Vascular Medicine

Fibroblast Growth Factor 21 Prevents Atherosclerosis by Suppression of Hepatic Sterol Regulatory Element-Binding Protein-2 and Induction of Adiponectin in Mice

Zhuofeng Lin, PhD; Xuebo Pan, PhD; Fan Wu, MS; Dewei Ye, PhD; Yi Zhang, PhD; Yu Wang, PhD; Leigang Jin, MS; Qizhou Lian, PhD, MD; Yu Huang, PhD; Hong Ding, MD, PhD; Chris Triggle, PhD; Kai Wang, PhD, MD; Xiaokun Li, MD, PhD; Aimin Xu, PhD

Background—Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive.

Methods and Results—The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E−/− mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E−/− mice, which is accompanied by hyperadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E−/− mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E−/− mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2.

Conclusions—FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels. (Circulation. 2015;131:1861-1871. DOI: 10.1161/CIRCULATIONAHA.115.015308.)

Key Words: adiponectin ■ atherosclerosis ■ fibroblast growth factor 21 ■ hormones

Fibroblast growth factor (FGF) 21 is a member of the endocrine FGF subfamily that is produced predominantly in the liver.1 Physiologically, FGF21 plays a key role in mediating the metabolic responses to fasting/starvation by enhancing fatty acid oxidation and ketogenesis and inducing high glucose resistance.2,3 Pharmacologically, therapeutic intervention with recombinant FGF21 has been shown to counteract obesity and its related metabolic disorders in both rodents and nonhuman primates, including reduction of adiposity and amelioration of hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia, and fatty liver disease.4,5 Furthermore, FGF21 is the downstream target of both peroxisome proliferator-activated receptor (PPAR) α and PPARγ, and a growing body of evidence suggest that the glucose-lowering and insulin-sensitizing effects of the PPARγ agonists (thiazolidinediones) and the therapeutic benefits of the PPARα agonists (fenofibrate) on lipid profiles are mediated in part by induction of FGF21.6

Clinical Perspective on p 1871

FGF21 exerts its metabolic actions by binding to the complex receptor between the FGF receptor (FGFRI) and β-klotho, a single transmembrane protein that is highly expressed in adipose tissue, liver, pancreas, and hypothalamus.4,7,8 Adipocytes are the primary target of FGF21, where it increases glucose

Received October 10, 2014; accepted March 13, 2015.

From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.) and Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.).

The online-only Data Supplement is available with this article at http://circ.ahajournals.orglookup/suppl2011051308/DC1.

Correspondence to Aimin Xu, PhD, Department of Medicine, University of Hong Kong, Lab Block, 21 Sassoon Rd, Hong Kong, China. E-mail axmu@hku.hk and Xiaokun Li, MD, PhD, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035 China. E-mail xiaokunli@wzmc.edu.cn

© 2015 The Authors. Circulation is published on behalf of the American Heart Association, Inc., by Wolters Kluwer. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.115.015308

1861
uptake, modulates lipolysis, enhances mitochondrial oxidative capacity, enhances PPARγ activity, and promotes browning of white adipose tissue. Furthermore, therapeutic administration of FGF21 has been shown to increase the production of adiponectin, an adipocyte-secreted hormone with insulin-sensitizing, anti-inflammatory, and vascular protective activity. Adiponectin knockout mice are resistant to the effects of FGF21 on alleviation of insulin resistance, hyperglycemia, dyslipidemia, and fatty liver disease associated with dietary or genetic obesity, suggesting that adiponectin acts as an obligatory downstream mediator of FGF21 on energy metabolism and insulin sensitivity. In addition, FGF21 has also been shown to exert its direct actions on the pancreas, hypothalamus, heart, and liver, acting as a mediator to coordinate the multiorgan crosstalk under various pathophysiological conditions.

Although the metabolic functions of FGF21 are well characterized, little is known about its pathophysiological roles in atherosclerosis, a chronic inflammatory disease intimately associated with metabolic syndrome. A number of clinical studies have observed an increased circulating level of FGF21 in patients with atherosclerosis or those individuals who are at high risk of developing this disease. In both rhesus monkeys and humans with obesity and diabetes mellitus, chronic administration of FGF21 decreases low-density lipoprotein (LDL) cholesterol and increases high-density lipoprotein cholesterol. However, whether such a beneficial effect of FGF21 on lipid profiles is sufficient to render a protection against atherosclerotic diseases has not been explored. To address this issue, we investigated the impact of both FGF21 deficiency and replenishment on the pathogenesis of atherosclerosis in apolipoprotein (apo) E−/− mice. Our results showed a markedly aggravated atherosclerotic phenotype of FGF21 knockout mice, which can be reversed by replenishment of FGF21. Therefore, we further investigated the mechanisms whereby FGF21 protects atherosclerosis via its multiple actions in both adipose tissue and liver.

Methods

Additional details of mice and experimental procedures are included in the online-only Data Supplement. All of the animal studies were approved by the animal research ethics committees of Wenzhou Medical University and the University of Hong Kong.

Statistical analysis was performed using either the Mann-Whitney U test or the Kruskal-Wallis test when more than 2 experimental conditions were compared. When the global Kruskal-Wallis test was significant, pairwise comparisons were performed with the Dunn-Sidak test or the Kruskal-Wallis test when more than 2 experimental conditions were compared. When the global Kruskal-Wallis test was significant, pairwise comparisons were performed with the Dunn-Sidak test or the Kruskal-Wallis test when more than 2 experimental conditions were compared.

Results

FGF21 Deficiency Accelerates Atherosclerotic Plaque Formation in ApoE−/− Mice

Several clinical studies have observed a significantly elevated serum level of FGF21 in patients with atherosclerosis. Consistently, both circulating levels of FGF21 and its hepatic mRNA expression were progressively elevated in apoE−/− mice with spontaneous development of hypercholesterolemia and atherosclerosis (Figure 1 in the online-only Data Supplement). To explore the pathophysiological roles of FGF21 in atherosclerosis, we investigated the mechanisms whereby FGF21 protects atherosclerosis via its multiple actions in both adipose tissue and liver.

Figure 1. Apolipoprotein (apo) E−/− mice with fibroblast growth factor (FGF) 21 deficiency exhibit exacerbated atherosclerosis and premature death. Aortas were dissected from 24- and 52-week-old apoE−/− mice and apoE−/−FGF21−/− (DKO) mice. n=8 in each group. A, En face staining of entire aortas of 24-week-old mice with oil red O. B and C, Cross-sections of aortic sinuses and brachiocephalic arteries of 24-week-old mice, respectively. D and E, Macrophage infiltration and smooth muscle proliferation in aortic sinuses as determined by immunostaining for F4/80 and α-actin, respectively. F, Cholesterol ester levels in brachiocephalic arteries (BCA) of 24-week-old mice. G, The survival rate of apoE−/− mice (n=20) and DKO mice (n=20) on standard chow was monitored for 18 months. Data are presented as dot plots with the line indicating the median. The Mann-Whitney U test was used for 2-group comparisons (A–F); the survivals of mice were compared using Kaplan-Meier survival analysis with the log-rank test (G).
of FGF21 in atherosclerosis, we generated DKO mice by backcrossing FGF21 knockout mice into apoE–/– mice in C57BL/J background for more than 10 generations. DKO mice were confirmed by both polymerase chain reaction and Western blot analysis of the liver tissue (Figure II in the online-only Data Supplement). There were no obvious differences in food intake and body weight between apoE–/– mice and DKO mice on standard chow (Figure IIIA in the online-only Data Supplement). However, the atherosclerotic lesion area in DKO, as determined by oil red O staining of the entire aorta, was 1.6-fold and 1.8-fold greater at 24 weeks and 52 weeks than age- and sex-matched apoE–/– mice (P<0.01; Figure 1A). Additional histological evaluation showed that the plaque areas in the aortic sinus and brachiocephalic artery of 24-week-old DKO mice were 2.1-fold and 2.9-fold greater than in apoE–/– mice (Figure 1B and 1C). Likewise, both macrophage infiltration and smooth muscle proliferation in the atherosclerotic lesion area of the aortic sinus in DKO mice were significantly higher than in apoE–/– mice (Figure 1D and 1E). Cholesterol ester contents demonstrated a significantly increased expression of the adhesion molecule-1 (ICAM-1) vascular cell adhesion protein-1 (VCAM-1), tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1) in aortic tissue, as well as plasma levels of these proinflammatory chemokines and cytokines, were measured with real-time polymerase chain reaction and ELISA, respectively. n=6 to 7. Data are presented as dot plots with the line indicating the median. The Mann-Whitney U test was used for comparison of 2 groups.

