequently an indication for more aggressive risk factor management, is often defined by an Agatston score ≥100 or a score ≥75th percentile for one’s age and sex. However, although they predict short- to intermediate-term risk, absolute CAC cutoffs offer more prognostic information across all age groups in both men and women. An Agatston score ≥400 has been noted to be an indication for further diagnostic evaluation (eg, exercise testing or myocardial perfusion imaging) for CAD.

Abbreviations Used in Chapter 18

- ABI ankle-brachial index
- AF atrial fibrillation
- ARIC Atherosclerosis Risk in Communities study
- BMI body mass index
- BP blood pressure
- CAC coronary artery calcification
- CAD coronary artery disease
- CARDIA Coronary Artery Risk Development in Young Adults
- CHD coronary heart disease
- CHS Cardiovascular Health Study
- CI confidence interval
- CONFIRM Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry
- CRP C-reactive protein
- CT computed tomography
- CVD cardiovascular disease
- DBP diastolic blood pressure
- DM diabetes mellitus
- FHS Framingham Heart Study
- FMD flow-mediated dilation
- FRS Framingham Risk Score
- HDL high-density lipoprotein
- HD heart disease
- HR hazard ratio
- IMT intima-media thickness
- JUPITER Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin
- LDL low-density lipoprotein
- MASALA Mediators of Atherosclerosis in South Asians Living in America
- MESA Multi-Ethnic Study of Atherosclerosis
- MI myocardial infarction
- NHLBI National Heart, Lung, and Blood Institute
- NNT 5-year number needed to treat
- RR relative risk
- SBP systolic blood pressure
- SD standard deviation
- TIPS The Indian Polycap Study
Prevalence

(See Table 18-1 and Charts 18-1 and 18-2.)

- The NHLBI’s FHS reported CAC measured in 3238 white adults in age groups ranging from <45 years of age to ≥75 years of age.6
 - Overall, 32.0% of women and 52.9% of men had prevalent CAC.
 - Among participants at intermediate risk according to FRS, 58% of women and 67% of men had prevalent CAC.

- The NHLBI’s CARDIA study measured CAC in 3043 black and white adults 33 to 45 years of age (at the CARDIA year 15 examination).7
 - Overall, 15.0% of men and 5.1% of women, 5.5% of those 33 to 39 years of age and 13.3% of those 40 to 45 years of age, had prevalent CAC. Overall, 1.6% of participants had an Agatston score that exceeded 100.
 - Chart 18-1 shows the prevalence of CAC by ethnicity and sex. The prevalence of CAC was lower in black men than in white men but was similar in black and white women at these ages.

- The NHLBI’s MESA measured CAC in 6814 participants 45 to 84 years of age, including white (n=2619), black (n=1898), Hispanic (n=1494), and Chinese (n=803) men and women.8
 - Chart 18-2 shows the prevalence of CAC by sex and ethnicity.
 - The prevalence and 75th percentile levels of CAC were highest in white men and lowest in black and Hispanic women. Significant ethnic differences persisted after adjustment for risk factors, with the RR of coronary calcium being 22% less in blacks, 15% less in Hispanics, and 8% less in Chinese than in whites.
 - Table 18-1 shows the 75th percentile levels of CAC by sex and race at selected ages. These might be considered cut points above which more aggressive efforts to control risk factors (eg, elevated cholesterol or BP) could be implemented and/or at which treatment goals might be more aggressive (eg, LDL cholesterol <100 mg/dL instead of <130 mg/dL). In a comparison of MESA with the MASALA study, which is a community-based cohort of South Asians in the United States (mean age 58 years), the age-adjusted prevalence of CAC was similar among white (68.8%) and South Asian (67.9%) men, with these groups having a greater prevalence of CAC than Chinese (57.8%), African-American (51.2%), and Hispanic (57.9%) men. In contrast, the age-adjusted prevalence of CAC was lower in South Asian women (36.8%) than in white women (42.6%) and women of other races/ethnicities.9
 - The prevalence of CAC varies widely according to baseline risk profile, including global scores such as FRS. In a report from MESA,10 the prevalence of CAC among individuals with very low FRS (≤2.5%) was 22%, and it was 39% among those with FRS 2.5% to 5% 10-year risk. In recent studies from MESA, the prevalence of CAC in those with no lipid abnormalities was 42%,11 and nearly one fifth (22%) of individuals in MESA with no known traditional CVD risk factors had presence of CAC.12

CAC and Incidence of Cardiovascular Events

(See Charts 18-3 and 18-4.)

- The NHLBI’s MESA recently reported on the association of CAC scores with first CHD events over a median follow-up of 3.9 years among a population-based sample of 6722 men and women (39% white, 27% black, 22% Hispanic, and 12% Chinese).13
 - Chart 18-3 shows the HRs associated with CAC scores of 1 to 100, 101 to 300, and >300 compared with those without CAC (score=0), after adjustment for standard risk factors. People with CAC scores of 1 to 100 had 4 times greater risk and those with CAC scores >100 were 7 to 10 times more likely to experience a coronary event than those without CAC.
 - CAC provided similar predictive value for coronary events in whites, Chinese, blacks, and Hispanics (HRs ranging from 1.15–1.39 for each doubling of coronary calcium).

- In another report of a community-based sample, not referred for clinical reasons, the South Bay Heart Watch examined CAC in 1461 adults (average age 66 years) with coronary risk factors, with a median of 7.0 years of follow-up.14
 - Chart 18-4 shows the HRs associated with increasing CAC scores (relative to CAC=0 and <10% risk category) in low-risk (<10%), intermediate-risk (10%–15% and 16%–20%), and high-risk (>20%) FRS categories of estimated risk for CHD in 10 years. Increasing CAC scores further predicted risk in intermediate- and high-risk groups.

- In a study of healthy adults 60 to 72 years of age who were free of clinical CAD, predictors of the progression of CAC were assessed. Predictors tested included age, sex, race/ethnicity, smoking status, BMI, family history of CAD, CRP, several measures of DM, insulin levels, BP, and lipids. Insulin resistance, in addition to the traditional cardiac risk factors, independently predicts progression of CAC.13 Clinically, however, it is not yet recommended to conduct serial scanning of CAC to measure effects of therapeutic interventions.

- A recent publication from MESA also used CAC, in particular, and carotid IMT to stratify CHD and CVD event risk in people with metabolic syndrome and DM; those with low levels of CAC or carotid IMT have CHD and CVD event rates as low as many people without metabolic syndrome and DM. Those with DM who have CAC scores <100 have annual CHD event rates of <1%.16

- It is noteworthy, as recently demonstrated in MESA in 5878 participants with a median of 5.8 years of follow-up, that the addition of CAC to standard risk factors resulted in significant improvement of classification of risk for incident CHD events, placing 77% of people in the highest or lowest risk categories compared with 69% based on risk factors alone. An additional 23% of those who experienced events were reclassified as high risk, and 13% with events were reclassified as low risk.17 The contribution of CAC to risk prediction has also been observed in other cohorts,
including both the Heinz Nixdorf Recall Study and the Rotterdam Study. An absence of CAC, observed in 40% to 50% of individuals, confers a very low risk for future cardiovascular events. In a meta-analysis of 13 studies assessing the relationship of CAC with adverse cardiovascular outcomes that included 71,595 asymptomatic patients, 29,312 patients (41%) did not have any evidence of CAC. In a follow-up that averaged 3 to 5 years, 154 of 29,312 patients without CAC (0.47%) experienced a cardiovascular event compared with 1749 of 42,283 patients with CAC (4.14%). The cumulative RR was 0.15 (95% CI, 0.11–0.21; P<0.001). These findings were confirmed in MESA, which reported a rate of 0.52% for CHD events during a median of 4 years of follow-up among people with no detectable CAC.

The value of CAC zero has been confirmed in various high-risk groups. For example, in MESA, 38% of individuals with DM have CAC=0, and the annualized CHD and CVD event rates were 0.4% and 0.8%, respectively. A recent publication from MESA demonstrated a low hard CHD event rate per 1000 years during a median follow-up of 7.1 years across the entire spectrum of baseline FRS (0%–6%; 0.9; 6%–10%; 1.1; 10%–20%; 1.9; >20%; 2.5). Among high-risk individuals considered for various polypill criteria in MESA, based on age and risk factors, the prevalence of CAC=0 ranged from 39% to 59%, and the respective rate of CHD events varied from 1.2 to 1.9 events per 1000 person-years during a median follow-up of 7.6 years.

A recent meta-analysis also highlighted the utility of CAC testing in the diabetic population. In this meta-analysis, 8 studies were included (n=6521; 802 events; mean follow-up, 5.18 years). The RR for all-cause mortality or cardiovascular events or both comparing a total CAC score ≥10 with a score <10 was 5.47 (95% CI, 2.59–11.53; I²=82.4%, P<0.001). For people with a CAC score <10, the posttest probability of the composite outcome was 1.8%, which represents a 6.8-fold reduction from the pretest probability, which suggests that those with low or absent CAC may facilitate risk stratification by enabling the identification of people at low risk within this high-risk population.

In the Heinz Nixdorf Recall Study, CAC independently predicted stroke during a mean follow-up of 7.9 years. Cox proportional hazards regressions were used to examine CAC as a predictor of stroke in addition to established vascular risk factors (age, sex, SBP, LDL, HDL, DM, smoking, and AF). Study participants who had a stroke had significantly higher CAC values at baseline than the remaining participants (median 104.8 [quartile 1, 14.0; quartile 3, 482.2] versus 112.2 [quartile 1, 0; quartile 3, 106.2]; P<0.001). In a multivariable Cox regression, log10(CAC+1) was an independent stroke predictor (HR, 1.52; 95% CI, 1.19–1.92; P=0.001). CAC discriminated stroke risk specifically in participants in the low (<10%) and intermediate (10%–20%) FRS categories.

In the Rotterdam Study, CAC independently predicted incident HF during a median follow-up of 6.8 years. Those with severe CAC (>400) after adjustment for risk factors had a 4.1-fold higher risk (95% CI, 1.7–10.1) of HF than those with CAC scores of 0 to 10. In addition, CAC substantially improved the risk classification of subjects (net reclassification index, 34.0%).

CAC Progression and Risk

- A recent report in 4609 individuals who had baseline and repeat cardiac CT found that progression of CAC provided incremental information over baseline score, demographics, and cardiovascular risk factors in predicting future all-cause mortality.
- More recently, data from 6778 people in MESA showed annual CAC progression was an average of 25 Agatston units, and among those without CAC at baseline, a 5-U annual change in CAC was associated with HRs of 1.4 and 1.5 for total and hard CHD events, respectively. Among those with CAC >0 at baseline, HRs per 100-U annual change in CAC were 1.2 and 1.3, respectively, and for those with annual progression ≥300 versus no progression, HRs were 3.8 and 6.3, respectively.
- Progression of CAC in MESA was also shown to be greater in those with metabolic syndrome and DM than in those with neither condition, and progression of CAC in each of these conditions was associated with a greater future risk of CHD events.
- In MESA, greater adherence to a healthy lifestyle based on a healthy lifestyle score was associated with slower progression of CAC and lower mortality rates relative to those with the most unhealthy lifestyle.

Carotid IMT

Background

- Carotid IMT measures the thickness of 2 layers (the intima and media) of the wall of the carotid arteries, the largest conduits of blood going to the brain. Carotid IMT is thought to be an even earlier manifestation of atherosclerosis than CAC, because thickening precedes the development of frank atherosclerotic plaque. Carotid IMT methods are still being refined, so it is important to know which part of the artery was measured (common carotid, internal carotid, or bulb) and whether near and far walls were both measured. This information can affect the average-thickness measurement that is usually reported.
- Unlike CAC, everyone has some thickness to the layers of their arteries, but people who develop atherosclerosis have greater thickness. Ultrasound of the carotid arteries can also detect plaques and determine the degree of narrowing of the artery they may cause. Epidemiological data, including the data discussed below, have indicated that high-risk levels of thickening might be considered as those in the highest quartile or quintile for one’s age and sex, or ≥1 mm.
- Although ultrasound is commonly used to diagnose plaque in the carotid arteries in people who have had strokes or who have bruits (sounds of turbulence in the artery), guidelines are limited as to screening of asymptomatic people with carotid IMT to quantify atherosclerosis or predict risk. However, some organizations have recognized that carotid IMT measurement by B-mode ultrasonography may provide an independent assessment of coronary risk.

Prevalence and Association With Incident Cardiovascular Events

(See Charts 18-5 and 18-6.)

- The Bogalusa Heart Study measured carotid IMT in 518 black and white men and women at a mean age of 32±3 years. These men and women were healthy but overweight.
Conflicting data have been reported on the contribution of carotid IMT to risk prediction. In a recent study from a consortium of 14 population-based cohorts consisting of 45,828 individuals followed up for a median of 11 years demonstrated little additive value of common carotid IMT to FRS for purposes of discrimination and reclassification as far as incident MI and stroke were concerned. The C statistics of the model with FRS alone (0.757; 95% CI, 0.749–0.764) and with addition of common carotid IMT (0.759; 95% CI, 0.752–0.766) were similar. The net reclassification improvement with the addition of common carotid IMT was small (0.8%; 95% CI, 0.1%–1.6%). In those at intermediate risk, the net reclassification improvement was 3.6% among all individuals (95% CI, 2.7%–4.6%).

CAC and Carotid IMT

In the NHBLI’s MESA, a study of white, black, Chinese, and Hispanic adults 45 to 84 years of age, carotid IMT and CAC were found to be commonly associated, but patterns of association differed somewhat by sex and race.40

—Common and internal carotid IMT were greater in women and men who had CAC than in those who did not, regardless of ethnicity.

—Overall, CAC prevalence and scores were associated with carotid IMT; but associations were somewhat weaker in blacks than in other ethnic groups.

—In general, blacks had the thickest carotid IMT of all 4 ethnic groups, regardless of the presence of CAC.

—Common carotid IMT differed little by race/ethnicity in women with any CAC, but among women with no CAC, IMT was higher among blacks (0.86 mm) than in the other 3 groups (0.76–0.80 mm).

In a more recent analysis from the NHBLI’s MESA, the investigators reported on follow-up of 6698 men and women in 4 ethnic groups over 5.3 years and compared the predictive utility of carotid IMT and CAC.41

—CAC was associated more strongly than carotid IMT with the risk of incident CVD.

—After adjustment for each other (CAC score and IMT) and for traditional CVD risk factors, the HR for CVD increased 2.1-fold for each 1-SD increment of log-transformed CAC score versus 1.3-fold for each 1-SD increment of the maximum carotid IMT.

—For CHD events, the HRs per 1-SD increment increased 2.5-fold for CAC score and 1.2-fold for IMT.

—A receiver operating characteristic curve analysis also suggested that CAC score was a better predictor of incident CVD than was IMT, with areas under the curve of 0.81 versus 0.78, respectively.
CT Angiography

- CT angiography is widely used by cardiologists to aid in the diagnosis of CAD, particularly when other test results may be equivocal. It is also of interest because of its ability to detect and possibly quantify overall plaque burden and certain characteristics of plaques that may make them prone to rupture, such as positive remodeling or low attenuation.

- Compared with the established value of CAC scanning for risk reclassification in asymptomatic patients, there are limited data regarding the utility of CT angiography in asymptomatic people. This was recently assessed by the investigators of the CONFIRM registry, from which >7500 asymptomatic subjects with CAC and CT angiography were followed up for death and nonfatal MI for a period of follow-up. Overall, 2.2% either died or experienced nonfatal MI for a median of 2 years. Overall, 2.2% either died or experienced nonfatal MI, and in multivariable models, compared with those without atherosclerosis, there was increasing risk across groups with increasing degrees of atherosclerosis measured by CT angiography. However, after the inclusion of CAC in the multivariable risk model, CT angiography did not provide incremental prognostic value over this short period of follow-up.

- Because of the limited outcome data in asymptomatic people, as well as the associated expense and risk of CT angiography (including generally higher radiation levels than CT scanning to detect CAC), current guidelines do not recommend its use as a screening tool for assessment of cardiovascular risk in asymptomatic people.

Measures of Vascular Function and Incident CVD Events

- Measures of arterial tonometry (stiffness) are based on the concept that pulse pressure has been shown to be an important risk factor for CVD. Arterial tonometry offers the ability to directly and noninvasively measure central pulse wave velocity in the thoracic and abdominal aorta.

- Brachial FMD is a marker for nitric oxide release from the endothelium that can be measured by ultrasound. Impaired FMD is an early marker of CVD.

- Recommendations have not been specific, however, as to which, if any, measures of vascular function may be useful for CVD risk stratification in selected patient subgroups. Because of the absence of significant prospective data relating these measures to outcomes, latest guidelines do not currently recommend measuring either FMD or arterial stiffness for cardiovascular risk assessment in asymptomatic adults.

Arterial Tonometry and CVD

- The Rotterdam Study measured arterial stiffness in 2835 elderly participants (mean age 71 years). They found that as aortic pulse wave velocity increased, the risk of CHD was 1.72 (second versus first tertile) and 2.45 (third versus first tertile). Results remained robust even after accounting for carotid IMT, ABI, and pulse pressure.

- A study from Denmark of 1678 individuals aged 40 to 70 years found that each 1-SD increment in aortic pulse wave velocity (3.4 m/s) increased CVD risk by 16% to 20%.

- The FHS measured several indices of arterial stiffness, including pulse wave velocity, wave reflection, and central pulse pressure. They found that not only was higher pulse wave velocity associated with a 48% increased risk of incident CVD events, but pulse wave velocity additionally improved CVD risk prediction (integrated discrimination improvement of 0.7%, P<0.05).

FMD and CVD

- MESA measured FMD in 3026 participants (mean age 61 years) who were free of CVD. As FMD increased (ie, improved brachial function), the risk of CVD was 16% lower. FMD also improved CVD risk prediction compared with the FRS by improving net reclassification by 29%.

- A recent meta-analysis assessed relation of FMD with CVD events. Thirteen studies involving 11516 individuals without established CVD, with a mean duration of 2 to 7.2 years and adjusted for age, sex, and risk factors, reported a multivariate RR of 0.93 (95% CI, 0.90-0.96) per 1% increase in brachial FMD.

Comparison of Measures

- In MESA, a comparison of 6 risk markers—CAC, ABI, high-sensitivity CRP, carotid IMT, brachial FMD, and family history of CHD—and their clinical utility over FRS was evaluated in 1330 intermediate-risk individuals. After 7.6 years of follow-up, CAC, ABI, high-sensitivity CRP, and family history were independently associated with incident CHD in multivariable analyses (HRs of 2.6, 0.79, 1.28, and 2.18, respectively), but carotid IMT and brachial FMD were not. CAC provided the highest incremental improvement over the FRS (0.784 for both CAC and FRS versus 0.623 for FRS alone), as well as the greatest net reclassification improvement (0.659).

- Similar findings were also noted in the Rotterdam Study, in which among 12 CHD risk markers, improvements in FRS
predictions were most statistically and clinically significant with the addition of CAC scores.50

Utility for Risk Stratification for Treatment

- CAC has been examined in multiple studies for its potential to identify those most likely and not likely to benefit from treatment.
- In a recent report, 950 participants from MESA who met JUPITER clinical trial entry criterion (risk factors plus LDL cholesterol <130 mg/dL, and CRP ≥2 mg/L) were identified and stratified according to CAC scores of 0, 1 to 100, or >100; CHD event rates were calculated, and the number needed to treat was calculated by applying the benefit found in JUPITER to the event rates found in each of these groups. For CHD, the predicted NNT\textsubscript{5} was 549 for those with CAC of 0, 94 for scores of 1 to 100, and 24 for scores >100.
- In a similar fashion, 2 studies extrapolated the NNT\textsubscript{5} for LDL cholesterol lowering by statins, applying the 30\% RR reduction associated with a 1 mmol/L (39 mg/dL) reduction in LDL cholesterol from a Cochrane meta-analysis of statin therapy in primary prevention across the spectrum of lipid abnormalities (LDL cholesterol ≥130 mg/dL, HDL cholesterol <40 mg/dL for men or ≤50 mg/dL for women, and triglycerides ≥150 mg/dL), as well as across 10-year FRS categories (0–6%, 6–10%, 10–20%, and >20%). The estimated NNT\textsubscript{5} for preventing 1 CVD event across dyslipidemia categories in this MESA cohort ranged from 23 to 30 in those with CAC ≥100.11 The NNT\textsubscript{5} was 30 in participants with no lipid abnormality and CAC >100, whereas the NNT\textsubscript{5} was 154 in those with 3 lipid abnormalities and CAC=0.11 A very high NNT\textsubscript{5}, of 186 and 222, respectively, was estimated to prevent 1 CHD event in the absence of CAC among those with 10-year FRS of 11\% to 20\% and >20\%. The respective estimated NNT\textsubscript{5} were as low as 36 and 50 with the presence of a very high CAC score (>300) among those with 10-year FRS of 0\% to 6\% and 6\% to 10\%, respectively.22 These collective data show the utility of CAC in identifying those most likely to benefit from statin treatment across the spectrum of risk profiles with an appropriate number needed to treat.

- Similarly, CAC testing also identified appropriate candidates who may derive the highest benefit with aspirin therapy. In MESA, individuals with CAC≥100 had an estimated net benefit with aspirin regardless of their traditional risk status; the estimated NNT\textsubscript{5} was 173 for individuals classified as having <10\% FRS and 92 for individuals with ≥10\% FRS, and the estimated 5-year number needed to harm was 442 for a major bleed.22 Conversely, individuals with zero CAC had unfavorable estimates (estimated NNT\textsubscript{5} of 2036 for individuals with <10\% FRS and 808 for individuals with ≥10\% FRS; estimated 5-year number needed to harm of 442 for a major bleed). Sex-specific and age-stratified analyses showed similar results.

- A recent study from MESA also examined the role of CAC testing to define the target population to treat with a polypill.22 The 5-year NNT\textsubscript{5} to prevent 1 event was estimated by applying the expected 62\% CHD event reduction associated with the use of the polypill (based on TIPS). The estimated NNT\textsubscript{5} to prevent 1 CHD event ranged from 170 to 269 for patients with CAC=0, from 58 to 79 for those with CAC scores from 1 to 100, and from 25 to 27 for those with CAC scores >100,22 which enabled significant reductions in the population considered for treatment with more selective use of the polypill and, as a result, avoidance of treatment of those who were unlikely to benefit.

References

Table 18-1. CAC Scores for the 75th Percentile of Men and Women of Different Race/Ethnic Groups, at Specified Ages

<table>
<thead>
<tr>
<th>Age, y</th>
<th>75th Percentile CAC Scores*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black</td>
</tr>
<tr>
<td>Women</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>65</td>
<td>26</td>
</tr>
<tr>
<td>75</td>
<td>138</td>
</tr>
<tr>
<td>Men</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>15</td>
</tr>
<tr>
<td>65</td>
<td>95</td>
</tr>
<tr>
<td>75</td>
<td>331</td>
</tr>
</tbody>
</table>

CAC indicates coronary artery calcification.

*The 75th percentile CAC score is the score at which 75% of people of the same age, sex, and race have a score at or below this level and 25% of people of the same age, sex, and race have a higher score.

Source: MESA (Multi-Ethnic Study of Atherosclerosis) CAC Tools Web site.12
Chart 18-1. Prevalence (%) of coronary calcium: US adults 33 to 45 years of age. \(P < 0.0001 \) across race-sex groups. Data derived from Loria et al.\(^7\)

Chart 18-2. Prevalence (%) of coronary calcium: US adults 45 to 84 years of age. \(P < 0.0001 \) across ethnic groups in both men and women. Data derived from Bild et al.\(^8\)
Chart 18-3. Hazard ratios (HRs) for coronary heart disease (CHD) events associated with coronary calcium scores: US adults 45 to 84 years of age (reference group, coronary artery calcification \([\text{CAC}]=0\)). All HRs \(P<0.0001\). Major CHD events included myocardial infarction and death attributable to CHD; any CHD events included major CHD events plus definite angina or definite or probable angina followed by revascularization. Data derived from Detrano et al.13

Chart 18-4. Hazard ratios (HRs) for coronary heart disease events associated with coronary calcium scores: US adults (reference group, coronary artery calcification \([\text{CAC}]=0\) and Framingham Risk Score <10%). Coronary heart disease events included nonfatal myocardial infarction and death attributable to coronary heart disease. Data derived from Greenland et al.14
Chart 18-5. Mean values of carotid intima-media thickness (IMT) for different carotid artery segments in younger adults by race and sex (Bogalusa Heart Study). Data derived from Urbina et al.31

Chart 18-6. Mean values of carotid intima-media thickness (IMT) for different carotid artery segments in older adults, by race. Data derived from Manolio et al.40
19. Coronary Heart Disease, Acute Coronary Syndrome, and Angina Pectoris

See Tables 19-1 and 19-2 and Charts 19-1 through 19-11; see Glossary (Chapter 27) for details and definitions.

Coronary Heart Disease
ICD-9 410 to 414, 429.2; ICD-10 I20 to I25; including MI ICD-10 I21 to I22.

Prevalence
(See Table 19-1 and Charts 19-1 and 19-2.)

- On the basis of data from NHANES 2009 to 2012 (NHLBI tabulation), an estimated 15.5 million Americans ≥20 years of age have CHD.
 - Total CHD prevalence is 6.2% in US adults ≥20 years of age. CHD prevalence is 7.6% for men and 5.0% for women.
 - Among non-Hispanic whites, CHD prevalence is 7.8% for men and 4.6% for women.
 - Among non-Hispanic blacks, CHD prevalence is 7.2% for men and 7.0% for women.
 - Among Hispanics, CHD prevalence is 6.7% for men and 5.9% for women.

- Data from the BRFSS 2013 survey indicated that 4.0% of respondents had been told that they had had an MI. The highest prevalence was in West Virginia (6.5%) and the lowest in Minnesota (2.7%). In the same survey, 3.8% of respondents were told that they had angina or CHD. The highest prevalence was in West Virginia (6.2%), and the lowest was in Hawaii (2.3%).

- Projections show that by 2030, prevalence of CHD will increase ≈18% from 2013 estimates (AHA computation, based on methodology described in Heidenreich et al).

Abbreviations Used in Chapter 19

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>American College of Cardiology</td>
</tr>
<tr>
<td>ACS</td>
<td>acute coronary syndrome</td>
</tr>
<tr>
<td>ACTION</td>
<td>Acute Coronary Treatment and Intervention Outcomes Network</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>AMI</td>
<td>acute myocardial infarction</td>
</tr>
<tr>
<td>AP</td>
<td>angina pectoris</td>
</tr>
<tr>
<td>ARIC</td>
<td>Atherosclerosis Risk in Communities study</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>BRFSS</td>
<td>Behavioral Risk Factor Surveillance System</td>
</tr>
<tr>
<td>CABG</td>
<td>coronary artery bypass graft</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery disease</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CHS</td>
<td>Cardiovascular Health Study</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CRUSADE</td>
<td>Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the ACC/AHA Guidelines</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>ED</td>
<td>emergency department</td>
</tr>
<tr>
<td>EHS-ACS-II</td>
<td>second Euro Heart Survey on ACS</td>
</tr>
<tr>
<td>EMS</td>
<td>emergency medical services</td>
</tr>
<tr>
<td>FHS</td>
<td>Framingham Heart Study</td>
</tr>
<tr>
<td>GRACE</td>
<td>Global Registry of Acute Coronary Events</td>
</tr>
<tr>
<td>GWTG</td>
<td>Get With The Guidelines</td>
</tr>
<tr>
<td>HCUP</td>
<td>Healthcare Cost and Utilization Project</td>
</tr>
<tr>
<td>HD</td>
<td>heart disease</td>
</tr>
<tr>
<td>HDL-C</td>
<td>high-density lipoprotein-cholesterol</td>
</tr>
<tr>
<td>HF</td>
<td>heart failure</td>
</tr>
<tr>
<td>ICD-9</td>
<td>International Classification of Diseases, 9th Revision</td>
</tr>
<tr>
<td>ICD-10</td>
<td>International Classification of Diseases, 10th Revision</td>
</tr>
<tr>
<td>MEPS</td>
<td>Medical Expenditure Panel Survey</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>NAMCS</td>
<td>National Ambulatory Medical Care Survey</td>
</tr>
<tr>
<td>NCDR</td>
<td>National Cardiovascular Data Registry</td>
</tr>
<tr>
<td>NCHS</td>
<td>National Center for Health Statistics</td>
</tr>
<tr>
<td>NH</td>
<td>non-Hispanic</td>
</tr>
<tr>
<td>NHAMCS</td>
<td>National Hospital Ambulatory Medical Care Survey</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NHDS</td>
<td>National Hospital Discharge Survey</td>
</tr>
<tr>
<td>NHIS</td>
<td>National Health Interview Study</td>
</tr>
<tr>
<td>NHLBI</td>
<td>National Heart, Lung, and Blood Institute</td>
</tr>
<tr>
<td>NRMI</td>
<td>National Registry of Myocardial Infarction</td>
</tr>
<tr>
<td>NSTEMI</td>
<td>non–ST-segment–elevation myocardial infarction</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PCI</td>
<td>percutaneous coronary intervention</td>
</tr>
<tr>
<td>SBP</td>
<td>systolic blood pressure</td>
</tr>
<tr>
<td>STEMI</td>
<td>ST-segment–elevation myocardial infarction</td>
</tr>
<tr>
<td>UA</td>
<td>unstable angina</td>
</tr>
<tr>
<td>WISE</td>
<td>Women’s Ischemia Syndrome Evaluation</td>
</tr>
<tr>
<td>YLL</td>
<td>years of life lost</td>
</tr>
</tbody>
</table>
Incidence
(See Table 19-1 and Charts 19-3 through 19-5.)

- Approximately every 43 seconds, an American will have an MI (AHA computation).
- On the basis of data from the ARIC study\(^4\) of the NHLBI:
 - This year, \(\approx365,000\) Americans will have a new coronary event (defined as first hospitalized MI or CHD death), and \(\approx300,000\) will have a recurrent event. It is estimated that an additional \(155,000\) silent MIs occur each year. That assumes that \(\approx21\%\) of the \(735,000\) first and recurrent MIs are silent.
 - The estimated annual incidence of MI is \(525,000\) new attacks and \(210,000\) recurrent attacks.
 - Average age at first MI is 65.0 years for men and 71.8 years for women.
- On the basis of the NHLBI-sponsored FHS\(^5\)
 - CHD makes up more than half of all cardiovascular events in men and women <75 years of age.
 - The incidence of CHD in women lags behind men by 10 years for total CHD and by 20 years for more serious clinical events such as MI and sudden death.
- In the NHLBI-sponsored ARIC study, in participants 35 to 84 years of age, the average age-adjusted first MI or fatal CHD rates per 1000 population were as follows: white men, 3.7; black men, 5.9; white women, 2.1; and black women, 4.0 (unpublished data from ARIC Surveillance 2005–2011, NHLBI).
- Incidence rates for MI in the NHLBI-sponsored ARIC study are displayed in Charts 19-3 and 19-4, stratified by age, race, and sex. The annual age-adjusted rates per 1000 population of first MI (2005–2011) were 4.9 in black men, 3.2 in white men, 3.5 in black women, and 1.9 in white women (unpublished data from ARIC Surveillance 2005–2011, NHLBI).

Trends in Incidence
- Analysis of >40 years of physician-validated AMI data in the NHLBI’s FHS found that AMI rates diagnosed by electrocardiographic criteria declined \(\approx50\%\), with a concomitant 2-fold increase in rates of AMI diagnosed by blood markers.\(^6\)
- Data from the Worcester Heart Attack Study showed that incidence rates for AMI were 277 per 100,000 person-years in 1975 and 209 per 100,000 person-years in 2005 (\(P=0.42\) for overall trend). The incidence rate rose from 1975 to 1981, decreased from 1981 to 1988, increased from 1981 to 2001, and decreased from 2001 to 2005.\(^7\)
- In Olmsted County, MN, no significant change in the overall age- and sex-adjusted incidence rate for hospitalized MI was noted between 1987 and 2006 (186 per 100,000 person-years in 1987 and 180 per 100,000 person-years in 2006; \(P=0.171\)), but a significant decline in the age- and sex-adjusted incidence rate for hospitalized MI based on creatine kinase/creatine kinase-MB markers, to 141 per 100,000 person-years (\(P=0.020\), was observed in 2006, which represents a 20% decrease during the study period.\(^8\)
- Data from Kaiser Permanente Northern California showed that the age- and sex-adjusted incidence rate of hospitalizations for MI changed from 274 per 100,000 person-years in 1999 to 208 per 100,000 person-years in 2008. Furthermore, the age- and sex-adjusted incidence rate of hospitalizations for STEMI changed from 133 per 100,000 person-years in 1999 to 50 per 100,000 person-years in 2008 (\(P\) linear trend \(<0.001\)). The trajectory of the age- and sex-adjusted incidence rate of hospitalizations for NSTEMI did not change significantly over the entire study period, although it did show a significant decline after troponin became widely used to diagnose MI.\(^9\)
- From 1987 to 2011, the age- and biomarker-adjusted incidence rates of hospitalization for AMI or fatal CHD decreased by 5.0% per year (95% CI, −5.3% to −4.7%) among white men, 3.9% per year (95% CI, −4.4% to −3.5%) among white women, 2.2% per year (95% CI, −2.8% to −1.6%) among black men, and 3.4% per year (95% CI, −4.2% to −2.7%) among black women in the ARIC study (1987–2011).\(^10\)
- From 2002 to 2007, the incidence of hospitalized MI decreased among Medicare beneficiaries; however, the degree of reduction was more significant in whites than in African Americans.\(^11\)
- Declines in MI incidence among Medicare beneficiaries occurred in all US census divisions between 1999 and 2008 in this population, although wide geographic disparities were observed throughout the study period.\(^12\)
- On the basis of data from the NHIS, the NHDS, and the National Vital Statistics System, rates of MI among people with DM declined by 67.8% between 1990 and 2010, falling from 141.1 events per 10,000 person-years in 1990 to 45.5 per 10,000 person-years in 2010. By comparison, rates of MI in nondiabetics fell by 31.2%, from 37.5 per 10,000 to 25.8 per 10,000.\(^13\)

Predicted Risk
Ten-Year Predicted Risk
- Another analysis of NHANES data concluded that 10-year predicted risk for CHD among adults 30 to 74 years of age decreased from 10.0% during 1976 to 1980 to 7.9% during 1988 to 1994 (\(P<0.001\)) and to 7.4% during 1999 to 2004 (\(P<0.001\)).\(^14\)
- More recently, it was reported that the mean predicted 10-year risk for CHD among adults aged 30 to 74 years decreased from 7.2% during 1999 to 2000 to 6.5% during 2009 to 2010 (\(P=0.005\)). Mean predicted risk declined among men, women, whites, and adults 40 to 59, 50 to 59, and 60 to 74 years of age. Risk increased nonsignificantly among African American adults.\(^15\)
- Individuals with atherosclerotic stroke should be included among those deemed to be at high risk (20% over 10 years) of further atherosclerotic coronary events. For primary prevention, ischemic stroke should be included among CVD outcomes in absolute risk assessment algorithms. The inclusion of atherosclerotic ischemic stroke as a high-risk condition has important implications, because the number of people considered to be at high risk will increase over time.\(^16\)
- A survey of US family physicians, general internists, and cardiologists found that 41% of respondents reported using global CHD risk assessment at least occasionally.\(^17\)

Lifetime Risk

- Lifetime risk for CHD varies drastically as a function of risk factor profile. With an optimal risk factor profile, lifetime risk for CHD is 3.6% for men and <1% for women; with ≥2 major risk factors, it is 37.5% for men and 18.3% for women.

Mortality

- Based on 2011 mortality data:
 - CHD was an underlying cause of death in ≈1 of every 7 deaths in the United States in 2011.
 - CHD mortality was 375,295, and CHD any-mention mortality was 543,652.
 - MI mortality was 119,905. MI any-mention mortality was 157,073 (NCHS, NHLBI tabulation).
 - The overall CHD death rate per 100,000 was 109.2.
 - From 2001 to 2011, the annual death rate attributable to CHD declined 39.0% and the actual number of deaths declined 25.3% (NHLBI computation).
 - CHD death rates per 100,000 were 146.5 for white males and 161.5 for black males; for white females, the rate was 80.1, and for black females, it was 99.7.
 - 74% of CHD deaths occurred out of the hospital. According to NCHS mortality data, 278,000 CHD deaths occur out of the hospital or in hospital EDs annually (NCHS, AHA tabulation).
 - The estimated average number of YLL because of an MI death is 17.1 (NHLBI tabulation).
 - Approximately 34% of the people who experience a coronary event in a given year will die of it, and <15% who experience a heart attack (MI) will die of it (AHA computation).
 - A study of 1,275 health maintenance organization enrollees 50 to 79 years of age who had cardiac arrest showed that the incidence of out-of-hospital cardiac arrest was 6.0/1000 subject-years in subjects with any clinically recognized HD compared with 0.8/1000 subject-years in subjects without HD. Among enrollees with HD, incidence was 13.6 and 21.9 per 1000 subject-years in those with prior MI and with HF, respectively.
 - Researchers investigating variation in hospital-specific 30-day risk-stratified mortality rates for patients with AMI found teaching status, number of hospital beds, AMI volume, cardiac facilities available, urban/rural location, geographic region, hospital ownership type, and socioeconomic status profile of the patients were all significantly associated with mortality rates. However, a substantial proportion of variation in outcomes for patients with AMI between hospitals remains unexplained by measures of hospital characteristics.

Temporal Trends in CHD Mortality

- The decline in CHD mortality rates in part reflects the shift in the pattern of clinical presentations of AMI. In the past decade, there has been a marked decline in STEMI (from 133 to 50 cases per 100,000 person-years).
 - According to data from the NRMI:
 - From 1990 to 1999, in-hospital AMI mortality declined from 11.2% to 9.4%.
 - From 1990 to 2006, in-hospital AMI mortality declined from 10.4% to 6.3% (P<0.001; STEMI: 11.5% to 8.0%, P<0.001; NSTEMI: 7.1% to 5.2%, P<0.001). Approximately 37% of the decline in annual mortality for patients with NSTEMI and 21% for patients with STEMI was judged to be attributable to improvements in acute treatments.
 - Other studies also reported declining case fatality rates after MI:
 - In Olmsted County, MN, the age- and sex-adjusted 30-day case fatality rate decreased by 56% from 1987 to 2006.
 - From 1990 to 1999, in-hospital AMI mortality declined from 10.4% to 6.3% (P<0.001; STEMI: 11.5% to 8.0%, P<0.001; NSTEMI: 7.1% to 5.2%, P<0.001). Approximately 37% of the decline in annual mortality for patients with NSTEMI and 21% for patients with STEMI was judged to be attributable to improvements in acute treatments.
 - CHD death rates have fallen from 1968 to the present. Analysis of NHANES (NCHS) data compared CHD death rates between 1980 and 2000 to determine how much of the decline in deaths attributable to CHD over that period could be explained by the use of medical and surgical treatments versus changes in CVD risk factors (resulting from lifestyle/behavior). It was estimated that ≈47% of the decrease in CHD deaths was attributable to treatments, including the following:
 - Secondary preventive therapies after MI or revascularization (11%)
 - Initial treatments for AMI or UA (10%)
 - Treatments for HF (9%)
 - Revascularization for chronic angina (5%)
 - Other therapies (12%), including antihypertensive and lipid-lowering primary prevention therapies
 - It was also estimated that a similar amount of the reduction in CHD deaths, ≈44%, was attributable to changes in risk factors, including the following:
 - Lower total cholesterol (24%)
 - Lower SBP (20%)
 - Lower smoking prevalence (12%)
 - Decreased physical inactivity (5%)
—Nevertheless, these favorable improvements in risk factors were offset in part by increases in BMI and in DM prevalence, which accounted for an increased number of deaths (8% and 10%, respectively).

- Between 1980 and 2002, death rates attributable to CHD among men and women ≥35 years of age fell by 52% in men and 49% in women. Among men, the death rate declined on average by 2.9% per year in the 1980s, 2.6% per year during the 1990s, and 4.4% per year from 2000 to 2002. Among women, death rates fell by 2.6%, 2.4%, and 4.4%, respectively; however, when stratified by age, among men 35 to 54 years of age, the average annual rate of death fell by 6.2%, 2.3%, and 0.5%, respectively. Among women 35 to 54 years of age, the average annual rate of death fell by 5.4% and 1.2% and then increased by 1.5%, respectively. This increase was not statistically significant; however, in even younger women (35–44 years of age), the rate of death has been increasing by an average of 1.3% annually between 1997 and 2002, which is statistically significant.

- In an analysis of 28 studies published from 1977 to 2007, significantly improved survival was described in patients with nonacute CAD treated with revascularization by CABG or PCI in conjunction with medical therapy compared with patients treated with medical therapy alone.

Risk Factors
Risk factors for CHD act synergistically to increase CHD risk, as shown in the examples in Charts 19-6 and 19-7.

Awareness of Warning Signs and Risk Factors for HD
- Women’s awareness that CVD is their leading cause of death increased from 30% in 1997 to 56% in 2012. Depending on age, 44% to 50% identified HD/heart attack as the leading cause of death for women, a significant increase from 16% to 34% in the original 1997 survey.
- The percentages of women identifying warning signs for a heart attack were as follows: pain in the chest, neck, shoulder, and arm—56%; shortness of breath—38%; chest tightness—17%; nausea—18%; and fatigue—10%.
- The 5 most commonly cited HD prevention strategies in 2012 were maintaining a healthy BP (78%), seeing the doctor (78%), and increasing fiber intake, eating food with antioxidants, and maintaining healthy cholesterol levels (each 66%).
- Among online survey participants, 21% responded that their doctor had talked to them about HD risk. Rates were lower among Hispanic women (12%) than whites (22%) or blacks (22%) and increased with age from 6% (25–34 years) to 33% (≥65 years).

Time of Symptom Onset and Arrival at Hospital
- A meta-analysis of 48 studies enrolling >1.8 million patients showed that off-hours presentation for MI was associated with higher short-term mortality. In addition, those patients with STEMI who presented off hours had longer door-to-balloon times.
- System improvements in Dallas County, TX, resulted in decreases in the median time from symptom onset to balloon (catheterization) from the fourth quarter of 2010 to the first quarter of 2012.
- Data from CRUSADE and the NCDR ACTION Registry–GWTG showed a longer median time to hospital presentation in men (3 hours) than in women (2.8 hours; P<0.001). From 2002 to 2007, presentation time did not change significantly in men or women.
- Individuals with documented CHD have 5 to 7 times the risk of having a heart attack or dying as the general population. Survival rates improve after a heart attack if treatment begins within 1 hour; however, most patients are admitted to the hospital 2.5 to 3 hours after symptoms begin. More than 3500 patients with a history of CHD were asked to identify possible symptoms of heart attack. Despite their history of CHD, 44% had low knowledge levels. Among these high-risk participants, 43% underestimated their risk for a future AMI (men 47%, women 36%).
- Data from Worcester, MA, indicate that the average time from symptom onset to hospital arrival has not improved and that delays in hospital arrival are associated with less receipt of guidelines-based care. Mean and median prehospital delay times from symptom onset to arrival at the hospital were 4.1 and 2.0 hours in 1986 and 4.6 and 2.0 hours in 2005, respectively. Receipt of thrombolytic therapy and PCI within 90 minutes of hospital arrival was less likely among patients who arrived within ≥2 hours of symptom onset than among those who arrived <2 hours after onset.
- In an analysis from ARIC, low neighborhood household income (OR, 1.46; 95% CI, 1.09–1.96) and being a Medicaid recipient (OR, 1.87; 95% CI, 1.10–3.19) were associated with increased odds of having prolonged prehospital delays from symptom onset to hospital arrival for AMI compared with individuals with higher neighborhood household income and other insurance providers, respectively.
- An analysis of data from the NCDR ACTION Registry–GWTG showed that 60% of 37634 STEMI patients used EMS to get to the hospital. Older adults, women, adults with comorbidities, and sicker patients were more likely to use EMS than their counterparts. Hospital arrival time was shorter for those who used EMS (89 minutes) than self-transport (120 minutes).

Aftermath
- Depending on their sex and clinical outcome, people who survive the acute stage of an MI have a chance of illness and death 1.5 to 15 times higher than that of the general population. Among these people, the risk of another MI, sudden death, AP, HF, and stroke—for both men and women—is substantial (FHS, NHLBI).
- On the basis of pooled data from the FHS, ARIC, and CHS studies of the NHLBI (1986–2007), within 1 year after a first MI:
 - At ≥45 years of age, 19% of men and 26% of women will die.
 - At 45 to 64 years of age, 5% of white men, 8% of white women, 14% of black men, and 9% of black women will die.
In a community-based analysis of residents in Olmstead

An analysis of Medicare claims data revealed that only

● The median survival time (in years) after a first MI is

—At ≥65 years of age, 17.0 for men and 13.3 for women
—At 65 to 74 years of age, 9.3 for men and 8.8 for women
—At ≥75 years of age, 3.2 for men and 3.2 for women

● An analysis of Medicare claims data revealed that only

—In part because women have MIs at older ages than men, they are more likely to die of MIs within a few weeks.

● Within 5 years after a first MI:

—At ≥65 years of age, 36% of men and 47% of women will die.
—At 45 to 64 years of age, 11% of white men, 18% of white women, 22% of black men, and 28% of black women will die.
—At ≥65 years of age, 46% of white men, 53% of white women, 54% of black men, and 58% of black women will die.

● Of those who have a first MI, the percentage with a recurrent MI or fatal CHD within 5 years is as follows:

—At 45 to 64 years of age, 15% of men and 22 of women
—At ≥65 years of age, 22% of men and women
—At 45 to 64 years of age, 14% of white men, 18% of white women, 22% of black men, and 28% of black women
—At ≥65 years of age, 21% of white men and women, 33% of black men, and 26% of black women

● The percentage of people with a first MI who will have HF in 5 years is as follows:

—At 45 to 64 years of age, 8% of men and 18% of women
—At ≥65 years of age, 20% of men and 23% of women
—At 45 to 64 years of age, 7% of white men, 15% of white women, 13% of black men, and 25% of black women
—At ≥65 years of age, 19% of white men, 23% of white women, 31% of black men, and 24% of black women

● The percentage of people with a first MI who will have a stroke within 5 years is as follows:

—At 45 to 64 years of age, 2% of men and 6% of women
—At ≥65 years of age, 5% of men and 8% of women
—At 45 to 64 years of age, 2% of white men, 4% of white women, 3% of black men, and 10% of black women
—At ≥65 years of age, 5% of white men, 8% of white women, 9% of black men, and 10% of black women

● The median survival time (in years) after a first MI is

—At 45 to 64 years of age, 11% of white men, 15% of white women, 13% of black men, and 25% of black women
—At 45 to 64 years of age, 14% of white men, 18% of white women, 22% of black men, and 28% of black women
—At ≥65 years of age, 21% of white men and women, 33% of black men, and 26% of black women

Hospital Discharges and Ambulatory Care Visits
(See Table 19-1 and Chart 19-8.)

● From 2000 to 2010, the number of inpatient discharges from short-stay hospitals with CHD as the first-listed diagnosis decreased from 2165000 to 1346000 (NHDS, NHLBI tabulation).

● In 2010, there were 11921000 ambulatory care visits with CHD as the first-listed diagnosis (NCHS, NAMCS, NHAMCS). There were 10570000 physician office visits, 587000 ED visits, and 764000 outpatient department visits with a primary diagnosis of CHD (NHAMCS, NHLBI tabulation). The majority of these visits (77.7%) were for coronary atherosclerosis.

● The age-adjusted hospitalization rate for MI per 100000 people was 215 in 1979 to 1981, increased to 342 in 1985 to 1987, stabilized for the next decade, and then declined after 1996 to 242 during the period from 2003 to 2005. The rate for men exceeded that for women by almost a factor of 2. Hospitalization rates increased strongly with age.

● Total office visits for angina declined from 3.6 million per year in 1995 to 1998 to 2.3 million per year in 2007 to 2010, based on data from the NAMCS and the NHAMCS.

Operations and Procedures

● In 2010, an estimated 954000 inpatient PCI procedures, 397000 inpatient bypass procedures, 1029000 inpatient diagnostic cardiac catheterizations, 97000 inpatient implantable defibrillator procedures, and 370000 pacemaker procedures were performed for inpatients in the United States (NHLBI tabulation).

● An analysis of data from HCUP showed that between 2001 and 2008, there had been a 15% decrease in the annual rate of coronary revascularization, primarily attributable to declines in CABG (1742 procedures per million in 2001–2002 versus 1081 procedures per million in 2007–2008). Rates of PCI did not change significantly over the same period.

● However, in Massachusetts, age- and sex-adjusted rates of coronary revascularization (PCI or CABG) declined from 423 to 258 per 100000 residents (39% decline) between 2003 and 2012. Rates of elective PCI declined by 50% over the period, whereas rates of PCI in the setting of MI declined by 16%.

Cost
(See Table 19-1.)

● The estimated direct and indirect cost of heart disease in 2010 was $204.4 billion (MEPS, NHLBI tabulation).

● MI ($11.5 billion) and CHD ($10.4 billion) were 2 of the 10 most expensive hospital principal discharge diagnoses in 2011.

● Between 2013 and 2030, medical costs of CHD (real 2010S) are projected to increase by ≈100%

—Indirect costs for all CVD (real 2010S) are projected to increase 52% (from $202.5 billion to $308.2 billion) between 2013 and 2030. Of these indirect costs, CHD is projected to account for ≈43% and has the largest
indirect costs (AHA computation, based on methodology described by Heidenreich et al).

Acute Coronary Syndrome
ICD-9 410, 411; ICD-10 I20.0, I21, I22.

The term acute coronary syndrome includes the diagnoses of AMI (STEMI or NSTEMI) and UA. UA is chest pain or discomfort that is accelerating in frequency or severity and may occur while at rest but does not result in myocardial necrosis. The discomfort may be more severe and prolonged than typical stable AP, or it may be the first time a person has had AP. UA, NSTEMI, and STEMI share common pathophysiological origins related to coronary plaque progression, instability, or rupture with or without luminal thrombosis and vasospasm.

- A conservative estimate for the number of discharges with ACS from hospitals in 2010 is 625,000. Of these, an estimated 363,000 are males and 262,000 are females. This estimate is derived by adding the first-listed inpatient hospital discharges for MI (595,000) to those for UA (30,000; NHDS, NHLBI).

- When secondary discharge diagnoses in 2010 were included, the corresponding number of inpatient hospital discharges was 1,141,000 unique hospitalizations for ACS; 653,000 were males, and 488,000 were females. Of the total, 813,000 were for MI alone, 322,000 were for UA alone, and 600 hospitals received both diagnoses (NHDS, NHLBI).

- Among commercially insured adults 18 to 64 years of age, the 1-year medical costs for an ACS event during 2004 to 2005 were $34,087 for those who were treated with medical management, $52,673 for those who were treated with percutaneous intervention, and $86,914 for those who had coronary artery bypass surgery. The 1-year short-term disability costs were $60,48, $92,21, and $17,335, respectively, and the 1-year absenteeism costs were $98,26, $94,60, and $14,960, respectively. Another study of the same database using adults 18 to 64 years of age who had a principal inpatient diagnosis of ACS during 2003 to 2006 estimated that the incremental annual direct cost was $40,671 and the incremental short-term disability cost was $99,99.

Decisions about medical and interventional treatments are based on specific findings noted when a patient presents with ACS. Such patients are classified clinically into 1 of 3 categories according to the presence or absence of ST-segment elevation on the presenting ECG and abnormal ("positive") elevations of myocardial biomarkers, such as troponins, as follows:

- STEMI
- NSTEMI
- UA

The percentage of ACS or MI cases with ST-segment elevation varies in different registries/databases and depends heavily on the age of patients included and the type of surveillance used. According to NRMI-4, ≤29% of patients with MI are patients with STEMI. The AHA GWTG project found that 32% of the patients with MI in the CAD module were patients with STEMI (personal communication from AHA GWTG staff, October 1, 2007). The GRACE study, which includes US patient populations, found that 38% of ACS patients have STEMI, whereas the EHS-ACS-II reported that ≈47% of patients with ACS have STEMI.

In addition, the percentage of ACS or MI cases with ST-segment elevation appears to be declining. In an analysis of 460,868 hospitalizations for ACS in the Kaiser Permanente Northern California study, the percentage of MI cases with ST-segment elevation decreased from 47.0% to 22.9% between 1999 and 2008.

- Analysis of data from the GRACE multinational observational cohort study of patients with ACS found evidence of a change in practice for both pharmacological and interventional treatments in patients with either STEMI or non–ST-segment–elevation ACS. These changes have been accompanied by nonsignificant decreases in the rates of in-hospital death, cardiogenic shock, and new MI among patients with non–ST-segment–elevation ACS. The use of evidence-based therapies and PCI interventions increased in the STEMI population. This increase was matched by a statistically significant decrease in the rates of death, cardiogenic shock, and HF or pulmonary edema.

- A study of hospital process performance in 350 centers of nearly 65,000 patients enrolled in the CRUSADE National Quality Improvement Initiative found that ACC/AHA guideline–recommended treatments were adhered to in 74% of eligible instances. A better composite guideline adherence rate was significantly associated with decreased in-hospital mortality among all patients with ACS and those with NSTEMI.

- After adjustment for clinical differences and the severity of CAD by angiogram, 30-day mortality after ACS is similar in men and women.

Stable AP
ICD-9 413; ICD-10 I20.1 to I20.9.

Prevalence
(See Table 19-2 and Chart 19-9 to 19-10.)

- A study of 4 national cross-sectional health examination studies found that among Americans 40 to 74 years of age, the age-adjusted prevalence of AP was higher among women than men. Increases in the prevalence of AP occurred for Mexican American men and women and African American women but were not statistically significant for the latter.

- On the basis of data from NHANES from 1998 to 2004 and the six 2-year surveys from 2001 to 2012, in 2009 to 2012, there were an average of 3.4 million people ≥40 years of age in the United States with angina each year compared with 4 million in 1988 to 1994. Declines in angina symptoms have occurred for whites but not for blacks.

Incidence
(See Table 19-2 and Chart 19-11.)

- Only 18% of coronary attacks are preceded by long-standing AP (NHLBI computation of FHS follow-up since 1986).
The annual rates per 1000 population of new episodes of AP for nonblack men are 28.3 for those 65 to 74 years of age, 36.3 for those 75 to 84 years of age, and 33.0 for those ≥85 years of age. For nonblack women in the same age groups, the rates are 14.1, 20.0, and 22.9, respectively. For black men, the rates are 22.4, 33.8, and 39.5, and for black women, the rates are 15.3, 23.6, and 35.9, respectively (CHS, NHLBI).54

Cost

For women with nonobstructive CHD enrolled in the WISE study of the NHLBI, the average lifetime cost estimate was ≈$770,000 and ranged from $1.0 to $1.1 million for women with 1- to 3-vessel CHD.55

References

Table 19-1. Coronary Heart Disease

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes</td>
<td>15500000 (6.2%)</td>
<td>7600000 (2.8%)</td>
<td>935000</td>
<td>735000</td>
<td>375295</td>
<td>119905</td>
<td>1346000</td>
</tr>
<tr>
<td>Males</td>
<td>8900000 (7.6%)</td>
<td>4900000 (4.0%)</td>
<td>545000</td>
<td>430000</td>
<td>206908 (55.1%)†</td>
<td>66765 (55.7%)†</td>
<td>828000</td>
</tr>
<tr>
<td>Females</td>
<td>6600000 (5.0%)</td>
<td>2700000 (1.8%)</td>
<td>390000</td>
<td>305000</td>
<td>168387 (44.9%)†</td>
<td>53140 (44.3%)†</td>
<td>518000</td>
</tr>
<tr>
<td>NH white males</td>
<td>7.8%</td>
<td>4.1%</td>
<td>475000‡</td>
<td>...</td>
<td>180658</td>
<td>58447</td>
<td>...</td>
</tr>
<tr>
<td>NH white females</td>
<td>4.6%</td>
<td>1.8%</td>
<td>330000‡</td>
<td>...</td>
<td>145443</td>
<td>45576</td>
<td>...</td>
</tr>
<tr>
<td>NH black males</td>
<td>7.2%</td>
<td>3.4%</td>
<td>70000‡‡</td>
<td>...</td>
<td>20693</td>
<td>6551</td>
<td>...</td>
</tr>
<tr>
<td>NH black females</td>
<td>7.0%</td>
<td>2.2%</td>
<td>60000‡‡</td>
<td>...</td>
<td>18760</td>
<td>6228</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic males</td>
<td>6.7%</td>
<td>3.5%</td>
<td>...</td>
<td>...</td>
<td>*</td>
<td>*</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic females</td>
<td>5.9%</td>
<td>1.7%</td>
<td>...</td>
<td>...</td>
<td>*</td>
<td>*</td>
<td>...</td>
</tr>
<tr>
<td>Asian</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>7828§</td>
<td>2476§</td>
<td>...</td>
</tr>
<tr>
<td>American Indian/Alaska Native</td>
<td>4.5%§</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>1913</td>
<td>627</td>
<td>...</td>
</tr>
</tbody>
</table>

CHD includes people who responded “yes” to at least 1 of the questions in “Has a doctor or other health professional ever told you that you had coronary heart disease, angina or angina pectoris, heart attack, or myocardial infarction?” Those who answered “no” but were diagnosed with Rose angina are also included (the Rose questionnaire is only administered to survey participants >40 years of age). CHD indicates coronary heart disease; ellipses (…), data not available; MI, myocardial infarction; and NH, non-Hispanic.

*Mortality data for the white, black, Asian or Pacific Islander, and American Indian/Alaska Native populations include deaths of people of Hispanic and non-Hispanic origin. Death rates for Hispanic, American Indian or Alaska Native, and Asian and Pacific Islander people should be interpreted with caution because of inconsistencies in reporting Hispanic origin or race on the death certificate compared with censuses, surveys, and birth certificates. Studies have shown underreporting on death certificates of American Indian or Alaska Native, Asian and Pacific Islander, and Hispanic decedents, as well as undercounts of these groups in censuses.

†These percentages represent the portion of total CHD and MI mortality that is for males vs females.

‡Estimates include Hispanics and non-Hispanics. Estimates for whites include other nonblack races.

§Includes Chinese, Filipino, Hawaiian, Japanese, and Other Asian or Pacific Islander.

National Health Interview Survey, National Center for Health Statistics 2013; data are weighted percentages for Americans ≥18 years of age.1

¶Estimate considered unreliable or does not meet standards of reliability or precision.

Table 19-2. Angina Pectoris

<table>
<thead>
<tr>
<th>Population Group</th>
<th>Prevalence, 2012, Age ≥20 y</th>
<th>Incidence of Stable AP, Age ≥45 y</th>
<th>Hospital Discharges, 2010, All Ages*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes</td>
<td>8 200 000 (3.3%)</td>
<td>565 000</td>
<td>22 000</td>
</tr>
<tr>
<td>Males</td>
<td>4 000 000 (3.4%)</td>
<td>370 000</td>
<td>12 000</td>
</tr>
<tr>
<td>Females</td>
<td>4 000 000 (3.2%)</td>
<td>195 000</td>
<td>10 000</td>
</tr>
<tr>
<td>NH white males</td>
<td>3.4%</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NH white females</td>
<td>2.9%</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NH black males</td>
<td>3.3%</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NH black females</td>
<td>5.0%</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic males</td>
<td>3.2%</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic females</td>
<td>3.8%</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

AP is chest pain or discomfort that results from insufficient blood flow to the heart muscle. Stable AP is predictable chest pain on exertion or under mental or emotional stress. The incidence estimate is for AP without myocardial infarction. AP indicates angina pectoris; ellipses, data not available; and NH, non-Hispanic.

*There were 56 000 days of care for discharges of patients with AP from short-stay hospitals in 2010.

Sources: Prevalence: National Health and Nutrition Examination Survey 2009 to 2012 (National Center for Health Statistics) and National Heart, Lung, and Blood Institute; percentages for racial/ethnic groups are age adjusted for US adults ≥20 years of age. AP includes people who either answered “yes” to the question of ever having angina or AP or who were diagnosed with Rose angina (the Rose questionnaire is only administered to survey participants >40 years of age). Estimates from National Health and Nutrition Examination Survey 2009 to 2012 (National Center for Health Statistics) were applied to 2010 population estimates (≥20 years of age). Incidence: AP uncomplicated by a myocardial infarction or with no myocardial infarction (Framingham Heart Study [the original cohort and the Offspring Cohort 1986–2009], National Heart, Lung, and Blood Institute). Hospital discharges: National Hospital Discharge Survey, National Center for Health Statistics; data include those inpatients discharged alive, dead, or status unknown.

Chart 19-3. Annual number of adults per 1000 having diagnosed heart attack or fatal coronary heart disease (CHD) by age and sex (Atherosclerosis Risk in Communities Surveillance: 2005–2011 and Cardiovascular Health Study). These data include myocardial infarction (MI) and fatal CHD but not silent MI. Source: National Heart, Lung, and Blood Institute.

Chart 19-6. Estimated 10-year coronary heart disease risk in adults 55 years of age according to levels of various risk factors (Framingham Heart Study). HDL-C indicates high-density lipoprotein cholesterol. Data derived from Wilson et al.56

Chart 19-7. Prevalence of low coronary heart disease risk, overall and by sex (National Health and Nutrition Examination Survey: 1971–2006). Low risk is defined as systolic blood pressure <120 mm Hg and diastolic blood pressure <80 mm Hg; cholesterol <200 mg/dL; body mass index <25 kg/m2; currently not smoking cigarettes and no prior myocardial infarction or diabetes mellitus. Source: Personal communication with the National Heart, Lung, and Blood Institute, June 28, 2007.

Chart 19-10. Secular trends in age- and sex-standardized prevalence rates of angina for adults aged ≥40 years in the United States, by race, for angina symptoms defined using the Rose questionnaire. Reprinted with permission from Will et al. Copyright © 2014, American Heart Association, Inc.

20. Cardiomyopathy and Heart Failure

See Table 20-1 and Charts 20-1 through 20-4.