DKO Mice Display Exacerbated Hyperlipidemia and Augmented Inflammation

Because FGF21 is an important metabolic regulator, we next investigated whether the atherosclerosis-prone phenotype of DKO mice is attributed to impaired glucose or lipid metabolism. Glucose and insulin levels were comparable between DKO and apoE–/– mice (Figure IVB in the online-only Data Supplement). A glucose tolerance test showed a similar glucose excursion in response to intraperitoneal glucose challenge (Figure IIC and IID in the online-only Data Supplement). On the other hand, DKO mice exhibited a 1.5-fold and 2.1-fold increase in plasma levels of total triglyceride and cholesterol, respectively (Figure 2A and 2B). Additional analysis of lipoprotein compositions demonstrated a significantly increased LDL and very LDL but decreased high-density lipoprotein levels in DKO mice as compared with apoE–/– controls (Figure 2C through 2E).

Quantitative real-time polymerase chain reaction analysis demonstrated a significantly increased expression of the adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion protein-1 and the proinflammatory cytokines monocyte chemotactic protein-1 and tumor necrosis factor-α in aortic tissues of DKO mice as compared with apoE–/– mice (Figure 2F). Likewise, the circulating levels of these proinflammatory chemokines and cytokines in DKO mice were much higher than those in apoE–/– mice (Figure 2G through 2J), suggesting that FGF21 deficiency exacerbates both local inflammation in atherosclerotic lesions and systemic inflammation.

Similar to the above findings in chow-fed mice, high-fat, high-cholesterol–induced atherosclerotic plaque formation, hypertriglyceridemia, hypercholesterolemia, and production of the proinflammatory cytokines were significantly exacerbated in DKO mice as compared with apoE–/– mice (Figure IV in the online-only Data Supplement), suggesting that FGF21 is also an important protector against Western diet–induced dyslipidemia and atherosclerosis in mice.
FGF21 Exerts Its Antiatherosclerotic Effects via Both Adiponectin-Dependent and -Independent Mechanisms

Adipocytes are the primary target of FGF21, where it induces the expression and secretion of adiponectin, an adipokine with insulin-sensitizing, anti-inflammatory, and antiatherosclerotic activities.23–25 Because the insulin-sensitizing actions of FGF21 are mediated by adiponectin,12,13 we next investigated whether FGF21 exerts its antiatherosclerotic activities via induction of adiponectin. As expected, both circulating levels of adiponectin and its mRNA expression in different adipose depots, including epididymal, subcutaneous, perivascular, and perirenal adipose tissues, were significantly reduced in DKO mice as compared with apoE−/− mice (Figure 3A and 3B). Daily administration of recombinant mouse FGF21 (rmFGF21) for a period of 16 weeks led to higher circulating levels of adiponectin in DKO mice (Figure VA and VB in the online-only Data Supplement), which was accompanied by a significant reduction of atherosclerotic lesion area, as determined by both oil red O staining of the entire aorta and histological quantification of plaque areas between the sinus aorta and brachiocephalic arteries (Figure 3C through 3E). Chronic administration of recombinant mouse adiponectin (Figure VC in the online-only Data Supplement) also alleviated atherosclerotic plaque formation in DKO mice, whereas the magnitude of reduction in atherosclerosis by adiponectin was significantly smaller than that by rmFGF21.

Further histological analysis demonstrated that rmFGF21 and adiponectin caused a similar degree of decrease in collagen composition, smooth muscle proliferation, and macrophage infiltration (Figure 4A). The magnitude of reduction in expression of proinflammatory chemokines intercellular adhesion molecule-1 and vascular cell adhesion protein-1 and cytokines tumor necrosis factor-α and monocyte chemotactic protein-1 was also comparable between rmFGF21- and adiponectin-treated DKO mice (Figure 4B through 4F). However, in adiponectin-treated DKO mice, cholesterol ester contents in brachiocephalic arteries were reduced only by 22%, which was significantly lower than rmFGF21-mediated reduction (56%; Figure 4G). Notably, whereas rmFGF21 decreased total cholesterol in DKO mice to a level comparable with apoE−/− mice, adiponectin had no effect on hypercholesterolemia caused by FGF21 deficiency (Figure 4H), despite that both rmFGF21 and adiponectin had a similar potency in decreasing hypertriglyceridemia in DKO mice (Figure 4I).

We next compared the direct effects of adiponectin and rmFGF21 in several types of blood vessel cells. Consistent with previous reports,26,27 recombinant adiponectin directly inhibited platelet-derived growth factor–induced proliferation and migration of human smooth muscle cells (Figure VIA and VIB in the online-only Data Supplement) and also reduced the uptake of acetylated LDL in peritoneal macrophages (Figure VIC in the online-only Data Supplement). However, rmFGF21 had no direct effect on these cells.

FGF21 Suppresses Cholesterol Biosynthesis and Enhances Cholesterol Efflux in Mice

Because our data suggest that the cholesterol-lowering effects of rmFGF21 are independent of adiponectin, we further explored the mechanisms by which FGF21 modulates cholesterol metabolism in mice. The intestinal absorption of cholesterol, as measured by the fecal dual isotope ratio of [14C]:[3H] in feces, was comparable between apoE−/− mice and DKO mice and was not affected by treatment with either rmFGF21 or adiponectin (Figure 5A). There was a modest but significant decrease in cholesterol contents in the feces of DKO mice,
and this change was reversed by treatment with rmFGF21 but not adiponectin (Figure 5B). On the other hand, the excretion of bile acids into the feces was not altered by either FGF21 deficiency or replenishment with rmFGF21 (Figure 5C). The de novo biosynthesis of cholesterol in the liver, as measured with the amount of [1-14C]-acetate incorporated into sterols in liver, was markedly increased by 1.49-fold in DKO mice as compared with apoE–/– mice, and this augmented cholesterol synthesis was completely rectified by replenishment with rmFGF21 but not adiponectin (Figure 5D). Likewise, hepatic cholesterol accumulation was elevated by FGF21 deficiency but was suppressed by treatment with rmFGF21 (Figure 5E).