Cardiomyopathy

ICD-9 425; ICD-10 I42.

Mortality—23,117. Any-mention mortality—46,545. Hospital discharges—34,000.

Youth

(See Chart 20-1.)

- Since 1996, the NHLBI-sponsored Pediatric Cardiomyopathy Registry has collected data on all children with newly diagnosed cardiomyopathy in New England and the Central Southwest (Texas, Oklahoma, and Arkansas).1

 —The overall incidence of cardiomyopathy is 1.13 cases per 100,000 among children <18 years of age.

Abbreviations Used in Chapter 20

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>Health Aging, and Body Composition Study</td>
</tr>
<tr>
<td>ARIC</td>
<td>Atherosclerosis Risk in Communities Study</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BNP</td>
<td>B-type natriuretic peptide</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery disease</td>
</tr>
<tr>
<td>CARDIA</td>
<td>Coronary Artery Risk Development in Young Adults Study</td>
</tr>
<tr>
<td>CHS</td>
<td>Cardiovascular Health Study</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>ED</td>
<td>emergency department</td>
</tr>
<tr>
<td>EF</td>
<td>ejection fraction</td>
</tr>
<tr>
<td>FHS</td>
<td>Framingham Heart Study</td>
</tr>
<tr>
<td>HbA₁c</td>
<td>hemoglobin A₁c (glycosylated hemoglobin)</td>
</tr>
<tr>
<td>HBP</td>
<td>high blood pressure</td>
</tr>
<tr>
<td>HCM</td>
<td>hypertrophic cardiomyopathy</td>
</tr>
<tr>
<td>HF</td>
<td>heart failure</td>
</tr>
<tr>
<td>HR</td>
<td>hazard ratio</td>
</tr>
<tr>
<td>ICD-9</td>
<td>International Classification of Diseases, 9th Revision</td>
</tr>
<tr>
<td>ICD-10</td>
<td>International Classification of Diseases, 10th Revision</td>
</tr>
<tr>
<td>LV</td>
<td>left ventricular</td>
</tr>
<tr>
<td>MESA</td>
<td>Multi-Ethnic Study of Atherosclerosis</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>NCHS</td>
<td>National Center for Health Statistics</td>
</tr>
<tr>
<td>NH</td>
<td>non-Hispanic</td>
</tr>
<tr>
<td>NHAMCS</td>
<td>National Hospital Ambulatory Medical Care Survey</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NHDS</td>
<td>National Hospital Discharge Survey</td>
</tr>
<tr>
<td>NHLBI</td>
<td>National Heart, Lung, and Blood Institute</td>
</tr>
<tr>
<td>PAR</td>
<td>population attributable risk</td>
</tr>
<tr>
<td>PPCM</td>
<td>peripartum cardiomyopathy</td>
</tr>
</tbody>
</table>

- Among children <1 year of age, the incidence is 8.34, and among children 1 to 18 years of age, it is 0.70 per 100,000.
- The annual incidence is lower in white than in black children, higher in boys than in girls, and higher in New England (1.44 per 100,000) than in the Central Southwest (0.98 per 100,000).
- Dilated cardiomyopathy is the most common form of cardiomyopathy among children. The Pediatric Cardiomyopathy Registry recently reported an annual incidence of dilated cardiomyopathy in children <18 years of age of 0.57 per 100,000 overall. The annual incidence was higher in boys than in girls (0.66 versus 0.47 cases per 100,000), in blacks than in whites (0.98 versus 0.46 cases per 100,000), and in infants (<1 year of age) than in children (4.40 versus 0.34 cases per 100,000). The majority of children (66%) had idiopathic disease. The most common known causes of dilated cardiomyopathy were myocarditis (46%) and neuromuscular disease (26%).2 Risk factors for death and transplantation in children varied according to cause of dilated cardiomyopathy. For idiopathic dilated cardiomyopathy, increased LV end-diastolic dimension was associated with increased risk for transplantation but not mortality. Short stature was significantly related to death but not transplantation.3
- HCM is the most common inherited heart defect, occurring in 1 of 500 individuals. In the United States, ≈500,000 people have HCM, yet most are unaware of it.4 In a recent report of the Pediatric Cardiomyopathy Registry, the overall annual incidence of HCM in children was 4.7 per 1 million children. There was a higher incidence in the New England than in the Central Southwest region, in boys than in girls, and in children diagnosed at <1 year of age than in older children.5 The 5-year incidence rate of sudden cardiac death among children with dilated cardiomyopathy is 3%.6 See Chapter 16, Disorders of Heart Rhythm, for statistics regarding sudden death in HCM.
- Data from Kaiser Permanente indicate that the incidence of PPCM is 4.84 per 10,000 live births (95% CI, 3.98–5.83), and PPCM is associated with higher maternal and neonatal death rates and worse neonatal outcomes.7 There was a trend toward an increase in the incidence of PPCM in the United States from 1990–1993 to 2000–2002, which might be related to a rise in maternal age.8

Global Burden of Cardiomyopathy

- Between 1990 and 2010, the global number of deaths attributed to cardiomyopathy and myocarditis increased 40.8% from 286,800 to 403,900, but the age-standardized death rate decreased 9.8%, from 6.7 to 6.1 per 100,000.9 However, between 1990 and 2010, the global years lived with disability for cardiomyopathy and myocarditis increased 11.4%, from 5 to 6 years lived with disability per 100,000.10 The reported incidence of PPCM in the United States varies considerably, whereas the reported incidences in several African and Asian countries are similar.
Heart Failure
ICD-9 428; ICD-10 I50.

Prevalence
(See Table 20-1 and Chart 20-2.)
- On the basis of data from NHANES 2009 to 2012, an estimated 5.7 million Americans ≥20 years of age have HF (NHLBI tabulation).
- Projections show that the prevalence of HF will increase 46% from 2012 to 2030, resulting in >8 million people ≥18 years of age with HF.11

Incidence
(See Table 20-1 and Chart 20-3.)
- On the basis of data from the community surveillance component of the ARIC study of the NHLBI:
 — There are 870,000 new HF cases annually (ARIC 2005 through 2011; based on community trends in the occurrence of hospitalized HF and case fatality; unpublished report for NHLBI.)
 — At ages <75 years, HF incidence is higher in blacks than whites.
- Data from the NHLBI-sponsored FHS12 indicate the following:
 — HF incidence approaches 10 per 1000 population after 65 years of age.
 — Seventy-five percent of HF cases have antecedent hypertension.
 — At 40 years of age, the lifetime risk of developing HF for both men and women is 1 in 5.
 — At 80 years of age, remaining lifetime risk for development of new HF remains at 20% for men and women, even in the face of a much shorter life expectancy.
 — At 40 years of age, the lifetime risk of HF occurring without antecedent MI is 1 in 9 for men and 1 in 6 for women.
 — The lifetime risk for people with BP >160/90 mmHg is double that of those with BP <140/90 mmHg.
- The annual rates per 1000 population of new HF events for white men are 15.2 for those 65 to 74 years of age, 31.7 for those 75 to 84 years of age, and 65.2 for those ≥85 years of age. For white women in the same age groups, the rates are 8.2, 19.8, and 45.6, respectively.11
- In MESA, African Americans had the highest risk of development of HF, followed by Hispanic, white, and Chinese Americans (4.6, 3.5, 2.4, and 1.0 per 1000 person-years, respectively). This higher risk reflected differences in the prevalence of hypertension, DM, and low socioeconomic status.14
- African Americans had the highest proportion of incident HF not preceded by clinical MI (75%).14
- In the NHLBI’s ARIC study, the age-adjusted incidence rate per 1000 person-years was 3.4 for white women, less than for all other groups, that is, white men (6.0), black women (8.1), and black men (9.1). The 30-day, 1-year, and 5-year case fatality rates after hospitalization for HF were 10.4%, 22%, and 42.3%, respectively. Blacks had a greater 5-year case fatality rate than whites (P<0.05). HF incidence rates in black women were more similar to those of men than of white women. The greater HF incidence in blacks than in whites is explained largely by blacks’ greater levels of atherosclerotic risk factors.15
- Data from Kaiser Permanente indicated an increase in the incidence of HF and improved survival among the elderly, with the effect being greater in men.16
- Data from hospitals in Worcester, MA, indicate that during 2000, the incidence rates for HF were 219 per 100,000 and 897 per 100,000, respectively. HF was more frequent in women and the elderly.16
- In the CARDIA study, HF before 50 years of age was more common among blacks than whites. Hypertension, obesity, and systolic dysfunction are important risk factors that may be targets for prevention.17
- The lifetime risks of HF were assessed in a large group of 39,578 participants from several cohorts (Chicago Heart Association Detection Project in Industry, ARIC, and CHS). At age 45 years, lifetime risks for HF through age 75 or 95 years were 30% to 42% in white men, 20% to 29% in black men, 32% to 39% in white women, and 24% to 46% in black women. HBP and higher BMI at all ages in both blacks and whites led to higher lifetime risks.18

Mortality
(See Table 20-1.)
- One in 9 deaths has HF mentioned on the death certificate (NCHS, NHLBI).
- In 2011, HF any-mention mortality was 284,388 (129,635 males and 154,753 females). HF was the underlying cause in 58,309 of those deaths in 2011.19 Table 20-1 shows the numbers of these deaths that are coded for HF as the underlying cause.
- The 2011 overall any-mention death rate for HF was 83.0. Any-mention death rates in males were 98.5 for whites, 98.0 for blacks, 44.1 for Asians or Pacific Islanders, and 73.2 for American Indians or Alaska Natives. In females, the respective death rates were 73.6 for whites, 77.4 for blacks, 33.9 for Asians or Pacific Islanders, and 61.9 for American Indians or Alaska Natives.19
- The number of any-mention deaths attributable to HF was approximately as high in 1995 (287,000) as it was in 2011 (284,000; NCHS, NHLBI).20
- Survival after HF diagnosis has improved over time, as shown by data from the FHS21 and the Olmsted County Study.22 However, the death rate remains high: ≈50% of people diagnosed with HF will die within 5 years.19,22
- In the elderly, data from Kaiser Permanente indicate that survival after the onset of HF has also improved.23
- In the CHS, both the presence of depression and elevated N-terminal pro-BNP levels were independent risk factors that identified HF patients with a high risk of all-cause mortality.24
- Among Medicare beneficiaries, the overall 1-year HF mortality rate declined slightly from 1998 to 2008 but remained high at 29.6%.25 Rates of mortality decline were uneven across states.

Global Burden of HF
- HF is common throughout sub-Saharan Africa. Forty-four percent of patients with newly diagnosed CVD have HF,
whereas only 10% have CAD. Common causes include nonischemic cardiomyopathies, rheumatic heart disease, congenital heart disease, hypertensive heart disease, and endomyocardial fibrosis; ischemic HD remains relatively uncommon. HF strikes individuals in sub-Saharan Africa at a much younger age than in the United States and Europe. The prevalence estimates for HF across Asia range from 1.26% to 6.7%. Rheumatic heart disease is a major contributor to HF in certain parts of South Asia, such as India, but recently, trends toward an ischemic cause for HF have been observed in Asia, such as in China and Japan.

- For men, HF prevalence in 2010 was highest (>5 per 1000) in high-income North America, Oceania, and Eastern Europe. In women, HF prevalence in 2010 was highest (4.53 per 1000) in Oceania, followed by high-income North America and North Africa/Middle East. For both men and women, HF prevalence was lowest in west sub-Saharan Africa (0.74/1000 in men and 0.57/1000 in women). Made the largest contribution to age-standardized years lived with disability among men in high-income North America, Oceania, Eastern and Western Europe, southern Latin America, and Central Asia. HF risk factors vary substantially across world regions, with hypertension being highly associated with HF in all regions but with cardiomyopathy being most common in Latin America, the Caribbean, and sub-Saharan Africa, and a minimal association with ischemic HD in sub-Saharan Africa.

Risk Factors

- In the NHLBI-sponsored FHS, BNP, urinary albumin-to-creatinine ratio, elevated serum γ-glutamyl transferase, and higher levels of hematocrit were identified as risk factors for incident HF.
- In the Framingham Offspring Study, among 2739 participants, increased circulating concentrations of resistin were associated with incident HF independent of prevalent coronary disease, obesity, insulin resistance, and inflammation.
- Among 20900 male physicians in the Physicians Health Study, the lifetime risk of HF was higher in men with hypertension; healthy lifestyle factors (normal weight, not smoking, regular exercise, moderate alcohol intake, consumption of breakfast cereals, and consumption of fruits and vegetables) were related to lower risk of HF. Adiponectin was also associated with risk of HF (J-shaped relationship).
- Among 2934 participants in the ABC study, the incidence of HF was 13.6 per 1000 person-years. Men and black participants were more likely to develop HF. Coronary disease (PAR 23.9% for white participants, 29.5% for black participants) and uncontrolled BP (PAR 21.3% for white participants, 30.1% for black participants) had the highest PARs in both races. There was a higher proportion of HF attributable to modifiable risk factors in black than in white participants (67.8% versus 48.9%). Inflammatory markers (interleukin-6 and tumor necrosis factor-α), serum albumin levels, and cigarette smoking exposure were also associated with HF risk.
- In the CHS, baseline cardiac high-sensitivity troponin and changes in high-sensitivity troponin levels were significantly associated with incident HF. Circulating individual and total omega-3 fatty acid concentrations were associated with lower incidence of HF.
- In the ARIC study, white blood cell count, CRP, albuminuria, Hba1c among individuals without DM, cardiac troponin, ventricular premature complexes, and socioeconomic position over the life course were all identified as risk factors for HF.
- In the MESA study, plasma N-terminal pro-BNP provided incremental prognostic information beyond the traditional risk factors and the magnetic resonance imaging—determined LV mass index for incident symptomatic HF.

LV Function

- Data from Olmsted County, MN, indicate the following:
 - Among all individuals (asymptomatic or with validated clinical HF), the prevalence of LV diastolic dysfunction was 21% for mild diastolic dysfunction and 7% for moderate or severe diastolic dysfunction. The prevalence of systolic dysfunction was 6%. The presence of any LV dysfunction (systolic or diastolic) was associated with an increased risk of overt HF, and asymptomatic diastolic dysfunction was predictive of all-cause death. After 4 years of follow-up, the prevalence of diastolic dysfunction increased to 39.2%. Diastolic dysfunction was associated with development of clinical HF during 6 years of subsequent follow-up after adjustment for age, hypertension, DM, and CAD (HR, 1.81; 95% CI, 1.01–3.48).
 - Among individuals with symptomatic HF, 55% had HF with preserved EF. The prevalence of LV diastolic dysfunction was 6% for mild and 75% for moderate or severe diastolic dysfunction. HF with preserved EF is associated with a high mortality rate, comparable to that of HF with reduced EF. Over a 15-year follow-up period, survival trends improved among individuals with HF with reduced EF but not among those with HF with preserved EF.
 - In the NHLBI-sponsored FHS, among asymptomatic individuals, the prevalence of systolic dysfunction was 5%; the prevalence of LV diastolic dysfunction was 36%. LV systolic dysfunction and LV diastolic dysfunction were associated with increased risk of incident HF: major organ system dysfunction (higher serum creatinine, lower ratios of FEV1 [forced expiratory volume in 1 second] to FVC [forced vital capacity], and lower hemoglobin concentrations) were also independently associated with increased risk of new-onset HF.
 - In MESA, the overall prevalence of asymptomatic LV systolic dysfunction was higher in African Americans than in whites, Chinese, and Hispanics. After 9 years of follow-up, asymptomatic LV dysfunction was associated with incident clinical HF (8.69 HR; 95% CI [4.89–15.45]) after adjustment for cardiac risk factors.

Hospital Discharges/Ambulatory Care Visits

(See Table 20-1 and Chart 20-4.)

- Hospital discharges for HF were essentially unchanged from 2000 to 2010, with first-listed discharges of 1008 000 and 1023 000, respectively (NHDS, NHLBI tabulation).
In 2010, there were 1,801,000 physician office visits with a primary diagnosis of HF. 55 In 2010, there were 676,000 ED visits and 236,000 outpatient department visits for HF (NHAMCS, NHLBI tabulation). 56 Among 1077 patients with HF in Olmsted County, MN, hospitalizations were common after HF diagnosis, with 83% patients hospitalized at least once and 43% hospitalized at least 4 times. More than one half of all hospitalizations were related to noncardiovascular causes. 57 Among Medicare beneficiaries, the overall HF hospitalization rate declined substantially from 1998 to 2008 but at a lower rate for black men. 58 Changes were uneven across states.

Cost

In 2012, total cost for HF was estimated to be $30.7 billion. Of this total, 68% was attributable to direct medical costs. 11 Projections show that by 2030, the total cost of HF will increase almost 127% to $69.7 billion from 2012. Of this total, 68% was attributable to direct medical costs. 11 The projections show the overall cost of HF in the United States: diagnosis, prognosis, and management. The incidence of and risk factors for sudden cardiac death in children with dilated cardiomyopathy: results from the Pediatric Cardiomyopathy Registry. Circulation. 2011;124:814–823.

References

Table 20-1. Heart Failure

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes</td>
<td>570000 (2.2%)</td>
<td>870000</td>
<td>58309</td>
<td>1023000</td>
<td>30.7 billion</td>
</tr>
<tr>
<td>Males</td>
<td>2700000 (2.3%)</td>
<td>415000</td>
<td>24609 (42.2%)‡</td>
<td>501000</td>
<td>...</td>
</tr>
<tr>
<td>Females</td>
<td>3000000 (2.2%)</td>
<td>455000</td>
<td>33700 (57.8%)‡</td>
<td>522000</td>
<td>...</td>
</tr>
<tr>
<td>NH white males</td>
<td>2.2%</td>
<td>365000§</td>
<td>21802</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NH white females</td>
<td>2.2%</td>
<td>395000§</td>
<td>30036</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NH black males</td>
<td>2.8%</td>
<td>500000§</td>
<td>2371</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>NH black females</td>
<td>3.2%</td>
<td>60000§</td>
<td>3143</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic males</td>
<td>2.1%</td>
<td>...</td>
<td>*</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Hispanic females</td>
<td>2.1%</td>
<td>...</td>
<td>*</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Asian or Pacific Island</td>
<td>...</td>
<td>727</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>...</td>
<td>...</td>
<td>230</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Heart failure includes people who answered “yes” to the question of ever having congestive heart failure.

Ellipses (…) indicate data not available; and NH, non-Hispanic.

*Mortality data for the white, black, Asian or Pacific Islander, and American Indian or Alaska Native population includes deaths among people of Hispanic and non-Hispanic origin. Death rates for Hispanic, American Indian or Alaska Native, and Asian and Pacific Islander people should be interpreted with caution because of inconsistencies in reporting Hispanic origin or race on the death certificate compared with censuses, surveys, and birth certificates. Studies have shown underreporting on death certificates of American Indian or Alaska Native, Asian and Pacific Islander, and Hispanic decedents, as well as undercounts of these groups in censuses.

†Cost data are from Heidenreich et al.11

‡These percentages represent the portion of total mortality attributable to heart failure that is for males vs females.

§Estimates include Hispanics and non-Hispanics. Estimates for whites include other nonblack races.

Includes Chinese, Filipino, Hawaiian, Japanese, and Other Asian or Pacific Islander.

Chart 20-1. Incidence of peripartum cardiomyopathy (PPCM). Reproduced from Blauwet et al,58 copyright 2011, with permission from BMJ Publishing Group Ltd.

21. Valvular, Venous, and Aortic Diseases

See Tables 21-1 and 21-2 and Chart 21-1.

Mortality and any-mention mortality in this section are for 2010. “Mortality” is the number of deaths in 2010 for the given underlying cause based on ICD-10. Prevalence data are for 2006. Hospital discharge data are from the NHDS/NCHS; data include inpatients discharged alive, dead, or status unknown. Hospital discharge data for 2010 are based on ICD-9 codes.

Valvular HD

(See Table 21-1.)

ICD-9 424; ICD-10 I34 to I38.

- **Mortality**—23,141. Any-mention mortality—47,830. Hospital discharges—85,000.

- Two important factors have contributed to the changing epidemiology of valvular HD in the United States over the past few decades: aging of the population and the increased ability to diagnose valvular HD by echocardiography.

- A large population-based epidemiological study with systematic use of echocardiography on 16,501 participants from Olmsted County, MN, showed an overall age-adjusted prevalence of clinically diagnosed (moderate or greater) valvular HD of 1.8%.1

- Prevalence of any valve disease increased with age1:
 - 18 to 44 years: 0.3% (95% CI, 0.2%–0.3%)
 - 45 to 54 years: 0.7% (95% CI, 0.6%–0.9%)
 - 55 to 64 years: 1.6% (95% CI, 1.4%–1.9%)
 - 65 to 75 years: 4.4% (95% CI, 3.9%–4.9%)
 - ≥75 years: 11.7% (95% CI, 11.0%–12.5%)

- Pooled echocardiographic data from 11,911 participants from CARDIA (4351), ARIC (2435), and CHS (5125) demonstrated a similar increase in prevalence with age (Table 21-1).1
 - 18 to 44 years: 0.7% (95% CI, 0.5%–1.0%)
 - 45 to 54 years: 0.4% (95% CI, 0.1%–1.3%)
 - 55 to 64 years: 1.9% (95% CI, 1.2%–2.8%)
 - 65 to 75 years: 8.5% (95% CI, 7.6%–9.4%)
 - ≥75 years: 13.3% (95% CI, 11.7%–15.0%)

- Adjusted to the entire US population, these data suggest that the prevalence of any valve disease is 2.5% (95% CI, 2.2%–2.7%), with no difference between men (2.4% [95% CI, 2.1%–2.8%]) and women (2.5% [95% CI, 2.1%–2.9%]). Within this sample, 0.4% had aortic stenosis, 0.5% had aortic regurgitation, 0.1% had mitral stenosis, and 1.7% had mitral regurgitation.1

- In CARDIA, ARIC, and CHS, survival of participants with valve disease was 79% (SE 2%) at 5 years and 68% (1.9%) at 8 years compared with 93% (0.2%) and 86% (0.4%) in participants without valve disease.

Aortic Valve Disorders

ICD-9 424.1; ICD-10 I35.

- **Mortality**—15,576. Any-mention mortality—31,746. Hospital discharges—55,000.

- The prevalence of moderate or severe aortic stenosis in patients ≥75 years old is 2.8% (95% CI, 2.1%–3.7%), and the prevalence of moderate or severe aortic regurgitation in patients ≥75 years is 2.0% (95% CI, 1.4%–2.7%).1

- In MESA participants aged 45 to 84 years (n=5880), aortic valve calcium was quantified with serial CT images. During a mean follow-up of 2.4 years, 210 (4.1%) of the 5142 participants with no aortic valve calcium had a mean incidence rate of progression of 1.7% per year, which increased with age. Incident aortic valve calcium was associated with several conventional cardiovascular risk factors, including age, male sex, BMI, and smoking.2

- Approximately 50% of patients with severe aortic stenosis are referred for cardiothoracic surgery, and ≈40% undergo...
AVR according to data from 10 US centers of various sizes and geographic distribution. Reasons for not undergoing AVR included high perioperative risk, age, lack of symptoms, and patient/family refusal.1

● On the basis of data from the PARTNER B cohort that compared TAVR with medical therapy in patients who were not surgical candidates for AVR, 2-year mortality rates were 43.3% and 68% (P<0.001) and 2-year hospitalization rates were 35% and 72.5% (P<0.001), respectively.4

● One-year costs of TAVR were higher than with medical therapy ($106,076 versus $53,621), with an incremental cost-effectiveness of $50,200 per life-year gained and $61,889 per quality-adjusted life-year gained.5

● In a cohort of 416 community-based participants from Olmsted County, MN, with bicuspid aortic valves followed up for a mean (SD) of 16 (7) years, the incidence of aortic dissection in individuals ≥50 years of age at baseline was 17.4 (95% CI, 2.9–53.6) cases per 10,000 patient years. For patients aged ≥50 years with a bicuspid valve and a baseline aortic aneurysm, the incidence of aortic dissection was 44.9 (95% CI, 7.5–138.5) cases per 10,000 patient-years. In the remaining participants without baseline aortic aneurysm, the incidence of aneurysm was 84.9 (95% CI, 63.3–110.9) cases per 10,000 patient-years, for an age-adjusted RR of 86.2 (95% CI, 65.1–114) compared with the general population.6

Aortic Valve Interventions

● Lipid-lowering therapy does not appear to reduce aortic stenosis progression on the basis of any echocardiographic measures of aortic stenosis, as reported by a meta-analysis of 4 randomized controlled trials by Teo and colleagues.7

● Immediate postoperative and 1-, 3-, 5-, and 10-year pooled survival rates from 48 studies of 13,216 octogenarians were 93.7%, 87.6%, 78.7%, 65.4%, and 29.7%, respectively.8

● TAVR has emerged as an innovative technology for treatment of aortic stenosis in patients at high risk for perioperative complications.

—A systematic review9 of TAVR from 16 studies that included 3,519 patients and reported at least 1 outcome using the Valve Academic Research Consortium’s definitions demonstrated the following:

○ Device success 92.1% (88.7%–95.5%)

○ 30-day all-cause mortality 7.8% (5.5%–11.1%)

○ 1-year all-cause mortality 22.1% (17.9%–26.9%)

○ Major vascular complications 11.9% (8.6%–16.4%)

○ Major stroke 3.2% (2.1%–4.8%)

—More recent data from the PARTNER A cohort that compared TAVR with surgical AVR showed that 2-year mortality rates were 33.9% and 35% (P=0.78), respectively. Stroke or TIA rates were higher in the TAVR arm (11.2% versus 6.5%, P=0.05) than in the surgical AVR arm, as were major vascular complications (11.6% versus 3.8%, P<0.001).10

Mitrail Valve Disorders

ICD-9 424.0; ICD-10 I134.

Mortality—2215. Any-mention mortality—5125. Hospital discharges—22,000.

Prevalence

(See Table 21-1.)

● In pooled data from CARDIA, ARIC, and CHS, mitral valve disease was the most common valvular lesion. At least moderate mitral regurgitation occurred at a frequency of 1.7% as adjusted to the US adult population of 2000, increasing from 0.5% in participants aged 18 to 44 years to 9.3% in participants aged ≥75 years.1

● A systematic review by de Marchena and colleagues11 found that in the US population, the prevalence of mitral regurgitation according to Carpentier’s functional classification system was as follows:

—Type I (congenital mitral regurgitation and endocarditis): <20 per 1 million

—Type II (myxomatous mitral regurgitation): 15,000 per 1 million

—Type IIIa (rheumatic HD, systemic lupus erythematosus, antiphospholipid syndrome): 10,520 per 1 million

—Type IIIb (ischemic mitral regurgitation, LV dysfunction, dilated cardiomyopathy): 23,250 per 1 million

● Data from the STS adult cardiac surgery database of 14,604 isolated, nonemergent mitral valve repair operations demonstrated an operative mortality rate of 2.59%. Over a mean (SD) follow-up of 5.9 (3.9) years and a mean (SD) age of 73.3 (5.5) years, survival was 74.9%. The 10-year actuarial survival rate of 57.4% was similar to the matched US population.12

● Data from the Centers for Medicare & Medicaid Services from 47,602 isolated mitral valve operations demonstrate an operative mortality of 7.1%. Women had higher operative mortality rates than men (7.7% versus 6.1%, P<0.001). After multivariable adjustment, female sex was associated with higher risk of operative mortality for both mitral valve repair (OR, 1.18; 95% CI, 1.00–1.39) and mitral valve replacement (OR, 1.24; 95% CI, 1.14–1.36), but these differences were no longer present after long-term follow-up (median, 5 years; interquartile range, 2.7–7.7 years).13

Pulmonary Valve Disorders

ICD-9 424.3; ICD-10 I17.

Tricuspid Valve Disorders

ICD-9 424.2; ICD-10 I16.

Rheumatic Fever/Rheumatic HD

(See Table 21-2 and Chart 21-1.)

ICD-9 390 to 398; ICD-10 I00 to I09.

Mortality—3105. Any-mention mortality—5886. Hospital discharges—20,000.

● Rheumatic HD is uncommon in high-income countries such as the United States but remains endemic in Africa, Asia, and the Pacific, affecting >15 million individuals and causing 233,000 deaths annually.14

● The reported prevalence of rheumatic HD is increasing in all regions of the world except Europe.15

Downloaded from http://circ.ahajournals.org/ by guest on November 6, 2017
Recent echocardiography-based screening studies in schoolchildren have demonstrated rheumatic HD prevalence rates ranging from 14.8 (95% CI, 7.3–22.3) per 1000 (Uganda) to 20.4 (95% CI, 16.9–23.9) per 1000 in northern India to 21.5 (95% CI, 16.8–26.2) per 1000 in Cambodia and 30.4 (95% CI, 23.2–37.6) per 1000 in Mozambique.

—Echocardiography reveals a 3- to 10-fold higher prevalence of rheumatic HD than clinical examination.

Acute rheumatic fever incidence is decreasing in all WHO regions except for the Americas, where it appears to be increasing slightly, and the Western Pacific, where it appears to be increasing steadily.

In 1950, ≈15,000 Americans (adjusted for changes in ICD codes) died of rheumatic fever/rheumatic HD compared with ≈3,000 annually in the present era (NCHS/NHLBI).

The 2011 overall age-adjusted death rate for rheumatic fever/rheumatic HD was 0.9 per 100,000. Death rates varied across race/ethnic groups but were generally low: white, 0.9 per 100,000; black or African American, 0.7 per 100,000; Asian or Pacific Islander, 0.6 per 100,000; American Indian or Alaska Native, 0.8 per 100,000; and Hispanic or Latino origin individuals, 0.6 per 100,000.

Bacterial Endocarditis

ICD-9 421.0; ICD-10 I13.0.

Mortality—1140. Any-mention mortality—2325. Hospital discharges—34,000, plus secondary diagnoses.

—The 2007 AHA guidelines on prevention of IE state that IE is thought to result from the following sequence of events: (1) Formation of nonbacterial thrombotic endocarditis on the surface of a cardiac valve or elsewhere that endocardial damage occurs; (2) bacteremia; and (3) adherence of the bacteria in the bloodstream to nonbacterial thrombotic endocarditis and proliferation of bacteria within a vegetation. Viridans group streptococci are part of the normal skin, oral, respiratory, and gastrointestinal tract flora, and they cause ≥50% of cases of community-acquired native valve IE not associated with intravenous drug use.

—Although the absolute risk for acquiring IE from a dental procedure is impossible to measure precisely, the best available estimates are as follows: If dental treatment causes 1% of all cases of viridans group streptococcal IE annually in the United States, the overall risk in the general population is estimated to be as low as 1 case of IE per 14 million dental procedures. The estimated absolute risk rates for acquiring IE from a dental procedure in patients with underlying cardiac conditions are as follows:

 —Mitral valve prolapse: 1 per 1.1 million procedures
 —CHD: 1 per 475,000
 —Rheumatic HD: 1 per 142,000
 —Presence of a prosthetic cardiac valve: 1 per 114,000
 —Previous IE: 1 per 95,000 dental procedures

Cessation of antibiotic prophylaxis for IE before dental procedures has not led to a change in pediatric cases of endocarditis. Using 2003 to 2010 data from 37 centers in the Pediatric Health Information Systems Database, Pasquali and colleagues did not demonstrate a significant difference in the number of IE hospitalizations after the guidelines were implemented in 2007 (1.6% difference after versus before guideline implementation; 95% CI, −6.4% to 10.3%; P=0.7).

A systematic review that included 161 studies and 27,354 patients from 1960 to 2011 demonstrated that in hospital-based studies (143 studies; 23,877 patients), staphylococcal endocarditis has increased over time (coagulase-negative *Staphylococcus* 2% to 10%, P=0.001), with recent increases in *Staphylococcus aureus* (21% to 30%, P<0.05) over the past decade and a corresponding decrease in streptococcal endocarditis (32% to 17%) over the same time period.

Cardiac device IE appears to be present in 6.4% (95% CI, 5.5%–7.4%) of patients with definite IE, according to data from the International Collaboration on Endocarditis–Prospective Cohort Study (2000–2006). Nearly half (45.8%; 95% CI, 38.3%–53.4%) of such cases are associated with healthcare-associated infection. In-hospital and 1-year mortality rates for these patients were 14.7% (26/177; 95% CI, 9.8%–20.8%) and 23.2% (41/177; 95% CI, 17.2%–30.1%), respectively.

Endocarditis, Valve Unspecified

ICD-9 424.9; ICD-10 I18.

VTE Epidemiology (Including DVT and PE)

Pulmonary Embolism

ICD-9 415.1; ICD-10 I26.

Deep Vein Thrombosis

ICD-9 451.1; ICD-10 I80.2.

Mortality—2564. Any-mention mortality—13,228.

Incidence

—Based on 35 years of data from 1966 to 2000 in Olmsted County, MN, the average annual incidence of VTE among whites is 108 per 100,000 person-years, with 250,000 incident cases occurring annually among US whites.

—VTE incidence appears to be similar or higher among African Americans and lower among Asian Americans and Native Americans than among whites.

—After adjustment for the different age and sex distribution of African Americans, VTE incidence is 78 per 100,000, which suggests that 27,000 incident VTE cases occur annually among US blacks.

—VTE incidence has not changed significantly over the past 25 years according to data from Olmsted County, MN.

—Incidence rates increase exponentially with age for both men and women and for both DVT and PE.

—Incidence rates are higher in women during childbearing years, whereas incidence rates after age 45 years are higher in men.

—PE accounts for an increasing proportion of VTE with increasing age in both sexes.

—VTE event type (DVT versus PE) has a common familial background and shared genetic susceptibility.
Survival
- For almost one quarter of PE patients, the initial clinical presentation is sudden death.
- Data from 1999 show that 30-day VTE survival is 72.0% (DVT alone, 94.5% PE with or without DVT, 55.6%).
- PE is an independent predictor of reduced survival for ≤3 months.
- Because most PE deaths are sudden and usually attributed to underlying disease (eg, cancer; other chronic heart, lung, or renal disease), secular trends in VTE survival are confounded by autopsy rates.

Recurrence
- VTE is a chronic disease with episodic recurrence; ≈30% of patients develop recurrence within the next 10 years.
- Independent predictors of early (within 180 days) recurrence include active cancer, proportion of time spent taking heparin with a heparin level ≥0.2 anti-Xa U/mL, and proportion of time spent taking warfarin with an international normalized ratio ≥2. Two-week case fatality for recurrent DVT alone and recurrent PE with or without DVT is 2% and 11%, respectively.

Complications
- The 20-year cumulative incidence of venous stasis syndrome and venous ulcer after proximal DVT is 40% and 3.7%, respectively.
- The incidence of chronic thromboembolic pulmonary hypertension is 6.5 per million person-years; ≈1400 incident cases occur annually among US whites.

Risk Factors
- Independent VTE risk factors include increasing patient age, surgery, trauma/fracture, hospital or nursing home confinement, active cancer, central vein catheterization or transvenous pacemaker, prior superficial vein thrombosis, infection, varicose veins, and neurological disease with leg paresis, and among women, use of oral contraceptives, pregnancy/postpartum period, and hormone therapy.
- Compared with residents in the community, hospitalized residents have a >130-fold higher VTE incidence (71 versus 9605 per 100000 person-years).
- In Olmsted County, MN, between 1976 and 1990, hospitalization and nursing home residence together account for almost 60% of incident VTE events that occur in the community.
- Among patients hospitalized for acute medical illness, independent risk factors for VTE include prior VTE, thrombophilia, cancer, age >60 years, leg paralysis, immobilization ≥7 days, and admission to an intensive care unit or coronary care unit.
- Among cancer patients beginning chemotherapy, tumor site, BMI, hemoglobin, platelet and white blood cell count, and plasma D-dimer and soluble P-selectin levels are predictors of VTE in the next 6 months.
- In a large cohort study of middle-aged women, including women undergoing surgery, current smoking increased the risk for hospitalization for or death attributable to VTE. However, whether smoking represents an independent VTE risk factor remains uncertain.
- In a case-crossover study, novel predictors of hospitalization for VTE included recent infection, erythropoiesis-stimulating agents, and blood transfusion.
- An association between systemic, intestinal, or inhaled glucocorticoids and VTE was reported recently; however, this association may be spurious because of residual confounding.
- Among patients with immune thrombocytopenia, splenectomy was associated with an increased incidence of abdominal vein thrombosis within 90 days after surgery and an increased incidence of leg DVT and PE. Whether these associations are independent of immune thrombocytopenia disease activity is uncertain.
- Pregnancy-associated VTE incidence is 200 per 100000 woman-years; compared with nonpregnant women of childbearing age, the RR for VTE is increased 4-fold. VTE risk appears to be higher for pregnancies after in vitro fertilization compared with natural pregnancies.
- VTE risk during the postpartum period is ≈5-fold higher than during pregnancy.

Arteries, Diseases of
ICD-9 440 to 448; ICD-10 I70 to I78. Includes PAD.

Penetrating Aortic Ulcers
- A single-center evaluation of 388 penetrating aortic ulcers found on CT angiography (2003–2009) demonstrated penetrating aortic ulcers in the aortic arch (6.8%), descending thoracic aorta (61.2%), and abdominal aorta (29.7%). Nearly 2 of every 3 penetrating aortic ulcers (57.7%) did not have a saccular aneurysm or intramural hematoma, whereas ≈1 in 4 (27.8%) had associated saccular aneurysms, and ≈1 in 7 (14.4%) had an associated intramural hematoma. Rupture was present in ≈1 in 25 penetrating aortic ulcers (4.1%).

Aortic Aneurysm
ICD-9 441; ICD-10 I71.
- According to the GBD, the age-standardized death rate attributable to aortic aneurysm in 2010 was 3.4 per 100000 (95% CI, 2.5–4.8), with a 27% median decrease since 1990. The YLL because of aortic aneurysms was 57.4 (95% CI, 43.8–80.4), with a 29% median decrease since 1990.
- The prevalence of AAAs that are 2.9 to 4.9 cm in diameter ranges from 1.3% in men 45 to 54 years of age to 12.5% in men 75 to 84 years of age. For women, the prevalence ranges from 0% in the youngest to 5.2% in the oldest age groups.
- A meta-analysis of 15475 individuals from 18 studies on small AAAs (3.0–5.4 cm) demonstrated that mean aneurysm growth rate was 2.21 mm per year and was independent of age and sex. Growth rates were higher in smokers (by 0.35 mm/y) and lower in patients with DM (by 0.51 mm/y).
- Rupture rates range from 0.71 to 11.03 per 1000 person-years, with higher rupture rates in smokers (pooled HR,
After multivariable adjustment, Medicare patients who underwent open AAA repair had a higher risk of all-cause mortality (HR, 1.24; 95% CI, 1.05–1.47) and AAA-related mortality (HR, 4.37; 95% CI, 2.51–7.66) at 1 year than patients who underwent endovascular repair.46

References

January 27, 2015

Table 21-1. Pooled Prevalence of Valvular Heart Disease From CARDIA, ARIC, and CHS Cohorts

<table>
<thead>
<tr>
<th>Age, y</th>
<th>Frequency Adjusted to 2000 US Adult Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Participants, n</td>
</tr>
<tr>
<td></td>
<td>18–44</td>
</tr>
<tr>
<td></td>
<td>45–54</td>
</tr>
<tr>
<td></td>
<td>55–64</td>
</tr>
<tr>
<td></td>
<td>65–74</td>
</tr>
<tr>
<td></td>
<td>≥75</td>
</tr>
<tr>
<td></td>
<td>…</td>
</tr>
</tbody>
</table>

Values are n (%) unless otherwise indicated.

ARIC indicates Atherosclerosis Risk in Communities study; CARDIA, Coronary Artery Risk Development in Young Adults; CHS, Cardiovascular Health Study; CI, confidence interval; and ellipses (…), not applicable.

Reprinted from *The Lancet*, Nkomo et al.\(^1\) with permission from Elsevier. Copyright © 2006, Elsevier Ltd.

Table 21-2. Rheumatic Fever/Rheumatic Heart Disease

<table>
<thead>
<tr>
<th>Population Group</th>
<th>Mortality, 2011: All Ages*</th>
<th>Hospital Discharges, 2010: All Ages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes</td>
<td>3105</td>
<td>20000</td>
</tr>
<tr>
<td>Males</td>
<td>997 (32.1%)†</td>
<td>5000</td>
</tr>
<tr>
<td>Females</td>
<td>2108 (67.9%)†</td>
<td>15000</td>
</tr>
<tr>
<td>White males</td>
<td>879</td>
<td>...</td>
</tr>
<tr>
<td>White females</td>
<td>1868</td>
<td>...</td>
</tr>
<tr>
<td>Black males</td>
<td>84</td>
<td>...</td>
</tr>
<tr>
<td>Black females</td>
<td>168</td>
<td>...</td>
</tr>
<tr>
<td>Asian or Pacific Islander</td>
<td>83†</td>
<td>...</td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>23</td>
<td>...</td>
</tr>
</tbody>
</table>

Ellipses (…) indicate data not available.

*Mortality data include Hispanics. Death rates for American Indian or Alaska Native, and Asian and Pacific Islander people should be interpreted with caution because of inconsistencies in reporting race on the death certificate compared with censuses, surveys, and birth certificates. Studies have shown underreporting on death certificates of American Indian or Alaska Native, Asian and Pacific Islander, and Hispanic decedents, as well as undercounts of these groups in censuses.

†These percentages represent the portion of total mortality that is for males vs females.

‡Includes Chinese, Filipino, Hawaiian, Japanese, and Other Asian or Pacific Islander.

Sources: Mortality: Centers for Disease Control and Prevention/National Center for Health Statistics, 2011 Mortality Multiple Cause-of-Death–United States; data represent underlying cause of death only. Hospital discharges: National Hospital Discharge Survey, National Center for Health Statistics, and National Heart, Lung, and Blood Institute; data include those inpatients discharged alive, dead, or of unknown status.
Chart 21-1. Rheumatic heart disease prevalence trends per 1000 people for each World Health Organization region: A, The Americas; B, Europe; C, Africa; D, Eastern Mediterranean; E, Western Pacific; and F, Southeast Asia. Reprinted from Seckeler and Hoke. Copyright © 2011, Seckeler and Hoke.
22. Peripheral Artery Disease

ICD-9: 440.20 to 440.24, 440.30 to 440.32, 440.4, 440.9, 443.9, 445.02; ICD-10: I70.2, I70.9, I73.9, I74.3, I74.4. See Table 22-1 and Charts 22-1 through 22-3.

Prevalence and Incidence

(See Table 22-1 and Charts 22-1 and 22-2.)

- PAD affects ≈8.5 million Americans aged ≥40 years and is associated with significant morbidity and mortality.1
- The age-standardized prevalence rate of PAD per 100,000 in 2010 was 185.6 (95% CI, 150.3–226.1), with minimal change (median percent change, 0.19% [95% CI, −24.1% to 31.6%]) since 1990. The age-standardized DALY rate of PAD per 100,000 in 2010 was 23.9 (95% CI, 15.7–38.3), with a median change of 24.9% since 1990.2
- The highest prevalence of PAD has been observed among elderly people, non-Hispanic blacks, and women. In a multivariable age-, sex-, and race/ethnicity-adjusted regression model, hypertension, DM, CKD, and smoking were associated with incident PAD (P ≤0.05 for each).3,4
- A 2003 to 2008 sample of US national insurance claims of adults aged ≥40 years demonstrated that 263,270 eligible individuals had a PAD diagnosis, with an annual incidence and prevalence of 2.76% (95% CI, 2.75%–2.77%) and 12.29% (95% CI, 12.8%–12.31%), respectively.5

Mortality

(See Table 22-1.)

- In 2011, PAD any-mention mortality was 62,183 (29,237 males and 32,946 females). PAD was the underlying cause in 13,484 of those deaths in 2011.10 Table 22-1 shows the numbers of these deaths that were coded for PAD as the underlying cause.
- The 2011 overall any-mention age-adjusted death rate for PAD was 18.1 per 100,000. Any-mention death rates in males were 21.6 for whites, 24.7 for blacks, 8.8 for Asians or Pacific Islanders, and 16.7 for American Indians or Alaska Natives. In females, rates were 15.7 for whites, 18.3 for blacks, 6.9 for Asians or Pacific Islanders, and 13.0 for American Indians or Alaska Natives.10
- The number of any-mention deaths attributable to PAD was higher in 2001 (93,444) than in 2011 (62,183; NCHS, AHA).10,11
- Data from the GBD project suggest that the age-standardized death rate attributable to PAD was 1.7 (95% CI, 1.0–2.9) per 100,000, with a 42% median increase since 1990. The YLL because of PAD was 21.2 (95% CI, 13.4–35.9), with a 29% median increase since 1990.2
- A 2008 meta-analysis of 24,955 men and 23,339 women demonstrated that the association of the ABI with mortality has a reverse J-shaped distribution in which participants with an ABI of 1.1 to 1.40 are at lowest risk for mortality. Low ABI (<0.9) carried a 3-fold (RR, 3.33; 95% CI, 2.74–4.06) risk of all-cause death compared with men with normal ABI (1.11–1.40) and a similar risk in women (RR, 2.71; 95% CI, 2.03–3.62).12
- Among 508 patients (449 men) identified from 2 vascular laboratories in San Diego, CA, a decline in ABI of >0.15 within a 10-year period was associated with a subsequent increased risk of all-cause mortality (RR, 2.4; 95% CI, 1.2–4.8) and CVD mortality (RR, 2.8; 95% CI, 1.3–6.0) at 3 years’ follow-up.13
- Among 440 patients with PAD, male sex and smoking were more associated with aortoiliac (proximal) disease than with infralimb (distal) disease. In addition, aortoiliac disease was associated with an increased risk of mortality or cardiovascular events compared with infralimb disease (adjusted HR, 3.28; 95% CI, 1.87–5.75).14

Risk Factors

- The risk factors for PAD are similar but not identical to those for CHD. DM and cigarette smoking are stronger risk factors for PAD than for CHD.15 ORs for associations of DM and smoking with symptomatic PAD are ≥3.0 to 4.0. Most studies suggest that the prevalence of PAD is similar in men and women.16

Abbreviations Used in Chapter 22

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI</td>
<td>ankle brachial index</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>Amer.</td>
<td>American</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CKD</td>
<td>chronic kidney disease</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DALY</td>
<td>disability-adjusted life-year</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>ED</td>
<td>emergency department</td>
</tr>
<tr>
<td>GBD</td>
<td>Global Burden of Diseases, Injuries, and Risk Factors Study</td>
</tr>
<tr>
<td>HR</td>
<td>hazard ratio</td>
</tr>
<tr>
<td>ICD-9</td>
<td>International Classification of Diseases, 9th Revision</td>
</tr>
<tr>
<td>ICD-10</td>
<td>International Classification of Diseases, 10th Revision</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>NCHS</td>
<td>National Center for Health Statistics</td>
</tr>
<tr>
<td>NH</td>
<td>non-Hispanic</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NHAMCS</td>
<td>National Hospital Ambulatory Medical Care Survey</td>
</tr>
<tr>
<td>NHDS</td>
<td>National Hospital Discharge Survey</td>
</tr>
<tr>
<td>NHLBI</td>
<td>National Heart, Lung, and Blood Institute</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PA</td>
<td>physical activity</td>
</tr>
<tr>
<td>PAD</td>
<td>peripheral artery disease</td>
</tr>
<tr>
<td>REACH</td>
<td>Reduction of Atherothrombosis for Continued Health</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
<tr>
<td>YLL</td>
<td>years of life lost</td>
</tr>
</tbody>
</table>
Pooled data from 11 studies in 6 countries found that PAD (defined by ABI ≤0.9) is a marker for systemic atherosclerotic disease. The pooled age-, sex-, risk factor-, and CVD-adjusted RR for all-cause death was 1.60 (95% CI, 1.32–1.95), the RR for cardiovascular mortality was 1.96 (95% CI, 1.46–2.64), the RR for CHD was 1.45 (95% CI, 1.08–1.93), and the RR for stroke was 1.35 (95% CI, 1.10–1.65).17

Cigarette smoking, DM, hypertension, and hypercholesterolemia, in that order, were important risk factors in high-income and low-income or middle-income countries.18

A study of 3.3 million people in the United States 40 to 99 years of age showed that risk factor burden is associated with increased prevalence of PAD, and there is a graded association between the number of risk factor and the prevalence of PAD.10

When the ABI was used to identify PAD, hypertension in pregnancy was found to be an independent risk factor for PAD decades after pregnancy, after adjustment for demographics and traditional CVD risk factors.20

Global Burden of PAD
(See Chart 22-3.)

A systematic study of 34 studies reported that globally, 202 million people were living with PAD, and during the preceding decade, the number of individuals with PAD increased by ≈29% in the low-income or middle-income countries and by 13% in high-income countries.18

Awareness and Aftermath

A cross-sectional, population-based telephone survey of >2500 adults ≥50 years of age, with oversampling of blacks and Hispanics, found that 26% expressed familiarity with PAD. Of these, half were not aware that DM and smoking increase the risk of PAD. One in 4 knew that PAD is associated with increased risk of MI and stroke, and only 14% were aware that PAD could lead to amputation. All knowledge domains were lower in individuals with lower income and education levels.31

People with PAD have impaired function and quality of life. This is true even for people who do not report leg symptoms. Furthermore, patients with PAD, including those who are asymptomatic, experience a significant decline in lower-extremity functioning over time.22–24

Among patients with established PAD, higher PA levels during daily life are associated with better overall survival rate, a lower risk of death because of CVD, and slower rates of functional decline.25–26 In addition, better 6-minute walk performance and faster walking speed are associated with lower rates of all-cause mortality, cardiovascular mortality, and mobility loss.22,28

From 2000 to 2008, the overall use of lower-extremity amputation decreased significantly during the study period, from 7258 to 5790 per 100 000 Medicare beneficiaries with PAD. There was significant geographic variation in the rate of lower-extremity amputation, from 8400 amputations per 100 000 patients with PAD in the East South Central region to 5500 amputations per 100 000 patients with PAD in the Mountain region. After adjustment for clustering at the US Census Bureau level, geographic variation in lower-extremity amputations remained. Lower-extremity amputation was performed more often in the East South Central region (adjusted OR, 1.152; 95% CI, 1.131–1.174; P < 0.001) and West South Central region (adjusted OR, 1.115; 95% CI, 1.097–1.133; P < 0.001) and less often in the Middle Atlantic region (OR, 0.833; 95% CI, 0.820–0.847; P < 0.001) than in the South Atlantic region.29

A 2003 to 2008 sample of US national insurance claims of adults >40 years of age demonstrated that 44 431 patients had a diagnosis of critical limb ischemia over the study period, with an annual incidence and prevalence of 0.47% (95% CI, 0.46%–0.47%) and 1.90% (95% CI, 1.89%–1.91%), respectively.5

Interventions

Data from the REACH registry of 8273 PAD participants suggest that only 70% of PAD patients receive lipid-lowering therapy and only 82% receive antiplatelet therapy for secondary CVD prevention.30

A 2011 systematic review evaluated lower-extremity aerobic exercise against usual care and demonstrated a range of benefits, including the following31:

—Increased claudication time by 71 seconds (79%) to 918 seconds (422%)
—Increased claudication distance by 15 m (5.6%) to 232 m (200%)
—Increased walking distance/time by 67% to 101% after 40 minutes of walking 2 to 3 times per week

In a study that randomized patients with PAD to 3 groups (optimal medical care, supervised exercise training, and iliac artery stent placement), supervised exercise resulted in superior treadmill walking distance compared with stenting. Results in the exercise group and stent group were superior to optimal medical care alone.32

In-hospital mortality was higher in women regardless of disease severity or procedure performed, even after adjustment for age and baseline comorbidities: 0.5% versus 0.2% after percutaneous transluminal angioplasty or stenting for intermittent claudication; 1.0% versus 0.7% after open surgery for intermittent claudication; 2.3% versus 1.6% after percutaneous transluminal angioplasty or stenting for critical limb ischemia; and 2.7% versus 2.2% after open surgery for critical limb ischemia (P < 0.01 for all comparisons).33

Among 186 338 older Medicare PAD patients undergoing major lower-extremity amputation, mortality was found to be 48.3% at 1 year.34

Hospital Discharges
(See Table 22-1.)

Hospital discharges for PAD slightly increased from 2000 to 2010, with first-listed discharges of 135 000 and 146 000, respectively (unreliable estimate, NHDS, NHLBI tabulation).35

In 2010, there were 1 539 000 physician office visits with a primary diagnosis of PAD.35 In 2010, there were 20 000 ED visits and 109 000 outpatient department visits for PAD (NHAMCS, NHLBI tabulation).35
Heart Disease and Stroke Statistics—2015 Update: Chapter 22
e287

References

Table 22-1. Peripheral Artery Disease

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Both sexes</td>
<td>≥6.8 Million</td>
<td>13,484</td>
<td>146,000</td>
</tr>
<tr>
<td>Males</td>
<td>...</td>
<td>5634</td>
<td>84,000</td>
</tr>
<tr>
<td></td>
<td>(41.8%)†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>...</td>
<td>7,850 (58.2%)†</td>
<td>62,000</td>
</tr>
<tr>
<td>White males</td>
<td>...</td>
<td>4,933</td>
<td>...</td>
</tr>
<tr>
<td>White females</td>
<td>...</td>
<td>6,898</td>
<td>...</td>
</tr>
<tr>
<td>Black males</td>
<td>...</td>
<td>591</td>
<td>...</td>
</tr>
<tr>
<td>Black females</td>
<td>...</td>
<td>841</td>
<td>...</td>
</tr>
<tr>
<td>Asian or Pacific Islander</td>
<td>...</td>
<td>165‡</td>
<td>...</td>
</tr>
<tr>
<td>American Indian/Alaska Native</td>
<td>...</td>
<td>56</td>
<td>...</td>
</tr>
</tbody>
</table>

Ellipses (…) indicate data not available.

*Mortality data for the white, black, Asian or Pacific Islander, and American Indian or Alaska Native populations include deaths among people of Hispanic and non-Hispanic origin. Death rates for Hispanic, American Indian or Alaska Native, and Asian and Pacific Islander people should be interpreted with caution because of inconsistencies in reporting Hispanic origin or race on the death certificate compared with censuses, surveys, and birth certificates. Studies have shown underreporting on death certificates of American Indian or Alaska Native, Asian and Pacific Islander, and Hispanic decedents, as well as undercounts of these groups in censuses.†These percentages represent the portion of total mortality attributable to heart failure that is for males vs females.‡Includes Chinese, Filipino, Hawaiian, Japanese, and Other Asian or Pacific Islander.

Sources: Prevalence: Data derived from Allison et al.¹ Prevalence of peripheral artery disease is based on an ankle-brachial index <0.9 or a previous revascularization for peripheral artery disease. Mortality: Centers for Disease Control and Prevention/National Center for Health Statistics, 2011 Mortality Multiple Cause-of-Death—United States.
Chart 22-1. Estimates of prevalence of peripheral artery disease in males by age and ethnicity. Amer. indicates American; and NH, non-Hispanic. Data derived from Allison et al.1

Chart 22-2. Estimates of prevalence of peripheral artery disease in females by age and ethnicity. Amer. indicates American; and NH, non-Hispanic. Data derived from Allison et al.1
Chart 22-3. Age-specific prevalence estimates for peripheral artery disease by sex and country income level. Data derived from Fowkes et al.18
23. Quality of Care

The Institute of Medicine defines quality of care as “the degree to which health services for individuals and populations increase the likelihood of desired health outcomes and are consistent with current professional knowledge.” The Institute of Medicine has defined 6 specific domains for improving health care, including care that is safe, effective, patient-centered, timely, efficient, and equitable.

In the following sections, data on quality of care will be presented based on the 6 domains of quality as defined by the Institute of Medicine. This is intended to highlight current care and to stimulate efforts to improve the quality of cardiovascular care nationally. Where possible, data are reported from recently published literature or standardized quality indicators from quality-improvement registries (ie, those consistent with the methods for quality performance measures endorsed by the ACC and the AHA). Additional data related to quality of care, such as adherence to ACC/AHA clinical practice guidelines, are also included to provide a spectrum of quality-of-care data. The data selected are meant to provide examples of the current quality of care as reflected by the Institute of Medicine domains and are not meant to be comprehensive given the sheer number of publications yearly.

Safety

The safety domain has been defined as avoiding injuries to patients from the care that is intended to help them. The following are several recent publications that have focused on safety issues related to cardiac care:

Abbreviations Used in Chapter 23

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>American College of Cardiology</td>
</tr>
<tr>
<td>ACEI</td>
<td>angiotensin-converting enzyme inhibitor</td>
</tr>
<tr>
<td>ACS</td>
<td>acute coronary syndrome</td>
</tr>
<tr>
<td>ACTION</td>
<td>Acute Coronary Treatment and Intervention Outcomes Network</td>
</tr>
<tr>
<td>AED</td>
<td>automated external defibrillator</td>
</tr>
<tr>
<td>AF</td>
<td>atrial fibrillation</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>AMI</td>
<td>acute myocardial infarction</td>
</tr>
<tr>
<td>ARB</td>
<td>angiotensin receptor blocker</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>CABG</td>
<td>coronary artery bypass grafting</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery disease</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CHF</td>
<td>congestive heart failure</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>COURAGE</td>
<td>Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation</td>
</tr>
<tr>
<td>CPR</td>
<td>cardiopulmonary resuscitation</td>
</tr>
<tr>
<td>CRUSADE</td>
<td>Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the ACC/AHA Guidelines</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DES</td>
<td>drug-eluting stent</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>DNR</td>
<td>do not resuscitate</td>
</tr>
<tr>
<td>DVT</td>
<td>deep vein thrombosis</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>EF</td>
<td>ejection fraction</td>
</tr>
<tr>
<td>EMS</td>
<td>emergency medical services</td>
</tr>
<tr>
<td>ETco₂</td>
<td>end-tidal carbon dioxide</td>
</tr>
<tr>
<td>GBD</td>
<td>Global Burden of Diseases, Injuries, and Risk Factors Study</td>
</tr>
<tr>
<td>GWTG</td>
<td>Get With The Guidelines</td>
</tr>
<tr>
<td>HbA₁c</td>
<td>hemoglobin A₁c (glycosylated hemoglobin)</td>
</tr>
<tr>
<td>HD</td>
<td>heart disease</td>
</tr>
<tr>
<td>HF</td>
<td>heart failure</td>
</tr>
<tr>
<td>HIQR</td>
<td>Hospital Inpatient Quality Reporting</td>
</tr>
<tr>
<td>HMO</td>
<td>health maintenance organization</td>
</tr>
<tr>
<td>HR</td>
<td>hazard ratio</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>LDL</td>
<td>low-density lipoprotein</td>
</tr>
<tr>
<td>LV</td>
<td>left ventricular</td>
</tr>
<tr>
<td>LVEF</td>
<td>left ventricular ejection fraction</td>
</tr>
<tr>
<td>LVSD</td>
<td>left ventricular systolic dysfunction</td>
</tr>
<tr>
<td>MD</td>
<td>medical doctor</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>N/A</td>
<td>not available or not applicable</td>
</tr>
<tr>
<td>NCDR</td>
<td>National Cardiovascular Data Registry</td>
</tr>
<tr>
<td>NM</td>
<td>not measured</td>
</tr>
<tr>
<td>NSTEMI</td>
<td>non–ST-segment–elevation myocardial infarction</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PCI</td>
<td>percutaneous coronary intervention</td>
</tr>
<tr>
<td>PINNACLE</td>
<td>Practice Innovation and Clinical Excellence</td>
</tr>
<tr>
<td>PPO</td>
<td>preferred provider organization</td>
</tr>
<tr>
<td>ROC</td>
<td>Resuscitation Outcomes Consortium</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
<tr>
<td>SBP</td>
<td>systolic blood pressure</td>
</tr>
<tr>
<td>SCD-HeFT</td>
<td>Sudden Cardiac Death in Heart Failure Trial</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>STEMI</td>
<td>ST-segment–elevation myocardial infarction</td>
</tr>
<tr>
<td>STS</td>
<td>Society of Thoracic Surgeons</td>
</tr>
<tr>
<td>TAVR</td>
<td>transcatheter aortic valve replacement</td>
</tr>
<tr>
<td>TIA</td>
<td>transient ischemic stroke</td>
</tr>
<tr>
<td>tPA</td>
<td>tissue-type plasminogen activator</td>
</tr>
<tr>
<td>TVR</td>
<td>target-vessel revascularization</td>
</tr>
<tr>
<td>UFH</td>
<td>unfractionated heparin</td>
</tr>
<tr>
<td>VHA</td>
<td>Veterans Health Administration</td>
</tr>
<tr>
<td>VT/VF</td>
<td>ventricular tachycardia/ventricular fibrillation</td>
</tr>
<tr>
<td>YLL</td>
<td>years of life lost</td>
</tr>
</tbody>
</table>
In a small, single-center study conducted over a 2-month period in the cardiac care unit of a tertiary center, Rahim et al reported that inappropriate use of heparin (9% of 194 patients), of which bleeding (27%) was the most common preventable iatrogenic adverse event.

Using the NCDR CathPCI Registry, Tsai et al found that almost one fourth of dialysed patients undergoing PCI received inappropriate antithrombotic agents, specifically enoxaparin, eptifibatide, or both. Patients who received a contraindicated antithrombotic agent had an increased risk of in-hospital bleeding (OR, 1.63; 95% CI, 1.35–1.98) and a trend toward increased mortality (OR, 1.15; 95% CI, 0.97–1.36).

Using data from the NCDR PINNACLE registry, Hira and colleagues reported that among 27,533 patients receiving prasugrel, 13.9% (3824) did so for an inappropriate indication (history of TIA or stroke) and an additional 4.4% (1210) did so for a nonrecommended indication (age >75 years without history of DM or MI). Both inappropriate and nonrecommended prasugrel use showed wide facility-level variation (median rate ratio of 2.89 [95% CI, 2.75–3.03] and 2.29 [95% CI, 2.05–2.51], respectively).