We next evaluated the impact of FGF21 on the expression of key genes involved in cholesterol metabolism in the liver. In DKO mice, hepatic expression of 3-hydroxy-3-methylglutaryl-CoA reductase (a rate-limiting enzyme involved in cholesterol synthesis) and several other cholesterologenic genes was significantly elevated when compared with apoE–/– mice, whereas this elevation in DKO mice was inhibited by administration of rmFGF21 but not adiponectin (Figure 6A through 6B). On the other hand, the expression levels of key genes involved in bile acid metabolism and secretion, including cholesterol 7-α-monooxygenase, sterol 27-hydroxylase, sterol 12-α-hydroxylase, and small heterodimer partner, were not altered by either FGF21 deficiency or administration (Figure 6C). DKO mice exhibited a modest elevation in the expression of ABC5 and ABCG8 (Figure 6D), the 2 ATP-binding cassette transporters that promote cholesterol secretion. The reduced expression of ABCG5 and ABCG8 was reversed by replenishment with rmFGF21 but not adiponectin.

FGF21 Inhibits Cholesterol Biosynthesis via Suppression of Sterol Regulatory Element-Binding Protein-2

Cholesterol homeostasis is orchestrated by a number of transcriptional factors, including sterol regulatory element-binding protein (Srebp)-1a, -1c, and -2; liver X receptors; and farnesoid X receptor. We next investigated whether FGF21 modulates cholesterol metabolism via these transcription factors. There was no obvious difference in either mRNA or protein expression of liver X receptor α, farnesoid X receptor, and Srebp-1 between DKO mice and apoE–/– mice (Figure 7A and 7B). In contrast, DKO mice exhibited a marked elevation in both mRNA and protein expression of Srebp-2, and this
Suppressive Effects of FGF21 on Cholesterol Biosynthesis Are Mediated by β-Klotho and FGFR2 in the Liver

FGF21 exerts its actions by binding to FGFR and its coreceptor β-klotho, the latter of which is highly expressed in the liver. To determine whether the regulatory effects of FGF21 on cholesterol homeostasis are attributed to its direct hepatic actions, we generated the β-klotho liver-specific knockout (β-klotho-LKO) mice by intravenous injection of adenovirus-associated virus encoding Cre recombinase into β-klotho-floxed mice (Figure VIIA and VIIB in the online-only Data Supplement). Daily administration of FGF21 significantly decreased high-fat, high-cholesterol diet–induced hypercholesterolemia, which was accompanied by decreased expression of Srebpg-2 and several cholesterologenic genes in β-klotho-floxed mice injected with AAV encoding green fluorescent protein as wild-type control, whereas these effects of FGF21 were largely abrogated in β-klotho-LKO mice. By contrast, the stimulatory effects of FGF21 on adiponectin production were comparable between β-klotho-LKO mice and β-klotho-floxed mice, suggesting that hepatic β-klotho mediates the effects of FGF21 on lowering cholesterol but not on elevating adiponectin levels (Figure VIIIC through VIIIG in the online-only Data Supplement).

Among 4 major subtypes of FGFRs, FGFR1 plays a key role in mediating the FGF21 actions in adipose tissues. However, hepatic expression levels of FGFR1 were hardly detectable (Figure VIIIA in the online-only Data Supplement). Instead, FGFR4 and FGFR2 were abundantly present in the liver, followed by FGFR3. We next explored the role of these FGFRs in mediating the hepatic actions of FGF21 on cholesterol metabolism using adenovirus-mediated knockdown of their expression. Notably, the inhibitory effects of FGF21 on the expression of Srebpg-2 and cholesterologenic genes and hypercholesterolemia were significantly compromised in mice with reduced hepatic expression of FGF21 (Figure VIIIB through VIIIG in the online-only Data Supplement). By contrast, these FGF21 actions on cholesterol metabolism were little affected by knocking down the expression of the other 3 FGFRs despite >70% knocking down efficiency (data not shown). Taken together, these findings suggest that the regulatory effects of FGF21 on cholesterol homeostasis are mediated at least in part by the FGFR2–β-klotho complex.
Atherosclerosis is a chronic inflammatory disease involving multiple cell types at various stages of plaque formation, including endothelial cells, lymphocytes, monocytes/macrophages, and smooth muscle cells. Our histological and immunologic analysis demonstrated that depletion of FGF21 in apoE−/− mice causes a markedly increased endothelial activation (as determined by expression of endothelial adhesion molecules), augmented macrophage infiltration and foam cell formation, exacerbated smooth muscle cell proliferation, and collagen deposition, all of which can be reversed by the replenishment of exogenous rmFGF21, suggesting that FGF21 is able to inhibit almost every key pathogenic event of atherosclerosis. However, these antiatherosclerotic effects of FGF21 are not attributed to its direct actions on the vascular walls but attributed to the ability of FGF21 in the induction of adiponectin in adipocytes and reduction of cholesterol biosynthesis in the liver. In support of this notion, the expression of β-klotho, an obligatory coreceptor of FGF21, is hardly detectable in any type of blood vessel cells (Z.L. and A.X., unpublished data, 2016). Adiponectin by either pharmacological or genetic intervention decreases neointima formation and atherosclerosis in both rodents and rabbits. Adiponectin accumulates in the atherosclerotic lesion area, where it protects the vascular endothelium by promoting nitric oxide and alleviating oxidative stress, suppresses smooth muscle cell proliferation and migration, inhibits macrophage infiltration and foam cell formation, and ameliorates the collagen deposition. In line with these reports, our results demonstrated that adiponectin, but not FGF21, suppresses platelet-derived growth factor–induced proliferation and migration of smooth muscle cells and blocks.
LDL uptake and cholesterol accumulation in macrophages. On the other hand, the exacerbated smooth muscle proliferation and macrophage infiltration in the atherosclerotic plaques of DKO mice can largely be reversed by replenishment with adiponectin. Taken together, these findings suggest that the effects of FGF21 on smooth muscle cells and macrophages in the vessel walls are indirect, mediated in part by the induction of adiponectin.

Dyslipidemia, especially elevated LDL cholesterol, is a major contributor to atherosclerotic plaque formation. The cholesterol-lowering drugs, such as statins, have been used clinically to reduce the risk of coronary heart disease. Therapeutic administration of FGF21 has been shown to alleviate dyslipidemia in rodents, obese monkeys, and patients with type 2 diabetes mellitus, including reductions in total and LDL cholesterol and triglycerides, elevations in high-density lipoprotein cholesterol, and a shift to a less atherogenic apolipoprotein profile. Consistent with these pharmacological studies, our present study showed that FGF21 deficiency in apoE–/– mice causes a further aggravation of hypercholesterolemia and a shift of apolipoprotein profiles from high-density lipoprotein to LDL. Notably, the severe hypercholesterolemia in DKO mice is accompanied by augmented de novo cholesterol biosynthesis and increased expression of several cholesterologenic genes in the liver, suggesting that endogenous FGF21 is a physiological suppressor of hepatic cholesterol production. However, whereas adiponectin replenishment reverses hypertriglyceridemia, it has little effect on hypercholesterolemia and augmented hepatic cholesterogenesis in DKO mice, suggesting that the cholesterol-lowering activity of FGF21 is independent of adiponectin. Given that hepatic FGF21 expression is progressively elevated with the development of hypercholesterolemia in apoE–/– mice, it is possible that FGF21 acts as a sensor of cholesterol overload, which in turn prevents further worsening of hypercholesterolemia via its autocrine inhibition of hepatic cholesterogenesis.