In a random sample of medical and surgical long-term care adult patients in Massachusetts hospitals, López et al assessed the association between disclosure of an adverse event and patients’ perception of quality of care. Overall, only 40% of adverse events were disclosed. Higher quality ratings were associated with disclosure of an adverse event. Conversely, lower patient perception of quality of care was associated with events that were preventable and with events that caused discomfort.

Using Medicare Patient Safety Monitoring System data abstracted from medical records on 21 adverse events in 61,523 patients hospitalized between 2005 and 2011 for AMI, CHF, pneumonia, or conditions requiring surgery, Wang et al reported that among patients with AMI, the rate of occurrence of adverse events declined from 5.0% to 3.7% (difference, 1.3%; 95% CI, 0.7%–1.9%). Among patients with CHF, the rate of occurrence of adverse events declined from 3.7% to 2.7% (difference, 1.0%; 95% CI, 0.5%–1.4%). Patients with pneumonia and those with conditions requiring surgery had no significant declines in adverse event rates.

Effectiveness
(See Tables 23-1 through 23-10.)

Effective care has been defined as providing services based on scientific knowledge to all who could benefit and refraining from providing services to those not likely to benefit. It also encompasses monitoring results of the care provided and using them to improve care for all patients.

Weintraub et al reported results from a comparative effectiveness study of PCI versus CABG using observational data among patients ≥65 years of age with 2- or 3-vessel CAD without AMI. Their results showed that at 1 year, there was no significant difference in adjusted mortality between groups (6.24% in the CABG group versus 6.55% in the PCI group). At 4 years, there was lower mortality in the CABG group than in the PCI group (16.4% versus 20.8%; RR, 0.79; 95% CI, 0.76–0.82).

Choudhry et al reported results of a cluster randomized trial that evaluated the impact of eliminating out-of-pocket costs (ie, full prescription coverage) on medication adherence and cardiovascular outcomes in patients discharged after MI. Compared with the usual prescription coverage, rates of adherence to statins, β-blockers, ACEIs, and ARBs were on average 4% to 6% higher in the full-coverage group. There was no significant difference in the primary outcome (first major vascular event or revascularization) between the 2 groups (17.6 per 100 person-years in the full-coverage group versus 18.8 in the usual-coverage group; HR, 0.93; 95% CI, 0.82–1.04). The rates of secondary outcomes of total major vascular events or revascularization were significantly reduced in the full-coverage group (21.5 versus 23.3; HR, 0.89; 95% CI, 0.90–0.99), as was the rate of the first major vascular event (11 versus 12.8; HR, 0.86; 95% CI, 0.74–0.99). The elimination of copayments did not increase total spending, although patient costs were reduced for drugs and other services.

Using data from the ACTION Registry among 202,213 patients discharged after AMI from 526 US participating sites between January 2007 and March 2011, Rao and colleagues showed that only 14.5% of the eligible patients without documented contraindication received aldosterone antagonists. Fewer than 2% of the participating sites used aldosterone antagonists in ≥50% of eligible patients.

Data from the ACC PINNACLE outpatient registry of patients with CAD (n=38,775) showed that 77.8% of the patients (30,160) were prescribed statins, 5.3% (2042) were treated only with nonstatin lipid-lowering medications, and 17% (6573) were not taking any lipid-lowering medication. Lack of medical insurance (RR, 0.94; 95% CI, 0.89–1.00) was associated with a lower likelihood of statin treatment, whereas male sex (RR, 1.10; 95% CI, 1.07–1.13), coexisting hypertension (RR, 1.07; 95% CI, 1.02–1.12), prior CABG (RR, 1.09; 95% CI, 1.05–1.14), and prior PCI (RR, 1.11; 95% CI, 1.06–1.16) were associated with a higher likelihood of statin treatment.

Another publication from the same registry showed that among 156,145 CAD patients in 58 practices, just over two thirds (n=103,830, 66.5%) of patients were prescribed the optimal combination of medications (β-blockers, ACEIs/ARBs, statins) for which they were eligible. After adjustment for patient factors, the practice median rate ratio for prescription was 1.25 (95% CI, 1.20–1.32), which indicates a 25% likelihood that any 2 practices would differ in treating identical CAD patients.

Heisler et al reported results of a prospective, multisite, cluster randomized trial that evaluated the effectiveness of a pharmacist-led intervention that targeted medication management and adherence counseling to improve BP control in patients with DM in 2 high-performing integrated healthcare systems. Although the mean SBP of patients in the intervention arm was 2.4 mm Hg lower (95% CI, –3.4 to –1.5 mm Hg; P<0.001) immediately after the intervention than that of patients in the control arm, the mean SBP decrease from 6 months before to 6 months after the intervention (primary outcome) was similar in magnitude (+9 mm Hg) in both arms.

In 2013, investigators from the GBD 2010 study described their findings of a systematic analysis of disease burden, injuries, and leading risk factors in the United States and compared them with those of 34 countries in the
A study of 458 hospitals participating in the STS National Cardiac Database showed that an intervention of receiving quality-improvement educational material designed to influence the prescription rates of 4 medication classes (aspirin, β-blockers, lipid-lowering therapy, and ACEIs) after CABG discharge in addition to site-specific feedback reports led to a significant improvement in adherence for all 4 secondary prevention medications at the intervention sites compared with the control sites. They reported that the US life expectancy for both sexes combined increased from 75.2 years in 1990 to 78.2 years in 2010. During the same time period, healthy life expectancy (ie, the number of years that a person at a given age can expect to live in good health, taking into account mortality and disability) increased from 65.8 to 68.1 years in the United States. Despite declines in the YLLs because of premature mortality secondary to ischemic HD and stroke, 15.9% of YLLs were related to ischemic HD and 4.3% of YLLs were related to stroke in the United States in 2010, which highlights the continued dominance of CVD in causing premature death. Despite these absolute improvements, the US rank among 34 countries in the Organisation for Economic Co-operation and Development changed from 18th to 27th for the age-standardized death rate, from 20th to 27th for life expectancy at birth, from 14th to 26th for healthy life expectancy, and from 23rd to 28th for the age-standardized YLL. These results indicate that improvements in population health in the United States have not kept pace with advances in population health in other wealthy nations.

- Outcome measures of 30-day mortality and 30-day readmission after hospitalization for AMI or HF have been developed that adjust for patient mix (eg, comorbidities) so that comparisons can be made across hospitals. According to national Medicare data from July 2009 through June 2012

- The median (10th, 90th percentile) hospital risk-standardized mortality rate was 15.1% (13.3%, 16.9%) for AMI and 11.7% (9.9%, 13.8%) for HF.
- The median risk-standardized readmission rate was 18.3% (16.9%, 19.8%) for AMI and 23.0% (21.0%, 25.4%) for HF.
- Distinct regional patterns were seen for both measures and both conditions.
- The median risk-standardized mortality rate for AMI admissions declined by 0.7% from 15.3% in 2009 to 2010 and 2010 to 2011 to 14.6% in 2011 to 2012.
- The median risk-standardized mortality rate for HF admissions increased from 11.4% in 2009 to 2010 to 11.9% in 2010 to 2011 and decreased to 11.7% in 2011 to 2012.
- The median risk-standardized readmission rate for AMI declined from 18.6% in 2009 to 2010 to 18.5% in 2010 to 2011 and 17.7% in 2011 to 2012.
- The median risk-standardized readmission rate for HF declined from 23.3% in 2009 to 2010 to 23.2% in 2010 to 2011 and 22.5% in 2011 to 2012.

- A study of 30,947 patients admitted with ischemic strokes showed that admission to a designated stroke center compared with admission to a non-designated hospital was associated with more frequent use of thrombolytic therapy (4.8% versus 1.7%, P<0.001) and lower 30-day all-cause mortality (10.1% versus 12.5%, P<0.001).
- A study of 458 hospitals participating in the STS National Cardiac Database showed that an intervention of receiving quality-improvement educational material designed to influence the prescription rates of 4 medication classes (aspirin, β-blockers, lipid-lowering therapy, and ACEIs) after CABG discharge in addition to site-specific feedback reports led to a significant improvement in adherence for all 4 secondary prevention medications at the intervention sites compared with the control sites.

- A study from the PINNACLE registry showed that uninsured patients with CAD were 9%, 12%, and 6% less likely to receive treatment with a β-blocker, an ACEI/ARB, and lipid-lowering therapy, respectively, than privately insured CAD patients, and CAD patients with public insurance were 9% less likely to be prescribed ACEI/ARB therapy. Most of the differences were attenuated after adjustment for the site providing care.

- In 2013, a transcatheter valve therapy registry was created through a partnership between the STS and the ACC. The objective of this registry is to provide an “objective, comprehensive, and scientifically based resource to improve the quality of patient care, to monitor the safety and effectiveness of TVT [transcatheter valve therapy] devices, to serve as an analytic resource for TVT [transcatheter valve therapy] research, and to enhance communication among key stakeholders.”

- Quality-of-care measures for patients who had in-hospital cardiac arrest and were enrolled in the ROC cardiac arrest registry in 2013 (ROC Investigators, unpublished data, September 1, 2014) are given in Table 23-7.

- Inpatient ACS, HF, and stroke quality-of-care measures data, including trends in care data, where available from national registries, are given in Tables 22-1 through 22-6.

- Selected outpatient quality-of-care measures from the National Committee for Quality Assurance for 2012 appear in Table 23-8.

- Quality-of-care measures for patients who had out-of-hospital cardiac arrest and were enrolled in the AHA’s GWTG-Resuscitation quality-improvement project in 2013 (GWGTG-Resuscitation Investigators, unpublished data, September 1, 2014) are given in Table 23-9.

Patient-Centered Care

Patient-centered care has been defined as the provision of care that is respectful of and responsive to individual patient preferences, needs, and values and that ensures that patient values guide all clinical decisions. Dimensions of patient-centered care include the following: (1) Respect for patients’ values, preferences, and expressed needs; (2) coordination and integration of care; (3) information, communication, and education; (4) physical comfort; (5) emotional support; and (6) involvement of family and friends. Studies that focused on some of these aspects of patient-centered care are highlighted below.

- The COURAGE trial, which investigated a strategy of PCI plus optimal medical therapy versus optimal medical therapy alone, demonstrated that both groups had significant improvement in health status during follow-up. By 3 months, health status scores had increased in the PCI group compared with the medical therapy group, to 76±24 versus 72±23 for physical limitation (P=0.004), 77±28 versus 73±27 for angina stability (P=0.002), 85±22 versus 80±23
A randomized trial tested a multifaceted intervention to improve adherence to 4 cardioprotective medications (clopidogrel, statins, ACEIs/ARBs, and β-blockers) after ACS. A total of 253 patients were randomized to either a multifaceted intervention (including pharmacist-led medication reconciliation and tailoring; patient education; collaborative care between a pharmacist and a patient’s primary care provider and/or cardiologist; and 2 types of voice messaging for patient education and medication refill reminder) or to usual care. After a 1-year period, 89.3% of the patients in the intervention group were adherent to the 4 cardioprotective medications (mean proportion of days covered >0.8) compared with 73.9% in the usual care group (P=0.003). A greater proportion of patients in the intervention arm than in the usual care group were adherent to clopidogrel (86.8% versus 70.7%, P=0.03), statins (93.2% versus 71.3%, P<0.001), and ACEIs/ARBs (93.1% versus 81.7%, P=0.03) but not β-blockers (88.1% versus 84.8%, P=0.59). There were no statistically significant differences in the proportion of patients who achieved BP or LDL cholesterol level goals.25

Reynolds et al26 reported results on health-related quality of life after TAVR in inoperable patients with severe aortic stenosis compared with those receiving standard therapy. Health-related quality of life was assessed at baseline and at 1, 6, and 12 months with the Kansas City Cardiomyopathy Questionnaire and the 12-item Short Form-12 General Health Survey. Although the Kansas City Cardiomyopathy Questionnaire summary scores improved in both groups, the extent of improvement was greater in the TAVR group than in the standard-care group at 1 month (mean between-group difference, 13 points; 95% CI, 8–19), with larger benefits at 6 months (mean difference, 21 points; 95% CI, 15–27 points) and 12 months (mean difference, 26 points; 95% CI, 19–33). At 12 months, TAVR patients also reported higher physical and mental health scores on the 12-item Short Form-12 General Health Survey, with a mean difference of 5.7 and 6.4 points, respectively (P<0.001 for both comparisons) compared with standard care.26

Timely Care
(See Table 23-10.)

The timely care domain relates to reducing waits and sometimes harmful delays for both those who receive and those who give care. Timeliness is an important characteristic of any service and is a legitimate and valued focus of improvement in health care and other industries.

Data from the CRUSADE national quality-improvement initiative showed that median delay from onset of symptoms to hospital presentation for patients presenting with NSTEMI was 2.6 hours and was significantly associated with in-hospital mortality but did not change over time from 2001 to 2006.27

Among patients who underwent primary PCI for STEMI and were enrolled in the CathPCI Registry (n=96738) in a period that coincided with national efforts to reduce door-to-balloon times, median door-to-balloon times declined from 83 minutes in 12 months from July 2005 to June 2006 to 67 minutes in 12 months from July 2008 to June 2009. This improvement in processes of care was not associated with improved outcome (risk-adjusted in-hospital mortality 5.0% in 2005–2006 versus 4.7% in 2008–2009, P=0.34).28

Using data between 2005 and 2007 from the NCDR CathPCI Registry, Wang et al29 demonstrated that among STEMI patients, only 10% of the transfer patients received PCI within 90 minutes (versus 63% for direct-arrival patients; P<0.0001).

for angina frequency (P<0.001), 92±12 versus 90±14 for treatment satisfaction (P<0.001), and 73±22 versus 68±23 for quality of life (P<0.001). The PCI plus optimal medical therapy group had a small but significant incremental benefit compared with the optimal medical therapy group early on, but this benefit disappeared by 36 months.

- In SCD-HeFT,21 a study of a single-lead implantable cardioverter-defibrillator versus amiodarone for moderately symptomatic HF, patients with implantable cardioverter-defibrillators had improvement in quality of life compared with patients who received medical therapy at 3 and 12 months but not at 30 months. Implantable cardioverter-defibrillator shocks in the month preceding a scheduled assessment were associated with a decrease in quality of life in multiple domains. The authors concluded that the presence of a single-lead implantable cardioverter-defibrillator was not associated with any detectably adverse quality of life during 30 months of follow-up.

- Peikes et al22 reported on 15 care-coordination programs as part of a Medicare demonstration project for patients with CHF, CAD, DM, and other conditions. Thirteen of the 15 programs did not show a difference in hospitalization rates, and none of the programs demonstrated net savings. The interventions tested varied significantly, but the majority of the interventions included patient education to improve adherence to medication, diet, exercise, and self-care regimens and improving care coordination through various approaches. These programs had favorable effects on none of the adherence measures and only a few of the many quality-of-care indicators examined. The authors concluded that programs with substantial in-person contact that target moderately to severely ill patients can be cost-neutral and improve some aspects of care.

- Hernandez et al23 showed that patients with outpatient follow-up within 7 days of discharge for an HF hospitalization were less likely to be readmitted within 30 days in the GWTG-HF registry of patients who were ≥65 years of age. The median length of stay was 4 days (interquartile range, 2–6 days), and 21.3% of patients were readmitted within 30 days. At the hospital level, the median percentage of patients who had early follow-up after discharge from the index hospitalization was 38.3% (interquartile range, 32.4%–44.5%).

- Smolderen et al24 assessed whether health insurance status affects decisions to seek care for AMI. Uninsured and insured patients with financial concerns were more likely to delay seeking care during AMI and had prehospital delays of >6 hours (48.6% of uninsured patients and 44.6% of insured patients with financial concerns compared with 39.3% of insured patients without financial concerns). Lack of health insurance and financial concerns about accessing care among those with health insurance were each associated with delays in seeking emergency care for AMI.

- A randomized trial tested a multifaceted intervention to improve adherence to 4 cardioprotective medications (clopidogrel, statins, ACEIs/ARBs, and β-blockers) after ACS. A total of 253 patients were randomized to either a multifaceted intervention (including pharmacist-led medication reconciliation and tailoring; patient education; collaborative care between a pharmacist and a patient’s primary care provider and/or cardiologist; and 2 types of...
Glickman et al10 showed that a year-long implementation of.
standardized protocols as part of a statewide regionalization program was
associated with a significant improvement in median door-in-door-out times among 436
STEMI patients who presented at non-PCI hospitals who required transfer
(before intervention: 97 minutes [interquartile range, 56–160 minutes]; after intervention:
58 minutes [interquartile range, 35–90 minutes]; \(P<0.0001\).

A study31 of 204,591 patients with ischemic and hemorrhagic strokes
submitted to 1563 GTWG-Stroke participating hospitals between April 1, 2003, and June 30, 2010,
showed that 63.7\% of the patients arrived by EMS in the hospital. Older patients, those with
Medicaid and Medicare, and those with severe strokes were more likely to activate EMS.
Conversely, minority race/ethnicity (black, Hispanic, Asian) and living in rural communities
were associated with a lower likelihood of EMS use. EMS transport was independent-
ly associated with an onset-to-door time \(\leq3\) hours, a higher proportion of patients meeting
door-to-imaging time of \(\leq25\) minutes, more patients meeting a door-to-needle
time of \(\leq60\) minutes, and more eligible patients being treated with tPA if onset of symptoms
was \(\leq2\) hours. The authors concluded that although EMS use was associated
with rapid evaluation and treatment of stroke, more than one third of stroke patients fail to use
EMS.

Data on time to reperfusion for STEMI or ischemic stroke are provided from national registries
in Table 23-11.

Efficiency

Efficiency has been defined as avoiding waste, in particular waste of equipment, supplies, ideas,
and energy. In an efficient healthcare system, resources are used to get the best value for
the money spent.

Using data from the NCDR CathPCI registry from 2004 through 2010, Amin et al12
examined the association between risk of TVR and use of DES and the cost-effectiveness
of lower use of DES in patients at low risk of TVR (<10\% TVR risk). The authors showed a marked variation
in physicians’ use of DES (range, 2\%–100\%). Even in groups with low TVR risk, 73.9\% of the patients received
DES. The authors projected that by reducing the use of DES by 50\% in patients at low risk of TVR, US healthcare
costs could be lowered by $205 million, whereas the overall TVR event rate would be increased by
0.5\%.

A study of 35,191 CHD patients from the US Department of Veterans Affairs healthcare system showed that among 27,947
patients with LDL cholesterol levels <100 mg/dL, 9200 (32.9\% of those with LDL cholesterol <100 mg/dL)
received additional lipid assessments without any treatment intensification during 11 months from the index lipid panel.
Even among 13,114 patients with LDL cholesterol <70 mg/dL, repeat lipid testing was performed in 8177 patients (62.4\% of
those with LDL cholesterol <70 mg/dL) during 11 months of follow-up. These results show that redundant lipid testing
is common in patients with CHD.33

Himmelstein et al48 analyzed whether more-computerized hospitals had lower costs of care or administration or better
quality, to address a common belief that computerization improves healthcare quality, reduces costs, and increases
administrative efficiency. They found that hospitals that increased computerization faster had more rapid admin-
istrative cost increases (\(P=0.0001\)); however, higher overall computerization scores correlated weakly with better
quality scores for AMI \((r=0.07, P=0.003)\) but not for HF, pneumonia, or the 3 conditions combined. In multivariate
analyses, more-computerized hospitals had slightly better quality. The authors concluded that hospital computing
might modestly improve process measures of quality but does not reduce administrative or overall costs.

A retrospective cohort study of cases (11,707) submitted to the NCDR ICD (implantable cardioverter-defibrillator)
Registry between January 1, 2006, and June 30, 2009, 25,145 (22.5\%) received non–evidence-based implantable
cardioverter-defibrillator therapy. Patients who received non–evidence-based implantable cardioverter-defibrillator
therapy had a significantly higher risk of in-hospital death (0.57\% versus 0.18\%, \(P<0.001\)) and any postprocedure
complication (3.23\% versus 2.41\%, \(P<0.001\)) than those who received evidence-based implantable cardioverter-
defibrillator therapy.35

In a multicenter study of patients within the NCDR undergoing PCI, Chan et al36 reported results of the appropriate-
ness of PCI for both acute and nonacute indications. Among patients undergoing PCI for acute indications (71.1\% of
the cohort), 98.5\% of the procedures were classified as appropriate, 0.3\% as uncertain, and 1.1\% as inappropri-
ate. Among patients undergoing PCI for nonacute indications (28.9\% of the cohort), 50.4\% of the procedures were
classified as appropriate, 38\% as uncertain, and 11.6\% as inappropriate. There was also substantial variation for inap-
propriate nonacute PCI across hospitals (median hospital rate 10.8\%; interquartile range, 6.0\%–16.7\%).

Equitable Care

(See Tables 23-11 through 23-13.)

Equitable care means the provision of care that does not vary in quality because of personal characteristics such as sex,
ethnicity, geographic location, and socioeconomic status. The aim of equity is to secure the benefits of quality health care for
all the people of the United States. With regard to equity in caregiving, all individuals rightly expect to be treated fairly by
local institutions, including healthcare organizations.

Chan et al37 demonstrated that rates of survival to discharge were lower for black patients (25.2\%) than for white
patients (37.4\%) after in-hospital cardiac arrest. Lower rates of survival to discharge for blacks reflected lower
rates of both successful resuscitation (55.8\% versus 67.4\%) and postresuscitation survival (45.2\% versus 55.5\%).
Adjustment for the hospital site at which patients received care explained a substantial portion of the racial differences
in successful resuscitation (adjusted RR, 0.92; 95\% CI, 0.88–0.96; \(P<0.001\)) and eliminated the racial differences
in postresuscitation survival (adjusted RR, 0.99; 95\% CI, 0.92–1.06; \(P=0.68\)). The authors concluded that much of the racial
difference was associated with the hospital center in which black patients received care.

Kapoor et al38 evaluated 99,058 HF admissions from 244 sites between January 2005 and September 2009. Patients
were grouped on the basis of payer status (private/health
maintenance organization, no insurance, Medicare, or Medicaid. Compared with private/health maintenance organization group, the other 3 groups were less likely to receive evidence-based therapies (β-blockers, implantable cardioverter-defibrillators, anticoagulation for AF, ACEIs, or ARBs) and had longer hospital stays. Higher adjusted rates of in-hospital mortality were also seen in patients with Medicaid (OR, 1.22; 95% CI, 1.06–1.41) and in patients with reduced EF and no insurance (OR, 1.61; 95% CI, 1.15–2.25).

- Cohen et al. demonstrated that among hospitals engaged in a national quality monitoring and improvement program, evidence-based care for AMI appeared to improve over time for patients irrespective of race/ethnicity, and differences in care by race/ethnicity were reduced or eliminated. They analyzed 142,593 patients with AMI (121,528 whites, 10,882 blacks, and 10,183 Hispanics) at 443 hospitals participating in the GWTG-CAD program. Overall, defect-free care was 80.9% for whites, 79.5% for Hispanics (adjusted OR versus whites, 1.00; 95% CI, 0.94–1.06; \(P = 0.94 \)), and 77.7% for blacks (adjusted OR versus whites, 0.93; 95% CI, 0.87–0.98; \(P = 0.01 \)). A significant gap in defect-free care was observed for blacks during the first half of the study but was no longer present during the remainder of the study. Overall, progressive improvements in defect-free care were observed regardless of race/ethnic groups.

- Thomas et al. analyzed data among hospitals that voluntarily participated in the AHA’s GWTG-HF program from January 2005 through December 2008. Relative to white patients, Hispanic and black patients hospitalized with HF were significantly younger (median age 78, 63, and 66 years, respectively) but had lower EFs (mean EF 41.1%, 38.8%, and 35.7%, respectively) with a higher prevalence of DM (40.2%, 55.7%, and 43.8%, respectively) and hypertension (70.6%, 78.4%, and 82.8%, respectively). The provision of guideline-based care was comparable for white, black, and Hispanic patients. Black (1.7%) and Hispanic (2.4%) patients had lower in-hospital mortality than white patients (3.5%). Improvement in adherence to all-or-none HF measures increased annually from year 1 to year 3 for all 3 racial/ethnic groups.

- Al-Khatib et al. analyzed implantable cardioverter-defibrillator use for primary prevention among 11,880 patients with a history of HF, LVEF < 35%, and age > 65 years enrolled in the GWTG-HF registry from January 2005 through December 2009. From 2005 to 2007, overall implantable cardioverter-defibrillator use increased from 30.2% to 42.4% and then remained unchanged in 2008 to 2009. After adjustment for confounders, implantable cardioverter-defibrillator use increased significantly in the overall study population during 2005 to 2007 (OR, 1.28; 95% CI, 1.11–1.48 per year; \(P = 0.0008 \)) and in black women (OR, 1.82; 95% CI, 1.28–2.58 per year; \(P = 0.0008 \)), white women (OR, 1.30; 95% CI, 1.06–1.59 per year; \(P = 0.010 \)), black men (OR, 1.54; 95% CI, 1.19–1.99 per year; \(P = 0.0009 \)), and white men (OR, 1.25; 95% CI, 1.06–1.48 per year; \(P = 0.0072 \)). The increase in implantable cardioverter-defibrillator use was greatest among blacks. They concluded that although previously described racial disparities in the use of implantable cardioverter-defibrillators were no longer present in their study by the end of the study period, a sex difference in their use persisted.

- In 2013, the AHA published an advisory that provided a recommendation on improving bystander CPR in communities with low bystander CPR rates (in the United States, rates ranged from 10%–65%) and the metrics to evaluate the impact of community-based CPR training programs.

References

Hernandez AF, Greiner MA, Fonarow GC, Hamnill BG, Heidenreich PA, Yancy CW, Peterson ED, Curtis LH. Relationship between early physician follow-up and 30-day readmission among Medicare beneficiaries hospitalized for heart failure. JAMA. 2010;303:1716–1722.

Al-Khatib SM, Hellkamp AS, Hernandez AF, Fonarow GC, Thomas KL, Al-Khalidi HR, Heidenreich PA, Hamnill S, Yancy C, Peterson ED; for the Get With the Guidelines Steering Committee and Hospitals. Trends in use of implantable cardioverter-defibrillator therapy among patients hospitalized for heart failure: have the previously observed sex and racial disparities changed over time? Circulation. 2012;125:1094–1101.

Table 23-1. ACS Quality-of-Care Measures, 2013

<table>
<thead>
<tr>
<th>Quality-of-Care Measure</th>
<th>VHA*</th>
<th>National Data From HIQR Program†</th>
<th>ACTION-GWTG STEMI‡</th>
<th>ACTION-GWTG NSTEMI‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin within 24 h of admission</td>
<td>99</td>
<td>99.3</td>
<td>96.6</td>
<td>94.6</td>
</tr>
<tr>
<td>Aspirin at discharge</td>
<td>99</td>
<td>99.2</td>
<td>98.9</td>
<td>98.0</td>
</tr>
<tr>
<td>β-blockers at discharge</td>
<td>99</td>
<td>99.0</td>
<td>97.7</td>
<td>96.7</td>
</tr>
<tr>
<td>Lipid-lowering medication at discharge§</td>
<td>99</td>
<td>98.2</td>
<td>99.1</td>
<td>98.5</td>
</tr>
<tr>
<td>ARB/ACEI at discharge for patients with LVEF <40%</td>
<td>95</td>
<td>97.8</td>
<td>91.8</td>
<td>88.6</td>
</tr>
<tr>
<td>ACEI at discharge for AMI patients</td>
<td>NM</td>
<td>NM</td>
<td>71.5</td>
<td>59.6</td>
</tr>
<tr>
<td>ARB at discharge for AMI patients</td>
<td>NM</td>
<td>NM</td>
<td>9.3</td>
<td>13.3</td>
</tr>
<tr>
<td>Adult smoking cessation advice/counseling</td>
<td>Retired</td>
<td>NM</td>
<td>98.6</td>
<td>98.2</td>
</tr>
<tr>
<td>Cardiac rehabilitation referral for AMI patients</td>
<td>NM</td>
<td>NM</td>
<td>82.3</td>
<td>73.7</td>
</tr>
</tbody>
</table>

Values are percentages.

ACEI indicates angiotensin-converting enzyme inhibitor; ACS, acute coronary syndrome; ACTION-GWTG, Acute Coronary Treatment and Intervention Outcomes Network Registry—Get With The Guidelines; AMI, acute myocardial infarction; ARB, angiotensin receptor blocker; HIQR, Hospital Inpatient Quality Reporting; LVEF, left ventricular ejection fraction; NM, not measured; NSTEMI, non–ST-segment–elevation myocardial infarction; STEMI, ST-segment–elevation myocardial infarction; and VHA, Veterans Health Administration.

*VHA: AMI patients. Data reported include data from October 1, 2011, to September 30, 2012.
†HIQR Program includes data from all payers, including Medicare and Medicaid. Data reported include data from the third quarter of 2012 to the second quarter of 2013.
‡ACTION Registry: STEMI and NSTEMI patients are reported separately. Patients must be admitted with acute ischemic symptoms within the previous 24 hours, typically reflected by a primary diagnosis of STEMI or NSTEMI. Patients who are admitted for any other clinical condition are not eligible. Data reported include data from the second quarter of 2012 to the first quarter of 2013.
§Denotes statin use at discharge. Use of nonstatin lipid-lowering agent was 7.2% for STEMI patients and 10.5% for NSTEMI patients in the ACTION registry.
||Measure was retired in January 2012.

Table 23-2. HF Quality-of-Care Measures, 2013

<table>
<thead>
<tr>
<th>Quality-of-Care Measure</th>
<th>National Data From HIQR Program*</th>
<th>AHA GWTG- HF</th>
<th>VHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEF assessment</td>
<td>98.9</td>
<td>99.3</td>
<td>100</td>
</tr>
<tr>
<td>ARB/ACEI at discharge for patients with LVSD</td>
<td>96.8</td>
<td>96.0</td>
<td>96</td>
</tr>
<tr>
<td>Complete discharge instructions</td>
<td>94.1</td>
<td>94.5</td>
<td>96</td>
</tr>
<tr>
<td>Adult smoking cessation advice/counseling</td>
<td>NM†</td>
<td>96.0</td>
<td>Retired</td>
</tr>
<tr>
<td>β-blockers at discharge for patients with LVSD, no contraindications</td>
<td>NM</td>
<td>97.9</td>
<td>NM</td>
</tr>
<tr>
<td>Anticoagulation for AF or atrial flutter, no contraindications</td>
<td>NM</td>
<td>80.7</td>
<td>Retired</td>
</tr>
</tbody>
</table>

Values are percentages.

In the GWTG registry, mechanical ventilation was required in 0.9% of patients. In-hospital mortality was 2.5%, and mean length of hospital stay was 5.0 days (median 4.0 days).

AF indicates atrial fibrillation; AHA GWTG-HF, American Heart Association’s Get With The Guidelines—Heart Failure; ARB/ACEI, angiotensin receptor blocker/angiotensin-converting enzyme inhibitor; HF, heart failure; HIQR, Hospital Inpatient Quality Reporting; LVEF, left ventricular ejection fraction; LVSD, left ventricular systolic dysfunction; NM, not measured; and VHA, Veterans Health Administration.

*HIQR Program includes data from all payers, including Medicare and Medicaid. Data reported include data from the third quarter of 2011 to the second quarter of 2012.
†Measure was retired in January 2012.
Table 23-3. Time Trends in GWTG-ACS Quality-of-Care Measures, 2006 to 2013

<table>
<thead>
<tr>
<th>Quality-of-Care Measure</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010*</th>
<th>2011*</th>
<th>2012*</th>
<th>2013*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin within 24 h of admission</td>
<td>94.7</td>
<td>92.8</td>
<td>91.2</td>
<td>90.9</td>
<td>97</td>
<td>97.6</td>
<td>97.8</td>
<td>95.4</td>
</tr>
<tr>
<td>Aspirin at discharge</td>
<td>94.4</td>
<td>95.8</td>
<td>94.9</td>
<td>95.5</td>
<td>98</td>
<td>98.3</td>
<td>98.4</td>
<td>98.4</td>
</tr>
<tr>
<td>β-Blockers at discharge</td>
<td>92.8</td>
<td>94.6</td>
<td>94.5</td>
<td>94.9</td>
<td>96</td>
<td>96.7</td>
<td>97.1</td>
<td>97.1</td>
</tr>
<tr>
<td>Lipid-lowering medication at discharge</td>
<td>84.5</td>
<td>85.6</td>
<td>81.6</td>
<td>86.8</td>
<td>92†</td>
<td>98.4†</td>
<td>98.8†</td>
<td>98.8</td>
</tr>
<tr>
<td>Lipid therapy at discharge if LDL cholesterol >100 mg/dL</td>
<td>89.1</td>
<td>90.7</td>
<td>91.9</td>
<td>92.5</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>ARB/ACEI at discharge for patients with LVEF <40%</td>
<td>87.3</td>
<td>91.1</td>
<td>91.9</td>
<td>91.9</td>
<td>86</td>
<td>87.8</td>
<td>89.7</td>
<td>90.0</td>
</tr>
<tr>
<td>Adult smoking cessation advice/counseling</td>
<td>94.3</td>
<td>97.4</td>
<td>98.4</td>
<td>98.4</td>
<td>98</td>
<td>98.4</td>
<td>98.4</td>
<td>98.4</td>
</tr>
<tr>
<td>Cardiac rehabilitation referral for AMI patients</td>
<td>71.1</td>
<td>63.6</td>
<td>52.0</td>
<td>49.1</td>
<td>75</td>
<td>76.5</td>
<td>77.3</td>
<td>77.2</td>
</tr>
</tbody>
</table>

Values are percentages.

In the ACTION (Acute Coronary Treatment and Intervention Outcomes Network) registry, the unadjusted in-hospital mortality rate for 2013 was 4.6% (95% confidence interval, 4.5%–4.7%; excludes transfer-out patients). The American Heart Association’s Get With The Guidelines–Coronary Artery Disease (GWTG-CAD) program has merged into the ACTION registry.

AMI indicates acute myocardial infarction; ARB/ACEI, angiotensin receptor blocker/angiotensin-converting enzyme inhibitor; GWTG-ACS, Get With The Guidelines–Acute Coronary Syndrome; LDL, low-density lipoprotein; LVEF, left ventricular ejection fraction; and NM, not measured.

*Measures from 2006 to 2009 are from the American Heart Association’s GWTG-CAD registry. The 2010 to 2012 measures are from the American Heart Association’s ACTION registry. The 2013 data reported include data from the second quarter of 2012 to the first quarter of 2013.

†Represents statin use.

Table 23-4. Time Trends in GWTG-HF Quality-of-Care Measures, 2006 to 2013

<table>
<thead>
<tr>
<th>Quality-of-Care Measure</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEF assessment*</td>
<td>93.5</td>
<td>95.5</td>
<td>96.4</td>
<td>98.0</td>
<td>98.0</td>
<td>96.6</td>
<td>96.5</td>
<td>99.3</td>
</tr>
<tr>
<td>ARB/ACEI at discharge for patients with LVSD*</td>
<td>85.4</td>
<td>89.1</td>
<td>91.5</td>
<td>92.9</td>
<td>94.2</td>
<td>95.2</td>
<td>95.4</td>
<td>96.0</td>
</tr>
<tr>
<td>Postdischarge appointment (new for 2011)*</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>16.3</td>
<td>47.4</td>
<td>62.2</td>
</tr>
<tr>
<td>Complete discharge instructions</td>
<td>91.0</td>
<td>94.9</td>
<td>97.2</td>
<td>97.7</td>
<td>99.3</td>
<td>93.8</td>
<td>93.4</td>
<td>94.5</td>
</tr>
<tr>
<td>Adult smoking cessation advice/counseling</td>
<td>90.8</td>
<td>94.7</td>
<td>97.1</td>
<td>97.6</td>
<td>99.3</td>
<td>99.2</td>
<td>97.3</td>
<td>96.0</td>
</tr>
<tr>
<td>Evidence-based specific β-blockers*</td>
<td>67.7</td>
<td>58.9</td>
<td>54.1</td>
<td>45.2</td>
<td>48.4</td>
<td>57.1</td>
<td>82.6</td>
<td>90.0</td>
</tr>
<tr>
<td>β-Blockers at discharge for patients with LVSD, no contraindications</td>
<td>90.0</td>
<td>90.4</td>
<td>92.6</td>
<td>92.5</td>
<td>94.8</td>
<td>96.0</td>
<td>97.2</td>
<td>97.9</td>
</tr>
<tr>
<td>Anticoagulation for AF or atrial flutter, no contraindications</td>
<td>62.3</td>
<td>61.2</td>
<td>60.5</td>
<td>68.8</td>
<td>70.2</td>
<td>75.9</td>
<td>78.7</td>
<td>80.6</td>
</tr>
</tbody>
</table>

Values are percentages.

In the GWTG registry, mechanical ventilation was required in 0.9% of patients. In-hospital mortality was 2.9%, and mean length of hospital stay was 5.0 days (median 4.0 days).

AF indicates atrial fibrillation; ARB/ACEI, angiotensin receptor blocker/angiotensin-converting enzyme inhibitor; GWTG-HF, Get With The Guidelines–Heart Failure; LVEF, left ventricular ejection fraction; and LVSD, left ventricular systolic dysfunction.

*Indicates the 4 key achievement measures targeted in GWTG-HF. The composite quality-of-care measure for 2013 was 96.3%. The composite quality-of-care measure indicates performance on the provision of several elements of care. It is computed by summing the numerators for each key achievement measure across the population of interest to create a composite numerator (all the care that was given), summing the denominators for each measure to form a composite denominator (all the care that should have been given), and reporting the ratio (the percentage of all the needed care that was given). The composite performance measure includes β-blocker at discharge instead of evidence-based specific β-blockers and complete discharge instructions instead of postdischarge appointment until the data collection for the new achievement measures stabilizes.
Table 23-5. Time Trends in GWTG-Stroke Quality-of-Care Measures, 2006 to 2013

<table>
<thead>
<tr>
<th>Quality-of-Care Measure</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV tPA in patients who arrived ≤2 h after symptom onset, treated ≤3 h*</td>
<td>56.0</td>
<td>60.5</td>
<td>64.4</td>
<td>73.9</td>
<td>76.2</td>
<td>78.3</td>
<td>82.0</td>
<td>86.3</td>
</tr>
<tr>
<td>IV tPA in patients who arrived <3.5 h after symptom onset, treated ≤4.5 h</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>42.5</td>
<td>57.9</td>
<td>60.4</td>
<td>65.4</td>
</tr>
<tr>
<td>IV tPA door-to-needle time ≤60 min</td>
<td>22.5</td>
<td>24.9</td>
<td>25.9</td>
<td>28.0</td>
<td>29.5</td>
<td>33.8</td>
<td>39.9</td>
<td>59.7</td>
</tr>
<tr>
<td>Thrombolytic complications: IV tPA and life-threatening, serious systemic hemorrhage</td>
<td>20.8</td>
<td>17.3</td>
<td>16.1</td>
<td>15.1</td>
<td>13.1</td>
<td>15.7</td>
<td>16.5</td>
<td>16.5</td>
</tr>
<tr>
<td>Antithrombotic agents <48 h after admission*</td>
<td>94.9</td>
<td>95.8</td>
<td>96.0</td>
<td>96.1</td>
<td>96.3</td>
<td>96.7</td>
<td>96.9</td>
<td>97.3</td>
</tr>
<tr>
<td>DVT prophylaxis by second hospital day*</td>
<td>85.4</td>
<td>88.9</td>
<td>92.2</td>
<td>92.7</td>
<td>92.2</td>
<td>93.5</td>
<td>98.4</td>
<td>98.4</td>
</tr>
<tr>
<td>Antithrombotic agents at discharge*</td>
<td>94.1</td>
<td>95.1</td>
<td>97.0</td>
<td>97.8</td>
<td>97.7</td>
<td>98.1</td>
<td>97.8</td>
<td>98.1</td>
</tr>
<tr>
<td>Anticoagulation for atrial fibrillation at discharge*</td>
<td>88.2</td>
<td>89.5</td>
<td>93.1</td>
<td>93.5</td>
<td>93.5</td>
<td>93.1</td>
<td>93.4</td>
<td>94.3</td>
</tr>
<tr>
<td>Therapy at discharge if LDL >100 mg/dL or LDL not measured or on therapy at time of admission*</td>
<td>61.6</td>
<td>67.5</td>
<td>73.4</td>
<td>88.1</td>
<td>89.0</td>
<td>89.8</td>
<td>94.5</td>
<td>96.1</td>
</tr>
<tr>
<td>Counseling for smoking cessation*</td>
<td>86.1</td>
<td>92.1</td>
<td>94.3</td>
<td>96.3</td>
<td>96.7</td>
<td>97.0</td>
<td>96.8</td>
<td>96.6</td>
</tr>
<tr>
<td>Lifestyle changes recommended for BMI >25 kg/m²</td>
<td>42.5</td>
<td>45.7</td>
<td>51.7</td>
<td>57.3</td>
<td>57.8</td>
<td>57.8</td>
<td>57.2</td>
<td>54.9</td>
</tr>
<tr>
<td>Composite quality-of-care measure</td>
<td>83.1</td>
<td>86.1</td>
<td>89.7</td>
<td>94.7</td>
<td>94.2</td>
<td>94.4</td>
<td>96.3</td>
<td>96.8</td>
</tr>
</tbody>
</table>

Values are percentages.

In-hospital mortality for the 2013 patient population was 6.6% percent, and mean length of hospital stay was 5.3 days (median 3.0 days).

BMI indicates body mass index; DVT, deep vein thrombosis; GWTG-Stroke, Get With The Guidelines–Stroke; IV, intravenous; LDL, low-density lipoprotein; and tPA, tissue-type plasminogen activator.

*Indicates the 7 key achievement measures targeted in GWTG-Stroke.

Table 23-6. Additional ACTION-GWTG Quality-of-Care Metrics for ACS Care, 2013*

<table>
<thead>
<tr>
<th>Quality Metrics</th>
<th>Overall</th>
<th>STEMI</th>
<th>NSTEMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG within 10 min of arrival</td>
<td>63.5</td>
<td>73.8</td>
<td>58.8</td>
</tr>
<tr>
<td>Aspirin within 24 h of arrival</td>
<td>95.4</td>
<td>96.6</td>
<td>94.6</td>
</tr>
<tr>
<td>Any anticoagulant use†</td>
<td>93.7</td>
<td>97.3</td>
<td>91.3</td>
</tr>
<tr>
<td>Dosing error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UFH dose</td>
<td>49.3</td>
<td>46.2</td>
<td>49.4</td>
</tr>
<tr>
<td>Enoxaparin dose</td>
<td>10.9</td>
<td>10.9</td>
<td>10.9</td>
</tr>
<tr>
<td>Glycoprotein IIb/IIIa inhibitor dose</td>
<td>6.9</td>
<td>7.0</td>
<td>6.8</td>
</tr>
<tr>
<td>Aspirin at discharge</td>
<td>98.4</td>
<td>98.9</td>
<td>98.0</td>
</tr>
<tr>
<td>Prescribed statins on discharge</td>
<td>98.8</td>
<td>99.1</td>
<td>98.5</td>
</tr>
<tr>
<td>Adult smoking cessation advice/counseling</td>
<td>98.4</td>
<td>98.6</td>
<td>98.2</td>
</tr>
<tr>
<td>Cardiac rehabilitation referral</td>
<td>77.2</td>
<td>82.3</td>
<td>73.7</td>
</tr>
<tr>
<td>In-hospital mortality‡ (95% CI)</td>
<td>4.6 (4.5–4.7)</td>
<td>6.2 (6.0–6.4)</td>
<td>3.5 (3.4–3.6)</td>
</tr>
</tbody>
</table>

Values are percentages.

ACS indicates acute coronary syndrome; ACTION-GWTG, Acute Coronary Treatment and Intervention Outcomes Network Registry–Get With The Guidelines; CI, confidence interval; NSTEMI, non–ST-segment–elevation myocardial infarction; STEMI, ST-segment–elevation myocardial infarction; and UFH, unfractionated heparin.

*2012 data reported include data from second quarter of 2012 to first quarter of 2013.

†Includes UFH, low-molecular-weight heparin, or direct thrombin inhibitor use.

‡Excludes transfer-out patients.
Table 23-7. National Committee for Quality Assurance Health Plan Employer Data and Information Set Measures of Care, 2012

<table>
<thead>
<tr>
<th>Measure</th>
<th>Commercial HMO</th>
<th>Commercial PPO</th>
<th>Medicare HMO</th>
<th>Medicare PPO</th>
<th>Medicaid (HMO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Blocker persistence*</td>
<td>83.9</td>
<td>79.5</td>
<td>88.9</td>
<td>88.5</td>
<td>82</td>
</tr>
<tr>
<td>Cholesterol management for patients with CVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol screening</td>
<td>88.3</td>
<td>83.7</td>
<td>89.3</td>
<td>87.6</td>
<td>81.5</td>
</tr>
<tr>
<td>LDL cholesterol control (<100 mg/dL)</td>
<td>59.9</td>
<td>49.7</td>
<td>56.6</td>
<td>53.2</td>
<td>41.3</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP <140/90 mm Hg</td>
<td>63</td>
<td>57.4</td>
<td>63.6</td>
<td>58.6</td>
<td>56.3</td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA1c testing</td>
<td>90.1</td>
<td>87.2</td>
<td>91.4</td>
<td>91.0</td>
<td>83</td>
</tr>
<tr>
<td>HbA1c >9.0%</td>
<td>28.5</td>
<td>35.2</td>
<td>27.1</td>
<td>29.3</td>
<td>44.7</td>
</tr>
<tr>
<td>Eye examination performed</td>
<td>56.8</td>
<td>48.8</td>
<td>66.8</td>
<td>64.6</td>
<td>53.2</td>
</tr>
<tr>
<td>LDL cholesterol screening</td>
<td>85.4</td>
<td>81.7</td>
<td>88.0</td>
<td>86.6</td>
<td>75.5</td>
</tr>
<tr>
<td>LDL cholesterol <100 mg/dL</td>
<td>48.4</td>
<td>41.7</td>
<td>51.5</td>
<td>49.6</td>
<td>33.9</td>
</tr>
<tr>
<td>Monitoring nephropathy</td>
<td>84.3</td>
<td>78.6</td>
<td>90.0</td>
<td>88.3</td>
<td>78.4</td>
</tr>
<tr>
<td>BP <140/90 mm Hg</td>
<td>66.5</td>
<td>58.3</td>
<td>63.3</td>
<td>61.2</td>
<td>58.9</td>
</tr>
<tr>
<td>Advising smokers and tobacco users to quit</td>
<td>77.8</td>
<td>70.8</td>
<td>81.2</td>
<td>80.4</td>
<td>75.6</td>
</tr>
<tr>
<td>BMI percentile assessment in children and adolescents</td>
<td>51.6</td>
<td>31.2</td>
<td>N/A</td>
<td>N/A</td>
<td>51.8</td>
</tr>
<tr>
<td>Nutrition counseling (children and adolescents)</td>
<td>54.3</td>
<td>35.4</td>
<td>N/A</td>
<td>N/A</td>
<td>55</td>
</tr>
<tr>
<td>Counseling for physical activity (children and adolescents)</td>
<td>50.4</td>
<td>32.6</td>
<td>N/A</td>
<td>N/A</td>
<td>44.2</td>
</tr>
<tr>
<td>BMI assessment for adults</td>
<td>66.1</td>
<td>35.2</td>
<td>80.8</td>
<td>75.3</td>
<td>67.5</td>
</tr>
<tr>
<td>Physical activity discussion in older adults (≥65 y of age)</td>
<td>N/A</td>
<td>54.5</td>
<td>55.5</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Physical activity advice in older adults (≥65 y of age)</td>
<td>N/A</td>
<td>50.1</td>
<td>48.9</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Values are percentages.
AMI indicates acute myocardial infarction; BMI, body mass index; BP, blood pressure; CVD, cardiovascular disease; DM, diabetes mellitus; HbA1c, hemoglobin A1c; HMO, health maintenance organization; LDL, low-density lipoprotein; N/A, not available or not applicable; and PPO, preferred provider organization.
*β-Blocker persistence: Received persistent β-blocker treatment for 6 months after AMI hospital discharge.

Table 23-8. Quality of Care for Patients With Out-of-Hospital Cardiac Arrest at US ROC Sites

<table>
<thead>
<tr>
<th>Measure</th>
<th>Overall</th>
<th>Adults</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bystander and EMS care*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bystander CPR, %</td>
<td>45.9 (44.7–47.0)</td>
<td>45.3 (44.1–46.5)</td>
<td>63.5 (56.8–70.2)</td>
</tr>
<tr>
<td>Shocked by AED before EMS, %</td>
<td>2.2 (1.9–2.6)</td>
<td>2.2 (1.9–2.6)</td>
<td>2.0 (0.1–3.9)</td>
</tr>
<tr>
<td>Chest compression fraction during first 5 min of CPR (%), mean (SD)</td>
<td>0.84 (0.13)</td>
<td>0.84 (0.13)</td>
<td>0.83 (0.13)</td>
</tr>
<tr>
<td>Compression depth (mm), mean (SD)</td>
<td>45.9 (11.7)</td>
<td>45.9 (11.7)</td>
<td>44.9 (11.8)</td>
</tr>
<tr>
<td>Preshock pause duration (sec), mean (SD)</td>
<td>11.3 (10.5)</td>
<td>11.3 (10.5)</td>
<td>11.7 (9.2)</td>
</tr>
<tr>
<td>Time to first EMS defibrillator applied (min), mean (SD)</td>
<td>8.8 (4.4)</td>
<td>8.8 (4.3)</td>
<td>9.0 (5.9)</td>
</tr>
<tr>
<td>Hospital care†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypothermia induced after initial VT/VF, %‡</td>
<td>67.9 (63.5–72.4)</td>
<td>68.1 (63.6–72.5)</td>
<td>N/A (N/A)</td>
</tr>
<tr>
<td>No order for withdrawal/DNR during first 72 h, %§</td>
<td>43.1 (40.0–46.1)</td>
<td>43.0 (39.9–46.0)</td>
<td>66.7 (13.3–100)</td>
</tr>
<tr>
<td>Implantable cardioverter-defibrillator assessment, initial VT/VF, no AMI per MD notes or final ECG interpretation, %</td>
<td></td>
<td></td>
<td>22.9 (17.3–28.5)</td>
</tr>
</tbody>
</table>

Values are mean (95% confidence interval) or mean (SD).
Because age is missing for some cases, these cases are not included in either adults or children, thus explaining why overall rates equal the adult rates when rates for children are not available.

AED indicates automated external defibrillator; AMI, acute myocardial infarction; CPR, cardiopulmonary resuscitation; DNR, do not resuscitate; EMS, emergency medical services; MD, medical doctor; N/A, not available; ROC, Resuscitation Outcomes Consortium; and VT/VF, ventricular tachycardia/ventricular fibrillation.
*Data are from EMS-treated cases.
†During 2013, there were 0 pediatric cases with initial rhythm VT/VF that were admitted to the hospital.
‡Denominator is all cases with initial rhythm VT/VF and admitted to the hospital.
§Denominator is all cases admitted to the hospital.
||Denominator is all cases with initial rhythm VT/VF, no indication of AMI, no percutaneous coronary intervention, no bypass, and admitted to the hospital.
Table 23-9. Quality of Care of Patients With In-Hospital Cardiac Arrest Among GWTG-Resuscitation Hospitals, 2013

<table>
<thead>
<tr>
<th></th>
<th>Adults</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitored before arrest</td>
<td>85.7 (85.2–86.2)</td>
<td>86.9 (84.9–88.9)</td>
</tr>
<tr>
<td>ETCO₂ used during arrest</td>
<td>5.3 (5.0–5.6)</td>
<td>12.4 (10.4–14.4)</td>
</tr>
<tr>
<td>Induced hypothermia after resuscitation from shockable rhythm</td>
<td>7.5 (6.5–8.5)</td>
<td>9.8 (0.7–18.8)</td>
</tr>
</tbody>
</table>

Values are mean percentages (95% confidence interval). ETCO₂ indicates end-tidal CO₂ and GWTG, Get With the Guidelines. Source: GWTG-Resuscitation Investigators, September 4, 2014.

Table 23-10. Timely Reperfusion for ACS and Stroke, 2013

<table>
<thead>
<tr>
<th>Quality-of-Care Measure</th>
<th>VHA (for STEMI) or GWTG-Stroke (for Stroke)</th>
<th>National Data From HIQR Program*</th>
<th>ACTION-GWTG STEM†</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tPA within 30 min</td>
<td>33‡</td>
<td>58.2</td>
<td>45.3‡</td>
</tr>
<tr>
<td>PCI within 90 min</td>
<td>67</td>
<td>95.6</td>
<td>78.9</td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV tPA in patients who arrived <2 h after symptom onset, treated ≤3 h</td>
<td>82.0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IV tPA in patients who arrived <3.5 h after symptom onset, treated ≤4.5 h</td>
<td>60.4</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IV tPA door-to-needle time ≤60 min</td>
<td>39.9</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Values are percentages. ACS indicates acute coronary syndrome; ACTION-GWTG, Acute Coronary Treatment and Intervention Outcomes Network Registry—Get With The Guidelines; GWTG-Stroke, Get With The Guidelines—Stroke; HIQR, Hospital Inpatient Quality Reporting; IV, intravenous; N/A, not applicable; PCI, percutaneous coronary intervention; STEMI, ST-segment–elevation myocardial infarction; tPA, tissue-type plasminogen activator; and VHA, Veterans Health Administration.

*HIQR Program includes data from all payers, including Medicare and Medicaid. Data reported include data from third quarter of 2011 to second quarter of 2012.
†ACTION Registry: Data reported include data from second quarter of 2012 to first quarter of 2013.
‡Indicates low number.
Table 23-11. Quality of Care by Race/Ethnicity and Sex in the ACTION Registry, 2012

<table>
<thead>
<tr>
<th>Quality-of-Care Measure</th>
<th>White</th>
<th>Black</th>
<th>Other</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin at admission</td>
<td>97.9</td>
<td>97.8</td>
<td>97.6</td>
<td>98.1</td>
<td>97.3</td>
</tr>
<tr>
<td>Aspirin at discharge</td>
<td>98.5</td>
<td>97.8</td>
<td>98.5</td>
<td>98.7</td>
<td>98.0</td>
</tr>
<tr>
<td>β-Blockers at discharge</td>
<td>97.2</td>
<td>96.8</td>
<td>97.6</td>
<td>97.4</td>
<td>96.5</td>
</tr>
<tr>
<td>Time to PCI ≤ 90 min for STEMI patients</td>
<td>95.5</td>
<td>94.1</td>
<td>93.9</td>
<td>95.7</td>
<td>94.1</td>
</tr>
<tr>
<td>ARB/ACEI at discharge for patients with LVEF <40%</td>
<td>89.6</td>
<td>90.4</td>
<td>89.1</td>
<td>89.9</td>
<td>89.3</td>
</tr>
<tr>
<td>Statins at discharge</td>
<td>98.8</td>
<td>98.5</td>
<td>98.9</td>
<td>99.0</td>
<td>98.3</td>
</tr>
</tbody>
</table>

Values are percentages.

Data reported include data from second quarter of 2012 to first quarter of 2013.

ACTION indicates Acute Coronary Treatment and Intervention Outcomes Network; ARB/ACEI angiotensin receptor blocker/angiotensin-converting enzyme inhibitor; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary intervention; and STEMI, ST-segment–elevation myocardial infarction.

Table 23-12. Quality-of-Care by Race/Ethnicity and Sex in the GWTG-HF Program, 2013

<table>
<thead>
<tr>
<th>Quality-of-Care Measure</th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postdischarge appointment (new for 2011)*</td>
<td>62.6</td>
<td>64.8</td>
<td>62.7</td>
<td>63.8</td>
<td>62.5</td>
</tr>
<tr>
<td>Complete set of discharge instructions†</td>
<td>94.3</td>
<td>95.2</td>
<td>95.2</td>
<td>94.8</td>
<td>94.1</td>
</tr>
<tr>
<td>Measure of LV function*</td>
<td>99.4</td>
<td>99.3</td>
<td>99.3</td>
<td>99.4</td>
<td>99.2</td>
</tr>
<tr>
<td>ACEI or ARB at discharge for patients with LVSD, no contraindications*</td>
<td>95.6</td>
<td>96.6</td>
<td>96.1</td>
<td>96.0</td>
<td>96.0</td>
</tr>
<tr>
<td>Smoking cessation counseling, current smokers†</td>
<td>96.3</td>
<td>95.7</td>
<td>96.0</td>
<td>96.1</td>
<td>95.6</td>
</tr>
<tr>
<td>Evidence-based specific β-blockers*</td>
<td>89.2</td>
<td>92.0</td>
<td>89.2</td>
<td>90.6</td>
<td>89.3</td>
</tr>
<tr>
<td>β-Blockers at discharge for patients with LVSD, no contraindications†</td>
<td>97.8</td>
<td>98.2</td>
<td>98.3</td>
<td>98.0</td>
<td>97.9</td>
</tr>
<tr>
<td>Hydralazine/nitrates at discharge for patients with LVSD, no contraindications‡</td>
<td>…</td>
<td>19.9</td>
<td>…</td>
<td>21.4</td>
<td>17.5</td>
</tr>
<tr>
<td>Anticoagulation for AF or atrial flutter, no contraindications</td>
<td>81.3</td>
<td>79.0</td>
<td>76.3</td>
<td>81.7</td>
<td>79.3</td>
</tr>
<tr>
<td>Composite quality-of-care measure (using discharge instructions and β-blocker at discharge)</td>
<td>96.8</td>
<td>97.0</td>
<td>97.1</td>
<td>96.8</td>
<td>96.6</td>
</tr>
</tbody>
</table>

Values are percentages.

ACEI indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; AF, atrial fibrillation; GWTG-HF, Get With the Guidelines—Heart Failure; LV, left ventricular; and LVSD, left ventricular systolic dysfunction.

*Indicates the 4 key achievement measures targeted in GWTG-HF.
†Indicates historical key achievement measures in GWTG-HF.
‡For black patients only.
Table 23-13. Quality-of-Care by Race/Ethnicity and Sex in the GWTG-Stroke Program, 2013

<table>
<thead>
<tr>
<th>Quality-of-Care Measure</th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV tPA in patients who arrived ≤ 2 h after symptom onset, treated ≤ 3 h*</td>
<td>86.2</td>
<td>85.4</td>
<td>88.1</td>
<td>87.1</td>
<td>85.6</td>
</tr>
<tr>
<td>IV tPA in patients who arrived < 3.5 h after symptom onset, treated ≤ 4.5 h</td>
<td>64.7</td>
<td>65.6</td>
<td>69.9</td>
<td>66.6</td>
<td>64.1</td>
</tr>
<tr>
<td>IV tPA door-to-needle time ≤ 60 min</td>
<td>59.1</td>
<td>59.5</td>
<td>62.7</td>
<td>60.8</td>
<td>58.6</td>
</tr>
<tr>
<td>Thrombolytic complications: IV tPA and life-threatening, serious systemic hemorrhage</td>
<td>16.3</td>
<td>20.0</td>
<td>8.3</td>
<td>14.7</td>
<td>18.1</td>
</tr>
<tr>
<td>Antithrombotic agents < 48 h after admission*</td>
<td>97.4</td>
<td>97.1</td>
<td>97.3</td>
<td>97.5</td>
<td>97.1</td>
</tr>
<tr>
<td>DVT prophylaxis by second hospital day*</td>
<td>98.4</td>
<td>98.2</td>
<td>98.2</td>
<td>98.3</td>
<td>98.4</td>
</tr>
<tr>
<td>Antithrombotic agents at discharge*</td>
<td>98.3</td>
<td>97.8</td>
<td>97.7</td>
<td>98.3</td>
<td>97.9</td>
</tr>
<tr>
<td>Anticoagulation for atrial fibrillation at discharge*</td>
<td>94.3</td>
<td>94.3</td>
<td>94.8</td>
<td>94.6</td>
<td>94.0</td>
</tr>
<tr>
<td>Therapy at discharge if LDL > 100 mg/dL or LDL not measured or on therapy at admission*</td>
<td>96.0</td>
<td>96.4</td>
<td>96.0</td>
<td>96.7</td>
<td>95.5</td>
</tr>
<tr>
<td>Counseling for smoking cessation*</td>
<td>96.8</td>
<td>96.5</td>
<td>95.9</td>
<td>96.8</td>
<td>96.4</td>
</tr>
<tr>
<td>Lifestyle changes recommended for BMI > 25 kg/m²</td>
<td>55.5</td>
<td>52.6</td>
<td>57.5</td>
<td>55.2</td>
<td>54.6</td>
</tr>
<tr>
<td>Composite quality-of-care measure</td>
<td>96.9</td>
<td>96.8</td>
<td>96.7</td>
<td>97.1</td>
<td>96.6</td>
</tr>
</tbody>
</table>

Values are percentages.

BMI indicates body mass index; DVT, deep vein thrombosis; GWTG-Stroke, Get With The Guidelines–Stroke; IV, intravenous; LDL, low-density lipoprotein; and tPA, tissue-type plasminogen activator.

*Indicates the 7 key achievement measures targeted in GWTG-Stroke.
24. Medical Procedures

See Tables 24-1 and 24-2 and Charts 24-1 through 24-4.

Trends in Operations and Procedures

(See Tables 24-1 and 24-2 and Charts 24-1 and 24-2.)