Srebps, which structurally belong to the basic helix-loop-helix-leucine zipper transcription factor family, are the principal regulator of lipid synthesis. Unlike other members of this class of transcription factor, Srebps are synthesized as membrane-bound precursors that require cleavage by a 2-step proteolytic process to release their amino-terminal transactivation domain into the nucleus to bind to a specific DNA.
Figure 8. Fibroblast growth factor (FGF) 21 decreases hypercholesterolemia via inhibition of hepatic sterol regulatory element-binding protein (Srebp)-2. A–C, Apolipoprotein (apo) E−/−FGF21−/− (DKO) mice were infected with adenovirus encoding small interfering RNA (siRNA) specific to Srebp-2 or scrambled control (5×10^8 plaque-forming units per mouse) for various periods. Age-matched apoE−/− mice were used as a control. A, Protein expression levels of hepatic Srebp-2 at day 6 and day 12 after adenoviral infection. B, Circulating levels of total cholesterol (TC) and (C) the expression levels of cholesterologenic genes determined by real-time polymerase chain reaction analysis at day 12 (n=6). D and E, DKO mice were infected with adenovirus encoding Srebp-2 (Ad-Srebp-2) or luciferase (Ad-Luc) for 6 days (as control), followed by treatment with daily intraperitoneal injection of recombinant mouse (rm) FGF21 (0.1 mg/kg per day) for another 6 days. D, The protein expression levels of Srebp-2 in the liver and (E) serum levels of total cholesterol. F, The mRNA expression of cholesterologenic genes at 12 days after adenoviral infection (n=6). Data are presented as dot plots with the line indicating the median. The global significance among 3 groups was determined by Kruskal-Wallis test, followed by pairwise comparisons with the Dunn-Sidak procedure.

sequence (sterol regulatory element) and activate their target genes.28 Hepatic expression and activity of Srebps are tightly regulated at both transcriptional and posttranslational levels by metabolic hormones and nutritional factors.29 Srebp-1a and 1c preferably activate transcription of genes involved in fatty acid synthesis, whereas Srebp-2 displays strong specificity for genes involved in cholesterol biosynthesis.39,40 Our present study demonstrated that the expression and transcriptional activity of Srebp-2, but not Srebp-1, is significantly enhanced by FGF21 deficiency but is markedly suppressed by FGF21 treatment. Furthermore, adenovirus-mediated silencing of hepatic Srebp-2 expression is sufficient to counteract exacerbation of hypercholesterolemia and augmentation of hepatic cholesterol biosynthesis caused by FGF21 deficiency, whereas the therapeutic benefits of systemic FGF21 administration on the inhibition of hepatic cholesterogenesis and reduction of hypercholesterolemia are abrogated by overexpression of Srebp-2. Thus, our study identifies hepatic Srebp-2 as a key intracellular mediator conferring the regulatory effects of FGF21 on cholesterol homeostasis.
differential regulation of Srebp-1 and Srebp-2 has been reported in several previous studies. A high-carbohydrate diet induces the mRNA and protein expression of Srebp-1 but not Srebp-2, whereas dietary cholesterol enhances the expression of Srebp-2 and Srebp-1c but not Srebp-1a. The NAD+-dependent deacetylase sirtuin (Sirt) 6 and FOXO3 suppress the transcriptional activation of the Srebp-2 gene without any obvious effect on Srebp-1. Notably, FGF21 has been shown to form a regulatory loop with Sirt1 to reduce diet-induced fatty liver disease. Additional investigation is warranted to interrogate the role of the sirtuin family members in mediating FGF21-induced suppression of hepatic Srebp-2.

There are several limitations in our study. First, our observations are solely based on rodent models. In light of the fact that there is a difference in lipid metabolism and cardiovascular structure between rodents and humans, the pathophysiological relevance of our findings remains to be confirmed in humanoid large animals (eg, pigs) and in clinical studies. Second, although our data demonstrated the obligatory role of β-klotho and FGF21 in mediating the cholesterol-lowering effects of FGF21 via suppression of Srebp-2 in the liver, the signaling pathways that link the FGF21 receptor with its regulation of cholesterol metabolism need further investigation.

In summary, our present study uncovers the protective effects of FGF21 against atherosclerosis via the induction of adiponectin in adipose tissue, reduction of hypercholesterolemia by suppression of hepatic Srebp-2, and augmentation of cholesterol efflux possibly by increasing ABCG5/8 expression (Figure IX in the online-only Data Supplement). Consistent with our animal data, a recent clinical trial in obese patients with type 2 diabetes mellitus showed that chronic administration of a long-acting form of FGF21 causes a marked elevation of adiponectin and an obvious reduction in total and LDL cholesterol but has little effect on hyperglycemia. Therefore, our present study, together with these clinical data, raises the possibility that FGF21 or its agonists might be more effective for the treatment of atherosclerosis, instead of diabetes mellitus.

Acknowledgments
We thank Dr Ruby C.L. Hoo from the University of Hong Kong Faculty of Medicine for technical assistance.

Sources of Funding
This work was supported by the National Natural Science Foundation of China (Major Program 91439123; General Program 81471075; General Research Fund (784111), Collaborative Research Fund (CUHK2/CRF12G and C7055-14G), and Theme-Based Research Scheme Grant T12-705/11 from the Research Grant Council of Hong Kong; and Qatar National Research Fund (N NPR 6-428-3-113).

Disclosures
None.

References
formation and decreases premature death in apolipoprotein E–/– mice via several mechanisms. First, FGF21 induces the demonstration that the liver-secreted hormone fibroblast growth factor (FGF) 21 potently alleviates atherosclerotic plaque decrease hypercholesterolemia) are often insufficient to block the progression of atherosclerotic disease. In this study, we observed in both cross-sectional and prospective studies on several ethnic groups, may represent the body’s compensatory responses to defend these diseases.

CLINICAL PERSPECTIVE

Atherosclerosis is a chronic inflammatory disease with many risk factors, including obesity, insulin resistance, diabetes mellitus, and dyslipidemia. Therefore, the therapeutic interventions targeting a single risk factor (eg, the use of statins to decrease hypercholesterolemic) are often insufficient to block the progression of atherosclerotic disease. In this study, we demonstrated that the liver-secreted hormone fibroblast growth factor (FGF) 21 potently alleviates atherosclerotic plaque formation and decreases premature death in apolipoprotein E+ mice via several mechanisms. First, FGF21 induces the expression of hepatic sterol regulatory element binding proteins in hamster intestine by changes in cholesterol flux. J Biol Chem. 2001;276:17576–17583. doi: 10.1074/jbc.M501149200.

Fibroblast Growth Factor 21 Prevents Atherosclerosis by Suppression of Hepatic Sterol Regulatory Element-Binding Protein-2 and Induction of Adiponectin in Mice

Zhuofeng Lin, Xuebo Pan, Fan Wu, Dewei Ye, Yi Zhang, Yu Wang, Leigang Jin, Qizhou Lian, Yu Huang, Hong Ding, Chris Triggle, Kai Wang, Xiaokun Li and Aimin Xu

Circulation. 2015;131:1861-1871; originally published online March 20, 2015;
doi: 10.1161/CIRCULATIONAHA.115.015308
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/131/21/1861
Free via Open Access

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2015/03/20/CIRCULATIONAHA.115.015308.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL

Supplementary methods

Mice

FGF21 knockout mice in C57BL/6J background were generated as previously described\(^1\). C57BL/6J apoE\(^{-/-}\) mice were obtained from Jackson Laboratory. ApoE\(^{-/-}\) mice were backcrossed with FGF21\(^{+/+}\) mice for at least ten generations to obtain apoE\(^{-/-}\)/FGF21\(^{+/+}\) mice (namely DKO mice). β-klotho-floxed mice were generated by Shanghai Nanfang Center for Model Organisms, and were used to produce β-klotho liver specific knockout mice (β-klotho LKO) by injecting with adeno-associated virus encoding Cre recombinase (AAV-Cre) under the control of the mouse apoE gene promoter. All the mice were housed in a room at controlled temperature [23±1°C] with a 12 hour light-dark cycle, and had free access to water and standard rodent diet. For the intervention studies, 8-week-old DKO and β-klotho LKO mice were treated with recombinant full-length adiponectin produced from mammalian cells\(^2\) and recombinant mouse FGF21\(^3\) by daily intraperitoneal injection respectively. Glucose and insulin tolerance tests were performed as described previously\(^4\). All the animal studies were approved by the animal research ethics committee of Wenzhou Medical University and the University of Hong Kong.

Analysis of Atherosclerotic Lesions

Oil red O staining was used to assess the size of the atherosclerotic lesion as previously described\(^5,6\) with slight modifications. For en face analyses of lesions in the entire aorta, after perfusion, whole aorta was dissected out, opened longitudinally from heart to the iliac arteries, pinned on a black wax pan, and stained with Oil red O. The images of the aorta were captured using a SONY DXC-970MD color video camera, analyzed with the Image-Pro plus program
(Media Cybernetics, Silver Spring, MD), and presented as the percentage of lesion area in whole aorta.

For analysis of plaque lesion in aortic sinus, the heart and proximal aorta were removed and embedded in optimum cutting temperature compound. Serial 10μm-thick cryosections from the middle portion of the ventricle to the aortic arch were collected. For analysis of lesion in brachiocephalic arteries, serial 10μm-thick cryosections from a 150μm-distance position to aortic arch were collected. Then, cryosections of aortic sinus and brachiocephalic arteries were stained with Oil Red O and hematoxylin. The lipid-containing area on each section was determined in a blinded fashion, using an ocular piece with a 20×20 μm² grid on a light microscope. The average lesion area per aorta, calculated from 5 to 10 sections of each aorta, was determined.

Immunocytochemistry

The cryosections of mouse aortic arches were fixed in acetone and blocked with non-immune rabbit serum, followed by incubation with a rabbit polyclonal antibody against the macrophage marker F4/80 (Abcam, Cambridge, MA) or smooth muscle α-actin (Sigma, St Louis, MO) for 90 minutes. After washing, the sections were incubated with a FITC- or Cy3-labeled secondary goat anti-rabbit antibody for 30min. All the slides were examined under the Olympus biological microscope BX41, and the images were recaptured with an Olympus DP72 color digital camera. Planimetry on the photographed cross-sections was performed using Image-Pro Plus version 5.0.1 (Media Cybernetics, Inc, Bethesda, MD). The lesion areas were defined as an area between the lumen and internal elastic lamina, and the cell contents were presented as the percentage of positive surface areas in the lesion area.

Measurement of Cholesterol/cholesteryl Ester Levels in the Brachiocephalic arteries

The analysis of cholesterol/cholesteryl ester abundance was measured with a commercial kit according to the manufacturer instruction (abcam 65359, Abcam, Cambridge, UK). Briefly, the brachiocephalic artery was dissected free of adventitial tissue, weighed, extracted with 200μl of chloroform: Isopropanol: NP-40 (7:11:0.1) in a micro-homogenizer after weighting, and centrifuged at 15,000 x g for 10 minutes. The organic phase was transferred to a new
tube and air-dried at 50°C followed by vacuum drying for 30 min to remove trace organic solvent. The lipids were then dissolved with 200μl of Cholesterol Assay Buffer. 50ul of the samples or standard cholesterol were incubated with the reaction mixture including cholesterol esterase, cholesterol enzyme mix and cholesterol probe for 60 minutes at 37°C, followed by measurement of absorbance at 570nm with a microplate reader. Data were expressed as μmole cholesterol/cholesteryl ester per g tissue.

Biochemical and Immunological Assays

Plasma lipid profiles including total triglycerides, total-, HDL- and LDL-cholesterol levels were measured with commercial kits from Sigma, (St. Louis, MO). Liver total lipids were extracted with acetone and chloroform/methanol (2/1, v/v) as described7, and total cholesterol levels in the liver were quantified as above and expressed as mg cholesterol per gram liver tissue (wet). Plasma levels of insulin and total adiponectin were measured using immunoassays from Antibody and Immunoassay Services at the University of Hong Kong. MCP-1 and TNF-α concentrations were analyzed with immunoassays from R&D System Inc (Minneapolis, MN).

Measurement of Cholesterol Absorption

Intestinal cholesterol absorption was determined by a fecal dual-isotope ratio method8. Briefly, mice were injected with 2.5 μCi 3H-cholesterol in Intralipid (Sigma, St Louis, MO, USA) via tail vein, followed by oral gavage of 1 μCi 14C-cholesterol in median-chain triglycerides (MCT oil, Mead Johnson, Evansville, IN). Mice were returned to cage with free access to food and water. After 72 h, blood samples were collected and the radioactivity of 14C and 3H were determined by scintillation counting. Intestine cholesterol absorption was determined as the ratio of 14C/3H in 1 ml of plasma.

Hepatic de novo Cholesterol synthesis

Hepatic cholesterol synthesis was determined as previous described9. Mice fasted for 4 hours were intraperitoneally injected with 10 μCi of [1-14C]-sodium acetate (Perkin Elmer, Waltham, MA), and were then sacrificed at 30min after injection to harvest liver tissue. Approximately 250mg of liver tissue was rinsed in ice-cold PBS, and then saponified in 2.2
ml mixture of 50% KOH: 95% ETOH (1:10, v: v) at 70°C overnight. 3H-cholesterol (1 μCi) was added to the same tube as a recovery control. Sterols were extracted with 3 ml hexane, dried and redissolved in 300μl mixture of acetone : ETOH (1:1, v: v), followed by precipitation with 1 ml of digitonin (0.5% in 95% ETOH) overnight at room temperature. The radioactivity of 3H and 14C in the precipitates was determined in a scintillation counter. Cholesterol synthesis rate was expressed as the amount of [1-14C]-acetate incorporated into sterols per minute per gram liver tissue.

Measurement of Fecal Cholesterol and Bile Acids

Feces were collected from individually housed mice over a 3-day period and were dried, weighed, and ground to a powder. Lipids were extracted from feces with chloroform/methanol (2:1), dried, and dissolved with 5% Triton X-100 in isopropanol. Cholesterol contents were quantified using a biochemical assay. For analysis of bile acids, 50 mg of dried feces were added to 2.2 ml ethanolic NaOH (0.08M) and heated (95°C) for 2 h. After cooling, neutral sterols were extracted three times with 5 ml hexane, followed by acidification with 2.5 ml of 0.16M HCl and extraction with 5 ml of ethyl acetate. The dried extract was solubilized in 1.25% Triton X-100 in 20% methanol. Bile acids in each sample were determined with a Bile Acid Assay Kit (Genzyme Diagnostic, Framingham, MA).

RNA Extraction and Real-Time PCR

Total RNA was extracted from liver or adipose tissues with TRIzol reagent (Invitrogen), and complementary DNA was synthesized from 0.5μg total RNA by reverse transcription with an ImProm-II reverse transcription kit (Promega) with random hexamer primers. Quantitative real-time PCR was performed on the Applied Biosystems Prism 7000 sequence detection system, with specific primers described in Supplementary Table 1. The amplification efficiency, as calculated from the slope of each standard curve using the formula $E = 10^{\frac{-1}{Slope}} \times 100$, is between 92 and 105%. The relative expression level of each gene was calculated with the Pfaffl methods as previously described10, using the β-actin gene as the reference control for normalization.
Supplemental materials_FGF21 and atherosclerosis by Lin Z.