- The total number of inpatient cardiovascular operations and procedures increased 28%, from 5,939,000 in 2000 to 7,588,000 in 2010 (NHBLI computation based on NCHS annual data). Data from the NHDS were examined for trends from 1990 to 2004 for use of PCI and CABG and in-hospital mortality rate attributable to PCI and CABG by sex:
 - Discharge rates (per 10,000 population) for PCI increased 58%, from 37.2 in 1990 to 1992 to 59.2 in 2002 to 2004.
 - Discharge rates for CABG increased from 34.1 in 1990 to 1992 to 38.6 in 1996 to 1998, then declined to 25.2 in 2002 to 2004.
 - In 1990 to 1992, discharge rates for CABG were 53.5 for males and 18.1 for females; these rates increased through 1996 to 1998, then declined to 38.8 and 13.6, respectively, in 2002 to 2004. The magnitude of these declines decreased by age decile and were essentially flat for both men and women ≥75 years of age.
 - PCI discharge rates increased from 54.5 for males and 23.0 for females to 83.0 and 38.7, respectively, over the 15-year time interval. In 2002 to 2004, discharge rates for men and women 65 to 74 years of age were 135.1 and 64.0, respectively. For those ≥75 years of age, the rates were 128.7 and 69.0, respectively.
 - In-hospital mortality rate (deaths per 100 CABG discharges) declined from 4.3 to 3.5 between 1990 to 1992 and 2002 to 2004 despite an increase in Charlson comorbidity index. The mortality rate declined in all age and sex subsets, but especially in women.

Data from the Acute Care Tracker database were used to estimate the population-based rates per 100,000 population for PCI and CABG procedures from 2002 to 2005, standardized to the 2005 US population:

- Adjusted for age and sex, the overall rate for coronary revascularization declined from 382 to 358 per 100,000. PCI rates during hospitalization increased from 264 to 267 per 100,000, whereas CABG rates declined from 121 to 94.

- Data from men and women enrolled in Medicare from 1992 to 2001 suggest that efforts to eliminate racial disparities in the use of high-cost cardiovascular procedures (PCI, CABG, and carotid endarterectomy) were unsuccessful.

- In 1992, among women, the age-standardized rates of carotid endarterectomy were 1.59 per 1000 enrollees for whites and 0.64 per 1000 enrollees for blacks. By 2002, the rates were 2.42 per 1000 enrollees among white women and 1.15 per 1000 enrollees among black women. For men, the difference in rates between whites and blacks remained the same. In 1992, the rates were 3.13 per 1000 enrollees among white men and 0.82 per 1000 enrollees among black men; in 2001, the rates were 4.42 and 1.44, respectively.

Cardiac Catheterization and PCI

(See Tables 24-1 and 24-2.)

- From 2000 to 2010, the number of cardiac catheterizations decreased slightly, from 1,221,000 to 1,029,000 annually (NHDS, NHLBI tabulation).

- In 2010, an estimated 492,000 patients underwent PCI (previously referred to as percutaneous transluminal coronary angioplasty, or PTCA) procedures in the United States (NHDS, NHLBI tabulation).

- In 2010, ≈67% of PCI procedures were performed on men, and ≈51% were performed on people ≥65 years of age (NHDS, NHLBI tabulation).

- In-hospital death rates for PCI have remained stable, although comorbidities increased for patients who received the procedure.

- In 2010, ≈75% of stents implanted during PCI were DES compared with 25% that were bare-metal stents (NHDS, NHLBI computation).

- In a study of nontransferred patients with STEMI treated with primary PCI from July 2006 to March 2008, there was significant improvement over time in the percentage of patients receiving PCI within 90 minutes, from 54.1% from July to September 2006 to 74.1% from January to March 2008, among hospitals participating in the GWTG-CAD program. This improvement was seen whether or not hospitals joined the Door-to-Balloon Alliance during that period.

- The rate of any cardiac stent procedure rose by 61% from 1999 to 2006, then declined by 27% between 2006 and 2009.

Cardiac Open Heart Surgery

- The NHDS (NCHS) estimates that in 2010, in the United States, 219,000 patients underwent a total of 397,000 coronary artery bypass procedures (defined by procedure...
codes). CABG volumes have declined nationally since 1998. Risk-adjusted mortality for CABG has declined significantly over the past decade.

- Data from the STS Adult Cardiac Surgery Database, which voluntarily collects data from ~80% of all hospitals that perform CABG in the United States, indicate that a total of 158,008 procedures involved CABG in 2010.6

Congenital Heart Surgery, 1998 to 2002 (From STS)

- There were 103,664 procedures performed from July 2006 to June 2010. The in-hospital mortality rate was 3.2% in 2010. The 5 most common diagnoses were the following: patent ductus arteriosus (7.4%); HLHS (6.9%); VSD, type 2 (6.3%); cardiac, other (5.3%); and TOF (4.9%).7

- There were 16,920 procedures performed from 1998 to 2002 at 18 centers. In 2002, there were 4,208 procedures performed. The in-hospital mortality rate ranged from 5.7% in 1998 to 4.3% in 2002. Of these procedures, ~46% were performed in children >1 year old, ~32% in infants between 29 days and 1 year of age, and ~22% in neonates (<29 days old). The conditions for which these procedures were most commonly performed were the following: patent ductus arteriosus (6.5%), VSD (6.4%), and TOF (6.0%).7

Heart Transplantations (Organ Procurement and Transplantation Network, August 15, 2014)

(See Charts 24-3 and 24-4.)

- In 2013, 2,531 heart transplantations were performed in the United States (Chart 24-3). There are 249 transplant hospitals in the United States, 129 of which performed heart transplantations (based on Organ Procurement and Transplantation Network data as of August 1, 2014).

- Of the recipients in 2013, 69.6% were male, and 64.4% were white; 22.0% were black, whereas 8.6% were Hispanic. Heart transplantations by recipient age are shown in Chart 24-4.

- For transplants that occurred between 2009 and 2010, the 1-year survival rate was 90.8% for males and 90.6% for females; the 5-year rates between 2005 and 2010 were 77.5% for males and 75.6% for females. The 1- and 5-year survival rates for white cardiac transplant patients were 91.2% and 79.1%, respectively. For black patients, they were 88.3% and 68.6%, respectively. For Hispanic patients, they were 91.9% and 76.3%, respectively. For Asian patients, they were 89.9% and 81.2%, respectively.

- As of August 6, 2014, 4,002 patients were on the transplant waiting list for a heart transplant, and 51 patients were on the list for a heart/lung transplant.

Cardiovascular Healthcare Expenditures

- An analysis of claims and enrollment data from the Continuous Medicare History Sample and from physician claims from 1995 to 2004 was used to evaluate the conditions that contributed to the most expensive 5% of Medicare beneficiaries.7

- Ischemic HD, CHF, and cerebrovascular disease, respectively, constituted 13.8%, 5.9%, and 5.7% of the conditions of all beneficiaries in 2004. In patients in the top 5% overall for all expenditures, the respective figures were 39.1%, 32.7%, and 22.3% for these cardiovascular conditions.

References

Table 24-1. 2012 National HCUP Statistics: Mean Hospital Charges, In-Hospital Death Rates, and Mean Length of Stay for Various Cardiovascular Procedures

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Mean Hospital Charges, $</th>
<th>In-Hospital Death Rate, %</th>
<th>Mean Length of Stay, d</th>
<th>ICD-9-CM Procedure Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total vascular and cardiac surgery and procedures</td>
<td>78,897</td>
<td>2.93</td>
<td>6.1</td>
<td>35–39, 00.50–00.51, 00.53–00.55, 00.61–00.66</td>
</tr>
<tr>
<td>Cardiac revascularization (bypass)</td>
<td>149,480</td>
<td>1.44</td>
<td>9.2</td>
<td>36.1–36.3</td>
</tr>
<tr>
<td>PCI</td>
<td>70,027</td>
<td>1.31</td>
<td>3.2</td>
<td>00.66</td>
</tr>
<tr>
<td>Cardiac catheterization</td>
<td>47,862</td>
<td>1.04</td>
<td>3.9</td>
<td>37.21–37.23</td>
</tr>
<tr>
<td>Pacemakers</td>
<td>74,515</td>
<td>1.24</td>
<td>5.1</td>
<td>37.7–37.8, 00.50, 00.53</td>
</tr>
<tr>
<td>Implantable defibrillators</td>
<td>152,384</td>
<td>0.43</td>
<td>5.4</td>
<td>37.94–37.99, 00.51, 00.54</td>
</tr>
<tr>
<td>Endarterectomy</td>
<td>38,847</td>
<td>0.32</td>
<td>2.6</td>
<td>38.12</td>
</tr>
<tr>
<td>Valves</td>
<td>190,194</td>
<td>3.40</td>
<td>11.0</td>
<td>35.1–35.2, 35.99</td>
</tr>
<tr>
<td>Heart transplants</td>
<td>676,328</td>
<td>6.54</td>
<td>39.8</td>
<td>37.51</td>
</tr>
</tbody>
</table>

HCUP indicates Healthcare Cost and Utilization Project; ICD-9-CM, International Classification of Diseases, Clinical Modification, 9th Revision; and PCI, percutaneous coronary intervention.

Data derived from the Agency for Healthcare Research and Quality, HCUP Nationwide Inpatient Sample, 2012.

Table 24-2. Estimated* Inpatient Cardiovascular Operations, Procedures, and Patient Data by Sex and Age: United States, 2010 (in Thousands)

<table>
<thead>
<tr>
<th>Operation/Procedure/Patients</th>
<th>ICD-9-CM Procedure Codes</th>
<th>Sex</th>
<th>Age, y</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td><15</td>
<td>15–44</td>
<td>45–64</td>
<td>≥65</td>
</tr>
<tr>
<td>Valves</td>
<td>35.1, 35.2, 35.99</td>
<td>106</td>
<td>Male</td>
<td>64</td>
<td>42</td>
<td>4†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>106</td>
<td>Female</td>
<td>42</td>
<td>31</td>
<td>8†</td>
</tr>
<tr>
<td>Angioplasty</td>
<td>36.0, 0.66</td>
<td>955</td>
<td>Male</td>
<td>642</td>
<td>313</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>492</td>
<td>Female</td>
<td>330</td>
<td>162</td>
<td>...</td>
</tr>
<tr>
<td>PCI (patients)</td>
<td>36.06, 36.07, 0.66</td>
<td>500</td>
<td>Male</td>
<td>334</td>
<td>166</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>454</td>
<td>Female</td>
<td>308</td>
<td>146</td>
<td>...</td>
</tr>
<tr>
<td>PCI with stents</td>
<td>36.06, 36.07</td>
<td>397</td>
<td>Male</td>
<td>298</td>
<td>99</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Female</td>
<td>164</td>
<td>55</td>
<td>...</td>
</tr>
<tr>
<td>Cardiac revascularization‡</td>
<td>36.1–36.3</td>
<td>219</td>
<td>Male</td>
<td>164</td>
<td>55</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Female</td>
<td>164</td>
<td>55</td>
<td>...</td>
</tr>
<tr>
<td>Cardiac catheterization</td>
<td>37.21–37.23</td>
<td>1029</td>
<td>Male</td>
<td>638</td>
<td>391</td>
<td>7†</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Female</td>
<td>391</td>
<td>391</td>
<td>...</td>
</tr>
<tr>
<td>Pacemakers</td>
<td>37.7, 37.8, 00.50, 00.53</td>
<td>370</td>
<td>Male</td>
<td>196</td>
<td>174</td>
<td>3†</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Female</td>
<td>174</td>
<td>174</td>
<td>...</td>
</tr>
<tr>
<td>Pacemaker devices</td>
<td>37.8, 00.53</td>
<td>159</td>
<td>Male</td>
<td>81</td>
<td>78</td>
<td>1†</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Female</td>
<td>78</td>
<td>78</td>
<td>...</td>
</tr>
<tr>
<td>Pacemaker leads</td>
<td>37.7, 00.50</td>
<td>212</td>
<td>Male</td>
<td>115</td>
<td>96</td>
<td>1†</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Female</td>
<td>96</td>
<td>96</td>
<td>...</td>
</tr>
<tr>
<td>Implantable defibrillators</td>
<td>37.94–37.99, 00.51, 00.54</td>
<td>97</td>
<td>Male</td>
<td>71</td>
<td>26</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Female</td>
<td>26</td>
<td>26</td>
<td>...</td>
</tr>
<tr>
<td>Endarterectomy</td>
<td>38.12</td>
<td>100</td>
<td>Male</td>
<td>55</td>
<td>45</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Female</td>
<td>45</td>
<td>45</td>
<td>...</td>
</tr>
<tr>
<td>Vascular and cardiac surgery and procedures§</td>
<td>35–39, 00.50–00.51, 00.53–00.55, 00.61–00.66</td>
<td>7588</td>
<td>Male</td>
<td>4397</td>
<td>3191</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Female</td>
<td>3191</td>
<td>3191</td>
<td>310</td>
</tr>
</tbody>
</table>

These data do not reflect any procedures performed on an outpatient basis. Many more procedures are being performed on an outpatient basis. Some of the lower numbers in this table compared with 2006 probably reflect this trend. Data include procedures performed on newborn infants.

Ellipses (…) indicate data not available; ICD-9-CM, International Classification of Diseases, Clinical Modification, 9th Revision; and PCI, percutaneous coronary intervention.

*Breakdowns are not available for some procedures, so entries for some categories do not add to totals. These data include codes for which the estimated number of procedures is <5000. Categories with such small numbers are considered unreliable by the National Center for Health Statistics and in some cases may have been omitted.

†Estimate should be used with caution because it may be unreliable or does not meet standards of reliability or precision.

‡Because ≥1 procedure codes are required to describe the specific bypass procedure performed, it is impossible from these (mixed) data to determine the average number of grafts per patient.

§Totals include procedures not shown here.

||This estimate includes angioplasty and stent insertions for noncoronary arteries.

Data derived from the National Hospital Discharge Survey/National Center for Health Statistics, 2010. Estimates are based on a sample of inpatient records from short-stay hospitals in the United States.

Chart 24-2. Number of surgical procedures in the 10 leading diagnostic groups, United States: 2010. Source: National Hospital Discharge Survey/National Center for Health Statistics and National Heart, Lung, and Blood Institute.

25. Economic Cost of Cardiovascular Disease

The annual direct and indirect cost of CVD and stroke in the United States is an estimated $320.1 billion (Table 25-1; Chart 25-1). This figure includes $195.6 billion in expenditures (direct costs, which include the cost of physicians and other professionals, hospital services, prescribed medication, and home health care, but not the cost of nursing home care) and $124.5 billion in lost future productivity attributed to premature CVD and stroke mortality in 2011 (indirect costs).

The direct costs for CVD and stroke are the healthcare expenditures for 2011 available on the Web site of the nationally representative MEPS of the AHRQ. Details on the advantages or disadvantages of using MEPS data are provided in the “Heart Disease and Stroke Statistics–2011 Update.”

Indirect mortality costs are estimated for 2011 by multiplying the number of deaths that year attributable to CVD and strokes, in age and sex groups, by estimates of the present value of lifetime earnings for those age and sex groups as of 2011. Mortality data are from the National Vital Statistics System of the NCHS. The present values of lifetime earnings are unpublished estimates furnished by the Institute for Health and Aging, University of California, San Francisco, by Wendy Max, PhD, on April 25, 2012. Those estimates have a 3% discount rate, the recommended percentage. The discount rate removes the effect of inflation in income over the lifetime of earnings. The estimates are for 2009, inflated to 2011 by 3% to account for the 2009 to 2011 change in hourly worker compensation in the business sector reported by the US Bureau of Labor Statistics.

The indirect costs exclude lost productivity costs attributable to CVD and stroke illness during 2011 among workers, people keeping house, people in institutions, and people unable to work. Those morbidity costs were substantial in very old studies, but an adequate update could not be made.

Most Costly Diseases

(See Table 25-2 and Chart 25-2.)

- CVD and stroke accounted for 15% of total health expenditures in 2011, more than any major diagnostic group. That is also the case for indirect mortality costs. By way of comparison, CVD total direct and indirect costs shown in Table 25-1 are higher than the official National Cancer Institute estimates for cancer and benign neoplasms in 2009, which were cited as $216.6 billion total ($86.6 billion in direct costs and $130 billion in indirect mortality costs).

- Table 25-2 shows direct and indirect costs for CVD by sex and by 2 broad age groups. Chart 25-2 shows total direct costs for the 23 leading chronic diseases in the MEPS list. HD is the most costly condition.

Projections

(See Charts 25-3 through 25-5.)

The AHA developed methodology to project future costs of care for HBP, CHD, HF, stroke, and all other CVD.

- By 2030, 43.9% of the US population is projected to have some form of CVD.
- Between 2012 and 2030, total direct medical costs of CVD are projected to increase from $396 billion to $918 billion (2012 $ in billions). Of this total, 60.5% is attributable to hospital costs, 15.6% to medications, 10.8% to physicians, 6.8% to nursing home care, 5.3% to home health care, and 1.1% to other costs.
- Indirect costs (attributable to lost productivity) for all CVDs are estimated to increase from $183 billion in 2012 to $290 billion in 2030 (2012 $ in billions), an increase of 58%.

These data indicate that CVD prevalence and costs are projected to increase substantially.

Abbreviations Used in Chapter 25

- AHA: American Heart Association
- AHRQ: Agency for Healthcare Research and Quality
- CHD: coronary heart disease
- CHF: congestive heart failure
- COPD: chronic obstructive pulmonary disease
- CVD: cardiovascular disease
- GI: gastrointestinal (tract)
- HBP: high blood pressure
- HD: heart disease
- HF: heart failure
- MEPS: Medical Expenditure Panel Survey
- NCHS: National Center for Health Statistics

References

Table 25-1. Estimated Direct and Indirect Costs (in Billions of Dollars) of CVD and Stroke: United States, 2011

<table>
<thead>
<tr>
<th></th>
<th>Heart Disease*</th>
<th>Stroke</th>
<th>Hypertensive Disease†</th>
<th>Other Circulatory Conditions</th>
<th>Total CVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct costs‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital inpatient stays</td>
<td>70.5</td>
<td>7.6</td>
<td>4.9</td>
<td>8.7</td>
<td>91.7</td>
</tr>
<tr>
<td>Hospital emergency department visits</td>
<td>4.8</td>
<td>1.2</td>
<td>1.5</td>
<td>0.6</td>
<td>8.1</td>
</tr>
<tr>
<td>Hospital outpatient or office-based provider visits</td>
<td>23.1</td>
<td>2.0</td>
<td>13.5</td>
<td>5.9</td>
<td>44.5</td>
</tr>
<tr>
<td>Home health care</td>
<td>6.6</td>
<td>5.1</td>
<td>3.9</td>
<td>2.3</td>
<td>17.9</td>
</tr>
<tr>
<td>Prescribed medicines</td>
<td>11.3</td>
<td>1.7</td>
<td>19.0</td>
<td>1.5</td>
<td>33.5</td>
</tr>
<tr>
<td>Total expenditures</td>
<td>116.3</td>
<td>17.5</td>
<td>42.8</td>
<td>19.0</td>
<td>195.6</td>
</tr>
<tr>
<td>Indirect costs§</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lost productivity/mortality</td>
<td></td>
<td>99.3</td>
<td>16.0</td>
<td>3.6</td>
<td>5.6</td>
</tr>
<tr>
<td>Grand totals</td>
<td>215.6</td>
<td>33.6</td>
<td>46.4</td>
<td>24.6</td>
<td>320.1</td>
</tr>
</tbody>
</table>

Numbers do not add to total because of rounding.

CVD indicates cardiovascular disease.

*This category includes coronary heart disease, heart failure, part of hypertensive disease, cardiac dysrhythmias, rheumatic heart disease, cardiomyopathy, pulmonary heart disease, and other or ill-defined heart diseases.

†Costs attributable to hypertensive disease are limited to hypertension without heart disease.

‡Medical Expenditure Panel Survey healthcare expenditures are estimates of direct payments for care of a patient with the given disease provided during the year, including out-of-pocket payments and payments by private insurance, Medicaid, Medicare, and other sources. Payments for over-the-counter drugs are not included. These estimates of direct costs do not include payments attributed to comorbidities. Total CVD costs are the sum of costs for the 4 diseases but with some duplication.

§The American Heart Association Statistics Committee agreed to suspend the presentation of estimates of lost productivity attributable to morbidity until a better estimating method can be developed.

||Lost future earnings of people who died in 2011, discounted at 3%.

||Sources: Estimates from the Household Component of the Medical Expenditure Panel Survey of the Agency for Healthcare Research and Quality for direct costs (2011). Indirect mortality costs are based on 2011 counts of deaths by the National Center for Health Statistics and an estimated present value of lifetime earnings furnished for 2009 by Wendy Max (Institute for Health and Aging, University of California, San Francisco, April 25, 2012) and inflated to 2011 from change in worker compensation reported by the US Bureau of Labor Statistics.

All estimates prepared by Michael Mussolino, National Heart, Lung, and Blood Institute.
Table 25-2. Costs of Total CVD in Billions of Dollars by Age and Sex: United States, 2011

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Male</th>
<th>Female</th>
<th>Age <65 y</th>
<th>Age >65 y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>195.6</td>
<td>99.0</td>
<td>96.6</td>
<td>96.2</td>
<td>99.4</td>
</tr>
<tr>
<td>Indirect mortality</td>
<td>124.5</td>
<td>91.4</td>
<td>33.1</td>
<td>107.1</td>
<td>17.4</td>
</tr>
<tr>
<td>Total</td>
<td>320.1</td>
<td>190.4</td>
<td>129.7</td>
<td>203.3</td>
<td>116.8</td>
</tr>
</tbody>
</table>

Numbers may not add to total because of rounding.

CVD indicates cardiovascular diseases and stroke.

Source: Medical Expenditure Panel Survey, 2011 (direct costs) and mortality data from the National Center for Health Statistics and present value of lifetime earnings from the Institute for Health and Aging, University of California, San Francisco (indirect costs).

All estimates prepared by Michael Mussolino, National Heart, Lung, and Blood Institute.

Chart 25-1. Direct and indirect costs of cardiovascular disease (CVD) and stroke (in billions of dollars), United States, 2011. Source: Prepared by the National Heart, Lung, and Blood Institute.1–4
Chart 25-2. The 23 leading diagnoses for direct health expenditures, United States, 2011 (in billions of dollars). COPD indicates chronic obstructive pulmonary disease; and GI, gastrointestinal (tract). Source: National Heart, Lung, and Blood Institute; estimates are from the Medical Expenditure Panel Survey, Agency for Healthcare Research and Quality, and exclude nursing home costs.

Chart 25-3. Projected total costs of cardiovascular disease (CVD), 2015 to 2030 (2012 $ in billions) in the United States. CHD indicates coronary heart disease; CHF, congestive heart failure; and HBP, high blood pressure. Unpublished data tabulated by the American Heart Association using methods described in Heidenreich et al.8
Chart 25-4. Projected total (direct and indirect) costs of total cardiovascular disease by age (2012 $ in billions). Unpublished data tabulated by the American Heart Association using methods described in Heidenreich et al.8

Chart 25-5. Projected direct costs of total cardiovascular disease by type of cost (2010 $ in billions). Unpublished data tabulated by the American Heart Association using methods described in Heidenreich et al.8
26. At-a-Glance Summary Tables

See Tables 26-1 through 26-4.

Sources: See the following summary tables and charts for complete details:

- Smoking—Table 3-1
- Physical activity —Table 4-1
- Overweight/obesity—Table 6-1; Chart 6-1
- Blood cholesterol—Table 8-1
- High blood pressure—Table 9-1
- Diabetes mellitus—Table 10-1
- Total cardiovascular diseases—Table 13-1
- Stroke—Table 14-1
- Congenital heart defects—Table 15-1
- Coronary heart disease—Table 19-1
- Heart failure—Table 20-1
Table 26-1. Males and CVD: At-a-Glance Table

<table>
<thead>
<tr>
<th>Diseases and Risk Factors</th>
<th>Both Sexes</th>
<th>Total Males</th>
<th>White Males</th>
<th>Black Males</th>
<th>Hispanic Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2013*</td>
<td>43.4 M (17.9%)</td>
<td>24.1 M (20.4%)</td>
<td>21.7%</td>
<td>21.1%</td>
<td>16.6%</td>
</tr>
<tr>
<td>PA†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2013, %*</td>
<td>20.9</td>
<td>24.9</td>
<td>22.7‡</td>
<td>17.7‡</td>
<td>16.6‡</td>
</tr>
<tr>
<td>Overweight and obesity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overweight and obesity, BMI >25.0 kg/m²§</td>
<td>159.2 M (68.5%)</td>
<td>81.5 M (72.5%)</td>
<td>72.7%</td>
<td>69.4%</td>
<td>80.1%</td>
</tr>
<tr>
<td>Obesity, BMI >30.0 kg/m²§</td>
<td>81.8 M (35.2%)</td>
<td>38.6 M (34.4%)</td>
<td>34.2%</td>
<td>37.9%</td>
<td>38.4%</td>
</tr>
<tr>
<td>Blood cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol >200 mg/dL§</td>
<td>100.1 M (42.8%)</td>
<td>45.3 M (40.4%)</td>
<td>39.9%</td>
<td>37.4%</td>
<td>46.2%</td>
</tr>
<tr>
<td>Total cholesterol >240 mg/dL§</td>
<td>30.9 M (13.1%)</td>
<td>13.0 M (11.6%)</td>
<td>11.5%</td>
<td>8.3%</td>
<td>14.8%</td>
</tr>
<tr>
<td>LDL cholesterol >130 mg/dL§</td>
<td>73.5 M (31.7%)</td>
<td>34.9 M (31.0%)</td>
<td>29.4%</td>
<td>30.7%</td>
<td>38.8%</td>
</tr>
<tr>
<td>HDL cholesterol <40 mg/dL§</td>
<td>44.6 M (19.9%)</td>
<td>32.4 M (28.9%)</td>
<td>28.7%</td>
<td>20.0%</td>
<td>33.8%</td>
</tr>
<tr>
<td>HBP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012§</td>
<td>80.0 M (32.6%)</td>
<td>38.3 M (33.5%)</td>
<td>32.9%</td>
<td>44.9%</td>
<td>29.6%</td>
</tr>
<tr>
<td>Mortality, 2011</td>
<td>65123</td>
<td>29363</td>
<td>21830</td>
<td>6610</td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physician-diagnosed DM§</td>
<td>21.1 M (8.5%)</td>
<td>10.5 M (9.0%)</td>
<td>7.6%</td>
<td>13.8%</td>
<td>12.5%</td>
</tr>
<tr>
<td>Undiagnosed DM§</td>
<td>8.1 M (3.3%)</td>
<td>5.1 M (4.4%)</td>
<td>4.0%</td>
<td>4.8%</td>
<td>6.8%</td>
</tr>
<tr>
<td>Prediabetes§</td>
<td>80.8 M (35.3%)</td>
<td>46.4 M (42.4%)</td>
<td>43.0%</td>
<td>36.3%</td>
<td>43.0%</td>
</tr>
<tr>
<td>Incidence, diagnosed DM§</td>
<td>1.7 M</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Mortality, 2011</td>
<td>73831</td>
<td>38324</td>
<td>30783</td>
<td>6048</td>
<td></td>
</tr>
<tr>
<td>Total CVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012§</td>
<td>85.6 M (35.0%)</td>
<td>41.8 M (36.4%)</td>
<td>36.1%</td>
<td>46.0%</td>
<td>32.4%</td>
</tr>
<tr>
<td>Mortality, 2011</td>
<td>786641</td>
<td>388606</td>
<td>331751</td>
<td>46081</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012§</td>
<td>6.6 M (2.6%)</td>
<td>3.0 M (2.6%)</td>
<td>2.2%</td>
<td>4.2%</td>
<td>2.8%</td>
</tr>
<tr>
<td>New and recurrent strokes</td>
<td></td>
<td>795.0 K</td>
<td>370.0 K</td>
<td>325.0 K</td>
<td>45.0 K</td>
</tr>
<tr>
<td>Mortality, 2011</td>
<td>128932</td>
<td>52335</td>
<td>43264</td>
<td>7039</td>
<td></td>
</tr>
<tr>
<td>CHD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, CHD, 2012§</td>
<td>15.5 M (6.2%)</td>
<td>8.9 M (7.6%)</td>
<td>7.8%</td>
<td>7.2%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Prevalence, MI, 2012§</td>
<td>7.6 M (2.8%)</td>
<td>4.9 M (4.0%)</td>
<td>4.1%</td>
<td>3.4%</td>
<td>3.5%</td>
</tr>
<tr>
<td>Prevalence, AP, 2012§</td>
<td>8.2 M (3.3%)</td>
<td>4.0 M (3.4%)</td>
<td>3.4%</td>
<td>3.3%</td>
<td>3.2%</td>
</tr>
<tr>
<td>New and recurrent CHD**††</td>
<td>935.0 K</td>
<td>545.0 K</td>
<td>475.0 K</td>
<td>70.0 K</td>
<td>N/A</td>
</tr>
<tr>
<td>New and recurrent MI††</td>
<td>735.0 K</td>
<td>430.0 K</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Incidence, AP (stable angina), 2010‡‡</td>
<td>565.0 K</td>
<td>370.0 K</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Mortality, 2011, CHD</td>
<td></td>
<td>375295</td>
<td>206908</td>
<td>180658</td>
<td>20693</td>
</tr>
<tr>
<td>Mortality, 2011, MI</td>
<td></td>
<td>119905</td>
<td>66765</td>
<td>58447</td>
<td>6551</td>
</tr>
<tr>
<td>HF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012§</td>
<td>5.7 M (2.2%)</td>
<td>2.7 M (2.3%)</td>
<td>2.2%</td>
<td>2.8%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Incidence, 2010§§</td>
<td>870.0 K</td>
<td>415.0 K</td>
<td>365.0 K</td>
<td>50.0 K</td>
<td>N/A</td>
</tr>
<tr>
<td>Mortality, 2011</td>
<td>58309</td>
<td>24609</td>
<td>21802</td>
<td>2371</td>
<td></td>
</tr>
</tbody>
</table>

AP indicates angina pectoris (chest pain); **BMI** body mass index; **CHD** coronary heart disease (includes heart attack, AP chest pain, or both); **CVD** cardiovascular disease; **DM** diabetes mellitus; **HBP** high blood pressure; **HDL** high-density lipoprotein; **HF** heart failure; **K** thousands; **LDL** low-density lipoprotein; **M** millions; **MI** myocardial infarction (heart attack); **N/A** data not available; and **PA** physical activity.

*Age ≥18 years (National Health Interview Survey, 2013).
†Met 2008 full federal PA guidelines for adults.
‡Both sexes (National Health Interview Survey).
§Age ≥20 years.
∥All ages.
¶Mortality data for the white and black populations include deaths of people of Hispanic and non-Hispanic origin.
#Total CVD mortality includes deaths of congenital heart disease.
**New and recurrent MI and fatal CHD.
††Age ≥35 years.
‡‡Age ≥45 years.
§§Age ≥55 years.