Srebp-1 and Srebp-2 DNA Binding Activity Assay
Srebp-1 and -2 DNA binding activities were measured by a commercial kit according to the manufacturer instruction (ab133125 and ab133111, Abcam Cambridge, UK). In brief, approximately 10mg nuclear extracts isolated from liver tissue were added to 96-well microplates coated with a specific double strand DNA (dsDNA) sequence containing with Srebp-1 or -2. The unbound reagents were removed by extensive washing, followed by sequential incubation with a primary antibody against Srebp-1 or -2 for 2 h, and a HRP-conjugated secondary antibody was added and incubated for 30 minutes. After washing, the substrate reagents were added, and the absorbance values at 450nm were measured with a microplate reader.

Construction of Adenoviral Vectors for Knockdown Srebp-2, FGFR2, FGFR3 and FGFR4 or Overexpression of Srebp-2
An adenovirus delivery system was used for knocking down Srebp-2, FGFR2, FGFR3 and FGFR4 expression with small hairpin RNA as well as for overexpression of Srebp-2. The oligonucleotides for generation of siRNA against these genes as well as the corresponding scrambled controls are listed in [Supplementary Table 2](#). The forward and reverse oligonucleotides were annealed, ligated into pENTR/U6 entry vector, and then subcloned into pAd/BLOCK-iT DEST vector through recombination. To construct adenoviral vectors for overexpression of Srebp-2, cDNA encoding amino acids 1–460 of mouse Srebp-2 was inserted into pshuttle-CMV vector, and then subcloned into pAdeasy-1 adenoviral backbone vector (Stratagene) through recombination in Escherichia coli.

To package adenovirus, the adenoviral vectors were linearized with the restriction enzyme PacI and transfected into HEK293 cells using Lipofectamine 2000. After several rounds of propagation, recombinant adenovirus was purified by an AdEasy virus purification kit (Stratagene), and the titer was determined with an endpoint assay as described11.

Smooth Muscle Proliferation and Migration Assays
Human aortic smooth muscle cells (HASMCs) were maintained in a humidified 37 °C and 5% CO₂ environment in OPTI-MEM® supplemented with 10% fetal bovine serum, 0.01 mg/ml
Supplemental materials_FGF21 and atherosclerosis by Lin Z.

insulin, 0.01 mg/ml transferrin, 10 ng/ml sodium selenite, 0.03 mg/ml endothelial cell growth supplement, and 0.05 mg/ml ascorbic acid. Cells were routinely split at a 1:4 ratio, and cultures between the third to eighth passages were used. For proliferation analysis, cells were plated in 24-well plates (8000 and 10000 cells/well for HASMCs) and grown for 24 h. Medium was then replaced with DMEM with 0.1% BSA for 24 h. The medium was subsequently changed to fresh DMEM with 1% fetal bovine serum plus PDGF-BB (10ng/ml), recombinant mouse FGF21 (50ng/ml) and/or recombinant mouse adiponectin (2.0μg/ml). 18 h after incubation, 1 μCi of [methyl-3H] thymidine was added into each well for another 6 h, and the amount of [3H] thymidine incorporated into DNA in each well was determined as we described previously12.

To assess cell migration, a Boyden chamber assay was performed using Transwell chambers (6.5mm, model 3422; Costar, Cambridge, MA, USA) with an 8-mm pore polycarbonate membrane13. Growth-arrested HASMC were harvested, suspended in serum-free DMEM. Cells were added to the upper chamber of the Transwell at 5×10^5 cells in 100 μl/well. A total of 600 μl of serum-free DMEM was added to the lower chamber, followed by treatment with PDGF-BB(10ng/ml), recombinant full-length adiponectin (2.0μg/ml) or recombinant mouse FGF21(50ng/ml) for 24 h respectively. Afterwards, the nonmigratory cells were removed from the upper surface of the membrane by scraping with cotton swabs. Membrane was then fixed with methanol, stained with Diff-Quik solution (Baxter, McGaw Park, IL, USA) and mounted on a glass slide. Migrated cells were counted at x400 magnification in 10 microscope fields per filter.

Analysis of Macrophage Uptake of Acetylated LDL (AcLDL)

AcLDL labeled with the fluorescent probe 3,3,39,39-tetramethylindocarbocyanine perchlorate (Dil-AcLDL) and unlabeled AcLDL were purchased from Biomedical Technologies (Ward Hill, MA 01835 USA). Primary mouse peritonealmacrophages grown in a serum-free RPMI-1640 medium were treated with mouse adiponectin (2.0μg/ml) or rmFGF21(50ng/ml) for 24 h, and were then incubated with 10μg/ml Dil-AcLDL dissolved in RPMI-1640 containing 2% lipoprotein-deficient serum (Sigma, St. Louis, Missouri, USA) for 3 hours. For competition assays, unlabeled AcLDL in excess amounts (50-fold) were added
Supplemental materials_FGF21 and atherosclerosis by Lin Z.

together with Dil-AcLDL. The cells were resuspended in PBS and analyzed using a FACScan flow cytometer (Becton Dickinson). Specific fluorescent intensity was calculated by subtracting autofluorescent intensity from the mean fluorescent intensity of Dil-labeled cells. The uptake of Dil-AcLDL was calculated by subtracting binding in presence of excess amount of unlabeled AcLDL from total binding in absence of unlabeled acLDL, and expressed as fold changes over untreated cells.

Generation of β-klotho Liver specific knockout mice

C57BL/6J mice with the β-klotho gene floxed were generated by Shanghai Nanfang Center for Model Organisms. The targeting construct containing the two loxP sites flanking the exon 2 of the β-klotho gene and the FRT-flanked neomycin selection cassette (supplementary Fig.7A) was electroporated into embryonic stem cells, followed by selection of positive ES clones, microinjection and chimera identification as described previously. Chimeric males were mated with C57BL/6J females for at least 8 generations to produce homologous β-klotho-floxed mice (β-klotho^{fl}) in C57BL/6 background. Genotypes of mice were determined by PCR using the following primers: P1 (5’- TGTTGGGCGCATCTAAAATGG -3’), P2 (5’- GCCAAGACAAACATATTCGGG -3’), which produces a 216-bp fragment for the β-klotho-floxed locus, and a 132-bp fragment for wild-type (WT) locus respectively.

To generate β-klotho liver-specific knockout (Klb-LKO) mice, 1 × 10¹² genomic particles of adeno-associated virus encoding Cre recombinase (AAV-Cre) or green fluorescent protein (AAV-GFP, as wild-type control) under the control of the mouse apoE gene promoter (which drives hepatocyte-specific gene expression) were intravenously injected into β-klotho^{fl} mice as previously reported. After 4 weeks of AAV injection, mice were sacrificed to obtain various tissues for Western blot analysis to obtain liver-specific deletion of β-klotho.

References

2. Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin
alleviates alcoholic and nonalcoholic fatty liver diseases in mice. *J Clin Invest.* 2003;112:91-100

Supplementary Table 1: A list of PCR primers used in this study.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Forward primer 5’ to 3’</th>
<th>Reverse primer 5’ to 3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse adiponectin</td>
<td>AGACCTGGGCCACTTTCCTCCATT</td>
<td>AGAGGAACAGGAGAATGCGACAACA</td>
</tr>
<tr>
<td>Mouse CYP7A1</td>
<td>CTGTGATACCACAAAGTCTTTGCTCA</td>
<td>ATGCTTCTGTTGTCACACATGAC</td>
</tr>
<tr>
<td>Mouse CYP8B1</td>
<td>GCAAAAGAGATTCAAGACCTAC</td>
<td>ATCTCGTGAGGGCAAGG</td>
</tr>
<tr>
<td>Mouse HMGR</td>
<td>TCAGTGAGTTGCTTCCCAAGGACA</td>
<td>TGGAAATGAGCCGTTCAAACCAACC</td>
</tr>
<tr>
<td>Mouse HMGS</td>
<td>GATGAAAGAGCAAGAAGACA</td>
<td>CCTCACAGAGATATTTGTC</td>
</tr>
<tr>
<td>Mouse SHP</td>
<td>CTATTTCTATGCGACTCTTTCAAGC</td>
<td>TGGCAATCGGTGAGGATG</td>
</tr>
<tr>
<td>Mouse ICAM-1</td>
<td>CCACTCCCGGTATATTCGCTTC</td>
<td>AGGTCTTCTGCCTACCTGGTC</td>
</tr>
<tr>
<td>Mouse VCAM-1</td>
<td>TGGGAGACCTCTTACAGGACTT</td>
<td>GCAATCTTCTGTTGACGGG</td>
</tr>
<tr>
<td>Mouse MCP-1</td>
<td>GCAGCGAGCTGTCCTCAAGGACA</td>
<td>ATTTACGGCTGAGCTGCAAATCCAC</td>
</tr>
<tr>
<td>Mouse TNF-α</td>
<td>TCCTCTAGACACACCTCTCCAC</td>
<td>GAGGGGCGGAGAGATTTGCTTCC</td>
</tr>
<tr>
<td>Mouse Faqs</td>
<td>GGAAGGCACTGAGGACGGCAGCAGA</td>
<td>AAGGACGCTGAGGATGAGGAGGAGG</td>
</tr>
<tr>
<td>Mouse Scle</td>
<td>AGGAAGTTTGGGCGCAGGAA</td>
<td>AAACACAATCTGTTGCTACGGG</td>
</tr>
<tr>
<td>Mouse Srepb-1</td>
<td>ACAGCGGTGTGTTGACAGGACGAT</td>
<td>CAGAGAGGAGGCCAGAGAGGAGG</td>
</tr>
<tr>
<td>Mouse Srepb-2</td>
<td>AAGCTCCGGCTGATGTCCCCG</td>
<td>ATCTCGTGAGGATGAGGAGGAGG</td>
</tr>
<tr>
<td>Mouse LXRA</td>
<td>GAGGTGGTGAAGACAGAAGACGCA</td>
<td>GGCGAGACACCGTCTTCCTCC</td>
</tr>
<tr>
<td>Mouse FXR</td>
<td>CTGAGCGCCAGCAGAATCTCCCA</td>
<td>CATCTTCTGCTGCTGCTGCTGCTTCC</td>
</tr>
<tr>
<td>Mouse β-actin</td>
<td>GGCTGTATTCCCTCCTCATCG</td>
<td>CCAGTTGGAACATCGGACGCC</td>
</tr>
</tbody>
</table>

Supplementary Table 2: The oligonucleotides used for construction of adenoviral siRNA for Srebp-2, FGFR2, FGFR3, FGFR4 and scrambled control.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence of oligonucleotides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sh-Srebp-2 (forward)</td>
<td>5'-CAC CGA AGA GTG CTG TAC AAT AACGAA GAG GAA GCC CAT TGA TTA C -3’</td>
</tr>
<tr>
<td>Sh-Srebp-2 (reverse)</td>
<td>5'-AAA AAA GAG TGG ATC TGT ACA ATA ATTCGGG TGA GGC CAT TGG TTA C -3’</td>
</tr>
<tr>
<td>Sh-scramble (forward)</td>
<td>5’-CCCGAATATTATTAAGGGGCAGACAGGCACTTGCTGCGCTTAAATAATT-3’</td>
</tr>
<tr>
<td>Sh-scramble (reverse)</td>
<td>5’-AAAAATATTATTAAGGGGCAGACAGGCACTTGCTGCGCTTAAATAATT-3’</td>
</tr>
<tr>
<td>Sh-FGFR4(forward)</td>
<td>5’-CAC CGAGCGCGACACAAAGACAAUCAUCGAAGAGGAA GAG GGC CAT TGG TTA C -3’</td>
</tr>
<tr>
<td>Sh-FGFR4(reverse)</td>
<td>5’-AAA AAAAAGUGAUGUUGUUGUUGUGCGTTCGCTGCTGCGCTTAAATAATT-3’</td>
</tr>
<tr>
<td>Sh-Srebp-2 (forward)</td>
<td>5’-CAC CGAAGGAGACACGACGGAATTCGCTGCGCTTAAATAATT-3’</td>
</tr>
<tr>
<td>Sh-Srebp-2 (reverse)</td>
<td>5’-AAA AAAAAGUGAUGUUGUUGUUGUUGUGCGTTCGCTGCGCTTAAATAATT-3’</td>
</tr>
<tr>
<td>Sh-scramble (forward)</td>
<td>5’-CCCGAATATTATTAAGGGGCAGACAGGCACTTGCTGCGCTTAAATAATT-3’</td>
</tr>
<tr>
<td>Sh-scramble (reverse)</td>
<td>5’-AAAAATATTATTAAGGGGCAGACAGGCACTTGCTGCGCTTAAATAATT-3’</td>
</tr>
<tr>
<td>Sh-FGFR3(forward)</td>
<td>5’-CAC CGAACAGAAGAGCCAGGAGAAATTCGCTGCGCTTAAATAATT-3’</td>
</tr>
<tr>
<td>Sh-FGFR3(reverse)</td>
<td>5’-AAA AAAAAGUGAUGUUGUUGUUGUUGUGCGTTCGCTGCGCTTAAATAATT-3’</td>
</tr>
<tr>
<td>Sh-Srebp-2 (forward)</td>
<td>5’-CAC CGAACAGAAGAGCCAGGAGAAATTCGCTGCGCTTAAATAATT-3’</td>
</tr>
<tr>
<td>Sh-Srebp-2 (reverse)</td>
<td>5’-AAA AAAAAGUGAUGUUGUUGUUGUUGUUGCGTTCGCTGCGCTTAAATAATT-3’</td>
</tr>
</tbody>
</table>
Supplemental Figure 1. Dynamic changes in circulating levels and hepatic mRNA expression of FGF21 in apoE⁻/⁻ mice and C57BL/6J mice. The tissue samples were collected at 4-, 12- and 24-week-old male mice. (A) Serum levels of FGF21 measured with an immunoassay. (B) The mRNA expression level of FGF21 in the liver as determined by real-time PCR. n=6. Data are presented as dot plots with the line indicating the median. Statistical analysis was performed using repeated measure ANOVA.
Supplemental Figure 2. Genotyping of FGF21-/-apoE-/- (DKO) mice. FGF21 KO mice were generated by replacing most of exon 1 and all of exons 2 and 3 of the FGF21 gene with the IRES-LacZ-polyA/PGK-neo cassette. Genotypes of mice were determined by PCR using the following primers: P1-Fgf21 (5'-GACTGTTCAGTCAGGGATTG-3'), P2-Fgf21 (5'-CCCGTGATATTGCTGAAGAG-3'), and P3-Fgf21 (5'-ACAGGGTCTCAGGTTCAA AG-3'). P1 and P3 produced a 541-bp fragment of the wild-type (WT) Fgf21 locus. P2 and P3 produced a 243-bp fragment of a mutant Fgf21 locus. Genotypes of apoE-/- mice were determined by PCR using the following primers: P1-apoE (5'-TAT CTA AAC AGACTCACAGCCTCAGGATG-3'), P2-apoE (5'-GACTGGGCACA ACA GAC AAT CGG CTG CTCT-3'), and P3-apoE (5'-ACAGGGTCTCAGGTTCAA AG-3'). P1 and P3 produced a 400-bp fragment of the wild-type apoE locus. P2 and P3 produced a 600-bp fragment of a mutant apoE locus. (A) Representative PCR genotyping results. (B) Confirmation of FGF21 protein deficiency in the liver tissue of DKO mice by immunoblotting analysis.
Supplemental Figure 3. FGF21 deficiency does not influence body weight, glucose tolerance and insulin sensitivity in apoE−/− mice. DKO and apoE−/− mice on standard chow were monitored for (A) body weight, (B) glucose and insulin levels, (C,D) Glucose and insulin tolerance tests were performed at 19 and 20 weeks after birth respectively. n=6. Data are presented as mean ± SEM (A, C and D) or dot plots with the line indicating the median (B) .
Supplemental Figure 4. FGF21 deficiency exacerbates HFHC diet-induced atherosclerosis, hyperlipidemia and inflammation. 8-week-old apoE⁻/⁻ mice or DKO mice were fed with HFHC diet for a period of 12 weeks. STC-fed apoE⁻/⁻ mice were included as a control. (A) En face staining of entire aortas with Oil red O. (B) Quantification of aortic plaque areas. (C-G) Serum lipid profiles, including triglycerides (TG), total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL), cholesterol, very low density lipoprotein (VLDL). (H,I) Serum levels of MCP-1 and TNF-α. n = 6-8. ***, p<0.001 vs. vehicle. Data are presented as dot plots with the line indicating the median. The global significance among three groups was determined by Kruskal-Wallis test, followed by pairwise comparisons with a Dunn-Sidak procedure.
Supplemental Figure 5. Circulating levels of FGF21 and adiponectin in DKO mice after intraperitoneal administration of recombinant mouse FGF21 or adiponectin. Serum samples were collected every hour until 6 hours after DKO mice were intraperitoneally injected with FGF21 (0.1 mg/Kg.day), adiponectin (10 mg/Kg.day) or PBS as vehicle control. (A-B) Serum levels of FGF21 and adiponectin at different time points after injection with FGF21. (C) Changes in serum levels of adiponectin at different time points after injection with FGF21. Note that serum FGF21 is not detectable in DKO mice. n = 5. ***, p<0.001 vs. vehicle. Data are presented as mean ± SEM. Repeated measure ANOVA was used for comparison between two groups at each time points.
Supplemental Figure 6. Adiponectin, but not FGF21, directly suppresses smooth muscle cell proliferation and migration, and LDL uptake of macrophages. (A,B) Human aortic smooth muscle cells were treated with PDGF-AA (0.1μg/ml), adiponectin (ADN, 2.0μg/ml) or recombinant mouse FGF21 (50ng/ml) for 24 hours. The cell proliferation (A) and migration (B) was determined by ³H-thymidine incorporation assay and a modified Boyden chamber assay described in respectively. (C) Primary mouse peritoneal macrophages were treated with ADN (2.0μg/ml), recombinant mouse FGF21 (50ng/ml) or vehicle (PBS) for 24 hours, loaded with Dil-AcLDL (10μg/ml). The uptake of Dil-AcLDL was determined by flow cytometry as described in the method, and expressed as fold changes over untreated cells. n = 5. Data are presented as dot plots with the line indicating the median. The global significance among three groups was determined by Kruskal-Wallis test, followed by pairwise comparisons with the Dunn-Sidak procedure.
A