By guest on November 6, 2017 http://circ.ahajournals.org/ Downloaded from
Table 26-2. Females and CVD: At-a-Glance Table

<table>
<thead>
<tr>
<th>Diseases and Risk Factors</th>
<th>Both Sexes</th>
<th>Total Females</th>
<th>White Females</th>
<th>Black Females</th>
<th>Hispanic Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2013*</td>
<td>43.4 M (17.9%)</td>
<td>19.3 M (15.5%)</td>
<td>18.7%</td>
<td>15.0%</td>
<td>6.7%</td>
</tr>
<tr>
<td>PA†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2013, %*</td>
<td>20.9</td>
<td>17.0</td>
<td>22.7‡</td>
<td>17.7‡</td>
<td>16.6‡</td>
</tr>
<tr>
<td>Overweight and obesity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overweight and obesity, BMI >25.0 kg/m²§</td>
<td>159.2 M (68.5%)</td>
<td>77.7 M (64.7%)</td>
<td>61.2%</td>
<td>81.9%</td>
<td>76.3%</td>
</tr>
<tr>
<td>Obesity, BMI >30.0 kg/m²§</td>
<td>81.8 M (35.2%)</td>
<td>43.2 M (36.0%)</td>
<td>32.5%</td>
<td>57.5%</td>
<td>42.9%</td>
</tr>
<tr>
<td>Blood cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol >200 mg/dL§</td>
<td>100.1 M (42.8%)</td>
<td>54.8 M (44.9%)</td>
<td>45.9%</td>
<td>40.7%</td>
<td>43.4%</td>
</tr>
<tr>
<td>Total cholesterol >240 mg/dL§</td>
<td>30.9 M (13.1%)</td>
<td>17.9 M (14.4%)</td>
<td>15.3%</td>
<td>10.9%</td>
<td>13.7%</td>
</tr>
<tr>
<td>LDL cholesterol >130 mg/dL§</td>
<td>73.5 M (31.7%)</td>
<td>38.6 M (32.0%)</td>
<td>32.0%</td>
<td>33.6%</td>
<td>31.8%</td>
</tr>
<tr>
<td>HDL cholesterol <40 mg/dL§</td>
<td>44.6 M (19.3%)</td>
<td>12.2 M (10.4%)</td>
<td>10.2%</td>
<td>10.3%</td>
<td>12.8%</td>
</tr>
<tr>
<td>HBP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012§</td>
<td>80.0 M (32.6%)</td>
<td>41.7 M (31.7%)</td>
<td>30.1%</td>
<td>46.1%</td>
<td>29.9%</td>
</tr>
<tr>
<td>Mortality, 2011</td>
<td></td>
<td></td>
<td>65 123</td>
<td>35 760</td>
<td>27 907</td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physician-diagnosed DM§</td>
<td>21.1 M (8.5%)</td>
<td>10.6 M (8.0%)</td>
<td>6.1%</td>
<td>14.6%</td>
<td>11.8%</td>
</tr>
<tr>
<td>Undiagnosed DM§</td>
<td>8.1 M (3.3%)</td>
<td>3.0 M (2.4%)</td>
<td>1.7%</td>
<td>2.3%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Prediabetes§</td>
<td>80.8 M (35.3%)</td>
<td>34.4 M (28.4%)</td>
<td>28.9%</td>
<td>27.8%</td>
<td>26.0%</td>
</tr>
<tr>
<td>Incidence, diagnosed DM§</td>
<td>1.7 M</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Mortality, 2011</td>
<td></td>
<td></td>
<td>73 831</td>
<td>35 507</td>
<td>27 191</td>
</tr>
<tr>
<td>Total CVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012§</td>
<td>85.6 M (35.0%)</td>
<td>43.8 M (33.7%)</td>
<td>31.9%</td>
<td>48.3%</td>
<td>32.5%</td>
</tr>
<tr>
<td>Mortality, 2011</td>
<td></td>
<td></td>
<td>786 641</td>
<td>398 035</td>
<td>340 803</td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012§</td>
<td>6.6 M (2.6%)</td>
<td>3.6 M (2.7%)</td>
<td>2.5%</td>
<td>4.7%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Mortality, 2011</td>
<td></td>
<td></td>
<td>795 0 K</td>
<td>425 0 K</td>
<td>365 0 K</td>
</tr>
<tr>
<td>CHD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, CHD, 2012§</td>
<td>15.5 M (6.2%)</td>
<td>6.6 M (5.0%)</td>
<td>4.6%</td>
<td>7.0%</td>
<td>5.9%</td>
</tr>
<tr>
<td>Prevalence, MI, 2012§</td>
<td>7.6 M (2.8%)</td>
<td>2.7 M (1.8%)</td>
<td>1.8%</td>
<td>2.2%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Prevalence, AP, 2012§</td>
<td>8.2 M (3.3%)</td>
<td>4.2 M (3.2%)</td>
<td>2.9%</td>
<td>5.0%</td>
<td>3.8%</td>
</tr>
<tr>
<td>New and recurrent CHD**††</td>
<td>935.0 K</td>
<td>390.0 K</td>
<td>330.0 K</td>
<td>60.0 K</td>
<td>N/A</td>
</tr>
<tr>
<td>New and recurrent MI††</td>
<td>735.0 K</td>
<td>305.0 K</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Incidence, AP (stable angina), 2010‡‡</td>
<td>565.0 K</td>
<td>195.0 K</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Mortality, 2011, CHD</td>
<td></td>
<td></td>
<td>375 295</td>
<td>168 387</td>
<td>145 443</td>
</tr>
<tr>
<td>Mortality, 2011, MI</td>
<td></td>
<td></td>
<td>119 905</td>
<td>53 140</td>
<td>45 576</td>
</tr>
<tr>
<td>HF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012§</td>
<td>5.7 M (2.2%)</td>
<td>3.0 M (2.2%)</td>
<td>2.2%</td>
<td>3.2%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Incidence, 2010 §§</td>
<td>870.0 K</td>
<td>455.0 K</td>
<td>395.0 K</td>
<td>60.0 K</td>
<td>N/A</td>
</tr>
<tr>
<td>Mortality, 2011</td>
<td></td>
<td></td>
<td>58 309</td>
<td>33 700</td>
<td>30 036</td>
</tr>
</tbody>
</table>

AP indicates angina pectoris (chest pain); BMI, body mass index; CHD, coronary heart disease (includes heart attack, AP chest pain, or both); CVD, cardiovascular disease; DM, diabetes mellitus; HBP, high blood pressure; HDL, high-density lipoprotein; HF, heart failure; K, thousands; LDL, low-density lipoprotein; M, millions; MI, myocardial infarction (heart attack); N/A, data not available; and PA, physical activity.

*Age ≥18 years (National Health Interview Survey, 2013).
†Met 2008 full federal PA guidelines for adults.
‡Both sexes (National Health Interview Survey).
§Age ≥20 years.
||All ages.
¶Mortality data for the white and black populations include deaths of people of Hispanic and non-Hispanic origin.
#Total CVD mortality includes deaths of congenital heart disease.
**New and recurrent MI and fatal CHD.
††Age ≥35 years.
‡‡Age ≥45 years.
§§Age ≥55 years.
Table 26-3. Race/Ethnicity and CVD: At-a-Glance Table

<table>
<thead>
<tr>
<th>Diseases and Risk Factors</th>
<th>Both Sexes</th>
<th>Whites</th>
<th>Blacks</th>
<th>Hispanics/Latinos</th>
<th>Asians: Both Sexes</th>
<th>American Indian/Alaska Native: Both Sexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2013*</td>
<td>43.4 M (17.9%)</td>
<td>21.7%</td>
<td>18.7%</td>
<td>21.1%</td>
<td>15.0%</td>
<td>16.6%</td>
</tr>
<tr>
<td>PA†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2013, %*</td>
<td>20.9</td>
<td>22.7</td>
<td>17.7</td>
<td>16.6</td>
<td>18.2</td>
<td>16.6</td>
</tr>
<tr>
<td>Overweight and obesity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overweight and obesity,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI >25.0 kg/m²‡</td>
<td>159.2 M (68.5%)</td>
<td>72.7%</td>
<td>61.2%</td>
<td>69.4%</td>
<td>81.9%</td>
<td>N/A</td>
</tr>
<tr>
<td>Obesity, BMI >30.0 kg/m²‡</td>
<td>81.8 M (35.2%)</td>
<td>34.2%</td>
<td>32.5%</td>
<td>37.9%</td>
<td>57.5%</td>
<td>N/A</td>
</tr>
<tr>
<td>Blood cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol >200 mg/dL‡</td>
<td>100.1 M (42.8%)</td>
<td>39.9%</td>
<td>45.9%</td>
<td>37.4%</td>
<td>40.7%</td>
<td>N/A</td>
</tr>
<tr>
<td>Total cholesterol >240 mg/dL‡</td>
<td>30.9 M (13.1%)</td>
<td>11.5%</td>
<td>15.3%</td>
<td>8.8%</td>
<td>10.9%</td>
<td>N/A</td>
</tr>
<tr>
<td>LDL cholesterol >130 mg/dL‡</td>
<td>73.5 M (31.7%)</td>
<td>29.4%</td>
<td>32.0%</td>
<td>30.7%</td>
<td>33.6%</td>
<td>N/A</td>
</tr>
<tr>
<td>HDL cholesterol <40 mg/dL‡</td>
<td>44.6 M (19.9%)</td>
<td>28.7%</td>
<td>10.2%</td>
<td>20.0%</td>
<td>10.3%</td>
<td>N/A</td>
</tr>
<tr>
<td>HBP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012‡</td>
<td>80.0 M (32.6%)</td>
<td>32.9%</td>
<td>30.1%</td>
<td>44.9%</td>
<td>46.1%</td>
<td>N/A</td>
</tr>
<tr>
<td>Mortality, 2011§</td>
<td>65 123</td>
<td>21 830</td>
<td>27 907</td>
<td>66 10</td>
<td>67 83</td>
<td>16 67</td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physician-diagnosed DM‡</td>
<td>21.1 M (8.5%)</td>
<td>7.6%</td>
<td>6.1%</td>
<td>13.8%</td>
<td>14.6%</td>
<td>N/A</td>
</tr>
<tr>
<td>Undiagnosed DM‡</td>
<td>8.1 M (3.3%)</td>
<td>4.0%</td>
<td>1.7%</td>
<td>4.8%</td>
<td>2.3%</td>
<td>N/A</td>
</tr>
<tr>
<td>Prediabetes‡</td>
<td>80.8 M (35.3%)</td>
<td>43.0%</td>
<td>28.9%</td>
<td>36.3%</td>
<td>27.8%</td>
<td>N/A</td>
</tr>
<tr>
<td>Incidence, diagnosed DM‡</td>
<td>1.7 M</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Mortality, 2011§†</td>
<td>73 831</td>
<td>30 783</td>
<td>27 191</td>
<td>60 648</td>
<td>68 47</td>
<td>2035</td>
</tr>
<tr>
<td>Total CVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012‡</td>
<td>85.6 M (35.0%)</td>
<td>36.1%</td>
<td>31.9%</td>
<td>46.0%</td>
<td>48.3%</td>
<td>N/A</td>
</tr>
<tr>
<td>Mortality, 2011§§</td>
<td>786 641</td>
<td>331 751</td>
<td>340 803</td>
<td>60 608</td>
<td>76 163</td>
<td>17 050</td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012‡</td>
<td>6.6 M (2.6%)</td>
<td>2.2%</td>
<td>2.5%</td>
<td>4.2%</td>
<td>4.7%</td>
<td>N/A</td>
</tr>
<tr>
<td>Mortality, 2011§§</td>
<td>128 932</td>
<td>43 264</td>
<td>65 278</td>
<td>70 739</td>
<td>88 14</td>
<td>3937</td>
</tr>
<tr>
<td>CHD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, CHD, 2012‡</td>
<td>15.5 M (6.2%)</td>
<td>7.8%</td>
<td>4.6%</td>
<td>7.2%</td>
<td>7.0%</td>
<td>N/A</td>
</tr>
<tr>
<td>Prevalence, MI, 2012‡</td>
<td>7.6 M (2.8%)</td>
<td>4.1%</td>
<td>1.8%</td>
<td>3.4%</td>
<td>2.2%</td>
<td>N/A</td>
</tr>
<tr>
<td>Prevalence, AP, 2012‡</td>
<td>8.2 M (3.3%)</td>
<td>3.4%</td>
<td>2.9%</td>
<td>3.3%</td>
<td>5.0%</td>
<td>N/A</td>
</tr>
<tr>
<td>Mortality, 2011, CHD‡†</td>
<td>375 295</td>
<td>180 658</td>
<td>145 443</td>
<td>20 693</td>
<td>18 760</td>
<td>78 28</td>
</tr>
<tr>
<td>Mortality, 2011, MI§†</td>
<td>119 905</td>
<td>58 447</td>
<td>45 576</td>
<td>65 551</td>
<td>62 28</td>
<td>2476</td>
</tr>
<tr>
<td>HF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012‡</td>
<td>5.7 M (2.2%)</td>
<td>2.2%</td>
<td>2.2%</td>
<td>2.8%</td>
<td>3.2%</td>
<td>N/A</td>
</tr>
<tr>
<td>Incidence, 2010§§</td>
<td>870.0 K</td>
<td>365.0 K</td>
<td>395.0 K</td>
<td>50.0 K</td>
<td>60.0 K</td>
<td>N/A</td>
</tr>
<tr>
<td>Mortality, 2011§§</td>
<td>58 309</td>
<td>21 802</td>
<td>30 036</td>
<td>23 71</td>
<td>31 43</td>
<td>727</td>
</tr>
</tbody>
</table>

*Age ≥18 years (National Health Interview Survey, 2013).
†Met 2008 full federal PA guidelines for adults.
‡Age ≥20 years.
§All ages.
¶Mortality data for the white, black, Asian or Pacific Islander, and American Indian/Alaska Native populations include deaths of people of Hispanic and non-Hispanic origin. Death rates for Hispanic, American Indian or Alaska Native, and Asian and Pacific Islander people should be interpreted with caution because of inconsistencies in reporting Hispanic origin or race on the death certificate compared with censuses, surveys, and birth certificates. Studies have shown underreporting on death certificates of American Indian or Alaska Native, Asian and Pacific Islander, and Hispanic decedents, as well as undercounts of these groups in censuses.
¶¶Total CVD mortality includes deaths from congenital heart disease.
#Figure not considered reliable.
**New and recurrent MI and fatal CHD.
††Age ≥35 years.
‡‡Age ≥45 years.
§§Age ≥55 years.

AP indicates angina pectoris (chest pain); BMI, body mass index; CHD, coronary heart disease (includes heart attack, angina pectoris chest pain, or both); CVD, cardiovascular disease; DM, diabetes mellitus; HBP, high blood pressure; HDL, high-density lipoprotein; HF, heart failure; K, thousands; LDL, low-density lipoprotein; M, millions; MI, myocardial infarction (heart attack); N/A, data not available; and PA, physical activity.
Table 26-4. Children, Youth, and CVD: At-a-Glance Table

<table>
<thead>
<tr>
<th>Diseases and Risk Factors</th>
<th>Both Sexes</th>
<th>Total Males</th>
<th>Total Females</th>
<th>NH Whites</th>
<th>NH Blacks</th>
<th>Hispanic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, grades 9–12, 2013*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current cigarette smoking, 2013</td>
<td>15.7</td>
<td>16.4</td>
<td>15.0</td>
<td>19.1</td>
<td>18.1</td>
<td>10.5</td>
</tr>
<tr>
<td>Current cigar smoking, 2013</td>
<td>12.6</td>
<td>16.5</td>
<td>8.7</td>
<td>18.1</td>
<td>8.0</td>
<td>14.0</td>
</tr>
<tr>
<td>Current smokeless tobacco use, 2013</td>
<td>8.8</td>
<td>14.7</td>
<td>2.9</td>
<td>20.6</td>
<td>3.1</td>
<td>4.4</td>
</tr>
<tr>
<td>PA, %†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, grades 9–12, 2013*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met currently recommended levels of PA</td>
<td>27.1</td>
<td>36.6</td>
<td>17.7</td>
<td>37.5</td>
<td>18.7</td>
<td>37.2</td>
</tr>
<tr>
<td>Overweight and obesity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence, 2012‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children and adolescents, ages 2–19 y, overweight or obese</td>
<td>23.7 M (31.8%)</td>
<td>12.2 M (32.0%)</td>
<td>11.5 M (31.6%)</td>
<td>27.8%</td>
<td>29.2%</td>
<td>34.4%</td>
</tr>
<tr>
<td>Children and adolescents, age 2–19 y, obese</td>
<td>12.6 M (16.9%)</td>
<td>6.3 M (16.7%)</td>
<td>6.3 M (17.2%)</td>
<td>12.6%</td>
<td>15.6%</td>
<td>19.9%</td>
</tr>
<tr>
<td>Blood cholesterol, mg/dL, 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean total cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ages 6–11 y</td>
<td>160.2</td>
<td>160.5</td>
<td>159.8</td>
<td>158.6</td>
<td>158.2</td>
<td>163.7</td>
</tr>
<tr>
<td>Ages 12–19 y</td>
<td>158.3</td>
<td>155.2</td>
<td>161.6</td>
<td>155.2</td>
<td>163.2</td>
<td>153.9</td>
</tr>
<tr>
<td>Mean HDL cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ages 6–11 y</td>
<td>53.9</td>
<td>55.4</td>
<td>52.4</td>
<td>55.1</td>
<td>52.5</td>
<td>58.5</td>
</tr>
<tr>
<td>Ages 12–19 y</td>
<td>51.4</td>
<td>49.4</td>
<td>53.4</td>
<td>48.9</td>
<td>52.4</td>
<td>52.6</td>
</tr>
<tr>
<td>Mean LDL cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ages 12–19 y</td>
<td>89.3</td>
<td>88.3</td>
<td>90.3</td>
<td>89.5</td>
<td>91.1</td>
<td>86.7</td>
</tr>
<tr>
<td>Congenital cardiovascular defects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality, 2011§</td>
<td>3166</td>
<td>1725</td>
<td>1441</td>
<td>1342</td>
<td>1117</td>
<td>291</td>
</tr>
<tr>
<td>Mortality data for the white and black populations include deaths of people of Hispanic and non-Hispanic origin.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overweight indicates a body mass index in the 95th percentile of the Centers for Disease Control and Prevention 2000 growth chart. CVD indicates cardiovascular disease; HDL, high-density lipoprotein; LDL, low-density lipoprotein; M, millions; NH, non-Hispanic; and PA, physical activity.

†Physically active at least 60 min/d on all 7 days.

§All ages.
27. Glossary

- **Age-adjusted rates**—Used mainly to compare the rates of ≥2 communities or population groups or the nation as a whole over time. The American Heart Association (AHA) uses a standard population (2000), so these rates are not affected by changes or differences in the age composition of the population. Unless otherwise noted, all death rates in this publication are age adjusted per 100,000 population and are based on underlying cause of death.
- **Agency for Healthcare Research and Quality (AHRQ)**—A part of the US Department of Health and Human Services, this is the lead agency charged with supporting research designed to improve the quality of health care, reduce the cost of health care, improve patient safety, decrease the number of medical errors, and broaden access to essential services. The AHRQ sponsors and conducts research that provides evidence-based information on healthcare outcomes, quality, cost, use, and access. The information helps healthcare decision makers (patients, clinicians, health system leaders, and policy makers) make more informed decisions and improve the quality of healthcare services. The AHRQ conducts the Medical Expenditure Panel Survey (MEPS; ongoing).
- **Bacterial endocarditis**—An infection of the heart’s inner lining (endocardium) or of the heart valves. The bacteria that most often cause endocarditis are streptococci, staphylococci, and enterococci.
- **Body mass index (BMI)**—A mathematical formula to assess body weight relative to height. The measure correlates highly with body fat. It is calculated as weight in kilograms divided by the square of the height in meters (kg/m²).
- **Centers for Disease Control and Prevention/National Center for Health Statistics (CDC/NCHS)**—CDC is an agency within the US Department of Health and Human Services. The CDC conducts the Behavioral Risk Factor Surveillance System (BRFSS), an ongoing survey. The CDC/NCHS conducts or has conducted these surveys (among others):
 - National Health and Nutrition Examination Survey I (NHANES I; 1971–1975)
 - National Health and Nutrition Examination Survey (NHANES; 1999 to …) (ongoing)
 - National Health Interview Survey (NHIS) (ongoing)
 - National Hospital Discharge Survey (NHDS) (1965–2010)
 - National Ambulatory Medical Care Survey (NAMCS) (ongoing)
 - National Hospital Ambulatory Medical Care Survey (NHAMCS) (ongoing)
 - National Nursing Home Survey (periodic)
- **Comparability ratio**—Provided by the NCHS to allow time-trend analysis from one International Classification of Diseases (ICD) revision to another. It compensates for the “shifting” of deaths from one causal code number to another. Its application to mortality based on one ICD revision means that mortality is “comparability modified” to be more comparable to mortality coded to the other ICD revision.
- **Coronary heart disease (CHD)** (ICD-10 codes I20–I25)—This category includes acute myocardial infarction (I21–I22), other acute ischemic (coronary) heart disease (I24), angina pectoris (I20), atherosclerotic cardiovascular disease (I25.0), and all other forms of chronic ischemic (coronary) heart disease (I25.1–I25.9).
- **Death rate**—The relative frequency with which death occurs within some specified interval of time in a population. National death rates are computed per 100,000 population. Dividing the total number of deaths by the total population gives a crude death rate for the total population. Rates calculated within specific subgroups, such as age-specific or sex-specific rates, are often more meaningful and informative. They allow well-defined subgroups of the total population to be examined. Unless otherwise stated, all death rates in this publication are age adjusted and are per 100,000 population.
- **Diseases of the circulatory system** (ICD codes 100–199)—Included as part of what the AHA calls “cardiovascular disease” (“Total cardiovascular disease” in this Glossary).
- **Diseases of the heart**—Classification the NCHS uses in compiling the leading causes of death. Includes acute rheumatic fever/chronic rheumatic heart diseases (100–109), hypertensive heart disease (I11), hypertensive heart and renal disease (I13), CHD (I20–I25), pulmonary heart disease and diseases of pulmonary circulation (I26–I28), heart failure (I50), and other forms of heart disease (I29–I49, I50.1–I51). “Diseases of the heart” are not equivalent to “total cardiovascular disease,” which the AHA prefers to use to describe the leading causes of death.
- **Health Care Financing Administration**—See Centers for Medicare & Medicaid Services.
- **Hispanic origin**—In US government statistics, “Hispanic” includes people who trace their ancestry to Mexico, Puerto Rico, Cuba, Spain, the Spanish-speaking countries of Central or South America, the Dominican Republic, or other Spanish cultures, regardless of race. It does not include people from Brazil, Guyana, Suriname, Trinidad, Belize, or Portugal, because Spanish is not the first language in those countries. Most of the data in this update are for Mexican Americans or Mexicans, as reported by government agencies or specific studies. In many cases, data for all Hispanics are more difficult to obtain.
- **Hospital discharges**—The number of inpatients (including newborn infants) discharged from short-stay hospitals for whom some type of disease was the first-listed diagnosis.
- **Centers for Medicare & Medicaid Services, formerly Health Care Financing Administration**—The federal agency that administers the Medicare, Medicaid, and Child Health Insurance programs.
Discharges include those discharged alive, dead, or “status unknown.”

- **International Classification of Diseases (ICD) codes**—A classification system in standard use in the United States. The **International Classification of Diseases** is published by the World Health Organization. This system is reviewed and revised approximately every 10 to 20 years to ensure its continued flexibility and feasibility. The 10th revision (**ICD-10**) began with the release of 1999 final mortality data. The ICD revisions can cause considerable change in the number of deaths reported for a given disease. The NCHS provides “comparability ratios” to compensate for the “shifting” of deaths from one ICD code to another. To compare the number or rate of deaths with that of an earlier year, the “comparability-modified” number or rate is used.

- **Incidence**—An estimate of the number of new cases of a disease that develop in a population, usually in a 1-year period. For some statistics, new and recurrent attacks, or cases, are combined. The incidence of a specific disease is estimated by multiplying the incidence rates reported in community- or hospital-based studies by the US population. The rates in this report change only when new data are available; they are not computed annually.

- **Major cardiovascular diseases**—Disease classification commonly reported by the NCHS; represents ICD codes I00 to I78. The AHA does not use “major cardiovascular diseases” for any calculations. See “Total cardiovascular disease” in this Glossary.

- **Metabolic syndrome**—Metabolic syndrome is defined* as the presence of any 3 of the following 5 diagnostic measures: Elevated waist circumference (≥102 cm in men or ≥88 cm in women), elevated triglycerides (≥150 mg/dL [1.7 mmol/L] or drug treatment for elevated triglycerides), reduced high-density lipoprotein cholesterol (<40 mg/dL [0.9 mmol/L] in men, <50 mg/dL [1.1 mmol/L] in women, or drug treatment for reduced high-density lipoprotein cholesterol), elevated blood pressure (≥130 mm Hg systolic blood pressure, ≥85 mm Hg diastolic blood pressure, or drug treatment for hypertension), and elevated fasting glucose (≥100 mg/dL or drug treatment for elevated glucose).

- **Morbidity**—Incidence and prevalence rates are both measures of morbidity (ie, measures of various effects of disease on a population).

- **Mortality**—Mortality data for states can be obtained from the NCHS Web site (http://www.cdc.gov/nchs/), by direct communication with the CDC/NCHS, or from the AHA on request. The total number of deaths attributable to a given disease in a population during a specific interval of time, usually 1 year, are reported. These data are compiled from death certificates and sent by state health agencies to the NCHS. The process of verifying and tabulating the data takes ≈2 years.

- **National Heart, Lung, and Blood Institute (NHLBI)**—An institute in the National Institutes of Health in the US Department of Health and Human Services. The NHLBI conducts such studies as the following:

 —Framingham Heart Study (FHS; 1948 to ...) (ongoing)
 —Honolulu Heart Program (HHP) (1965–1997) —Cardiovascular Health Study (CHS; 1988 to ...) (ongoing)
 —Atherosclerosis Risk in Communities (ARIC) study (1985 to ...) (ongoing)

- **National Institute of Neurological Disorders and Stroke (NINDS)**—An institute in the National Institutes of Health of the US Department of Health and Human Services. The NINDS sponsors and conducts research studies such as these:

 —Greater Cincinnati/Northern Kentucky Stroke Study (GCNKSS)
 —Rochester (Minnesota) Stroke Epidemiology Project
 —Northern Manhattan Study (NOMAS)
 —Brain Attack Surveillance in Corpus Christi (BASIC) Project

- **Physical activity**—Any bodily movement produced by the contraction of skeletal muscle that increases energy expenditure above a basal level.

- **Physical fitness**—The ability to perform daily tasks with vigor and alertness, without undue fatigue, and with ample energy to enjoy leisure-time pursuits and respond to emergencies. Physical fitness includes a number of components consisting of cardiorespiratory endurance (aerobic power), skeletal muscle endurance, skeletal muscle strength, skeletal muscle power, flexibility, balance, speed of movement, reaction time, and body composition.

- **Prevalence**—An estimate of the total number of cases of a disease existing in a population during a specified period. Prevalence is sometimes expressed as a percentage of population. Rates for specific diseases are calculated from periodic health examination surveys that government agencies conduct. Annual changes in prevalence as reported in this statistical update reflect changes in the population size. Changes in rates can be evaluated only by comparing prevalence rates estimated from surveys conducted in different years. Note: In the data tables, which are located in the different disease and risk factor categories, if the percentages shown are age adjusted, they will not add to the total.

- **Race and Hispanic origin**—Race and Hispanic origin are reported separately on death certificates. In this publication, unless otherwise specified, deaths of people of Hispanic origin are included in the totals for whites, blacks, American Indians or Alaska Natives, and Asian or Pacific Islanders according to the race listed on the decedent’s death certificate. Data for Hispanic people include all people of Hispanic origin of any race. See “Hispanic origin” in this Glossary.

- **Stroke (ICD-10 codes I60–I69)**—This category includes subarachnoid hemorrhage (I60); intracerebral hemorrhage (I61); other nontraumatic intracranial hemorrhage (I62); cerebral infarction (I63); stroke, not specified as hemorrhage or infarction (I64); occlusion and stenosis of pre-cerebral arteries not resulting in cerebral infarction (I65);...
occlusion and stenosis of cerebral arteries not resulting in cerebral infarction (I66); other cerebrovascular diseases (I67); cerebrovascular disorders in diseases classified elsewhere (I68); and sequelae of cerebrovascular disease (I69).

- **Total cardiovascular disease (ICD-10 codes I00–I99, Q20–Q28)**—This category includes rheumatic fever/rheumatic heart disease (I00–I09); hypertensive diseases (I10–I15); ischemic (coronary) heart disease (I20–I25); pulmonary heart disease and diseases of pulmonary circulation (I26–I28); other forms of heart disease (I30–I52); cerebrovascular disease (stroke) (I60–I69); atherosclerosis (I70); other diseases of arteries, arterioles, and capillaries (I71–I79); diseases of veins, lymphatics, and lymph nodes not classified elsewhere (I80–I89); and other and unspecified disorders of the circulatory system (I95–I99). When data are available, we include congenital cardiovascular defects (Q20–Q28).

- **Underlying cause of death or any-mention cause of death**—These terms are used by the NCHS when defining mortality. Underlying cause of death is defined by the World Health Organization as “the disease or injury which initiated the chain of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury.” Contributing cause of death would be any other disease or condition that the decedent may also have had and that was reported on the death certificate but was not part of the chain of events leading directly to death.
Heart Disease and Stroke Statistics—2015 Update: A Report From the American Heart Association

on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee

Circulation. 2015;131:e29-e322; originally published online December 17, 2014; doi: 10.1161/CIR.0000000000000152

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/131/4/e29

An erratum has been published regarding this article. Please see the attached page for:
/content/131/24/e535.full.pdf
/content/133/8/e417.full.pdf

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/
In the article by Mozaffarian et al, “Heart Disease and Stroke Statistics—2015 Update: A Report From the American Heart Association,” which published online December 17, 2014, and appeared in the January 27, 2015, issue of the journal (Circulation. 2015;131:e29–e322. DOI:10.1161/CIR.0000000000000152), several corrections were needed.

2. On page e117, in the second column, fifth paragraph, the first sentence read, “Data from NHANES 2009 to 2012 showed that …54.1% had their hypertension under control, and 55.9% did not have it controlled.” It has been changed to read, “Data from NHANES 2009 to 2012 showed that …54.1% had their hypertension under control, and 45.9% did not have it controlled.”

3. On page e163, in Table 13-2, in the row for Puerto Rico, the CVD Death Rate and the CHD Death Rate columns read, “179.6” and “80.5,” respectively. They have been changed to read, 178.4 and 78.0, respectively.

These corrections have been made to the current online version of the article, which is available at http://circ.ahajournals.org/content/131/4/e29.full.
In the article by Mozaffarian et al, “Heart Disease and Stroke Statistics—2015 Update: A Report From the American Heart Association,” which published online December 17, 2014, and appeared in the January 27, 2015, issue of the journal (Circulation. 2015;131:e29–e322. DOI: 10.1161/CIR.0000000000000152), a correction was needed.

On page e236, in the left column, under the heading, “In-Hospital Cardiac Arrest,” the second line read, “(See Table 17-3.)” It has been deleted, because Table 17-3 was not included in the 2015 Statistical Update. This correction has been made to the current online version of the article, which is available at http://circ.ahajournals.org/lookup/doi/10.1161/CIR.0000000000000152.

Table 17-3 is included in the “Heart Disease and Stroke Statistics—2016 Update,” which published online December 16, 2015, and appears in the January 26, 2016, issue of the journal (Circulation. 2016;133:e38–e360). It is available at http://circ.ahajournals.org/lookup/doi/10.1161/CIR.000000000000350. Table 17-3 can be found on page e274 of the 2016 Statistical Update.