Exon

WT

Klb-floxed

AAV- Cre

Klb-LKO

B

Liver

WT

Klb-LKO

β-klotho

β-actin

WAT

β-klotho

β-actin

C

Week 8

Week 14

Week 16

Liver

DNA binding

Gene expression

Serum

Cholesterol

Adiponectin

Klb-floxed C57BL/6J mice

AAV-Cre / AAV-GFP

rmFGF21 (daily i.p. administration)

Sacrificing

HFHC diet

D

Stebp-2 mRNA levels

(fold change)

FGF21

WT

Klb-LKO

p=0.002

E

DNA binding activity

(fold change)

FGF21

WT

Klb-LKO

p=0.001

F

Relative mRNA levels

(fold change)

HMGCR

Fdeps

HMGCS

WT

WT+FGF21

Klb-LKO

Klb-LKO+FGF21

p=0.013

p=0.009

p=0.012

G

Cholesterol (mg/dl)

FGF21

WT

Klb-LKO

p=0.001

H

Adiponectin (μg/ml)

FGF21

WT

Klb-LKO

NS
Supplemental Figure 7. The inhibitory effects of FGF21 on cholesterol biosynthesis are abrogated by liver-selective depletion of β-klotho. (A) Strategies for generating β-klotho liver-specific knockout mice (Klb-LKO) in C57BL/J background. 8-week-old β-klotho-floxed mice (Klb-floxed) were intravenously injected with 1×10^{12} genomic particles of adeno-associated virus encoding Cre recombinase (AAV-Cre) to delete the exon-2 region floxed with the two loxp sites for generation of β-klotho-LKO, or AAV encoding GFP as a wild-type (WT) controls. (B) Western blot analysis to confirm the specific deletion of β-klotho in the liver tissue in β-klotho-LKO mice, after 4 weeks of injection with AAV encoding Cre recombinase. Note that β-klotho remains unchanged in epididymal white adipose tissue (WAT) of Klb-LKO mice. The deletion of β-klotho can sustain for over 30 weeks after injection with AAV-Cre recombinase (data not shown). (C) A schematic diagram showing the study design for panel D-H. (D) The relative expression levels of Srepb-2 in the liver. (E) The DNA binding activities of Srebp-2 in the nuclear extracts of liver tissues. (F) The relative mRNA expression levels of genes involved in cholesterol synthesis including HMGCR, HMGCS and Fdps. (G) Serum total cholesterol levels. (H) Circulating levels of adiponectin. NS, not significant. n = 7. Data are presented as dot plots with the line indicating the median. Statistical analysis was performed with two-way ANOVA (D-H).
Supplemental Figure 8. Hepatic FGFR2 is involved in FGF21-mediated suppression of Srebp-2, expression of cholesterologenic genes and hypercholesterolemia. (A) The relative mRNA expression levels of the four FGFRs in the liver tissues of 12-week-old male C57BL/6J mice. (B-G) 10-week-old C57BL/6J mice on HFHC diet were intravenously injected with 1x10⁹ p.f.u of adenovirus encoding siRNA specific to FGFR2 (Ad-siR2) or scramble control (Ad-scramble) for 7 days, followed by daily intraperitoneal administration of rmFGF21 (0.1 mg/Kg) for another 7 days. (B, C) The relative mRNA and protein expression of FGFR2 in the liver at 14 days after the adenoviral administration. (D,E) The relative mRNA levels and DNA binding activities of Srebp-2 in the nuclear extracts of liver tissues. (F) The relative mRNA expression levels of genes involved in cholesterol synthesis including HMGCR, HMGCS and Fdps. (G) Serum total cholesterol (TC) levels. n = 6. Data are presented as dot plots with the line indicating the median. Statistical analysis was performed with Mann-Whitney U test (B) or two-way ANOVA (D-G) to compare two groups or multiple groups respectively.
Supplemental Figure 9. The proposed mechanism whereby FGF21 suppresses atherosclerosis via induction of adiponectin (ADN) and suppression of Srebp-2.