Coarctation and recoarctation of aorta have been treated successfully with endovascular therapy, including balloon angioplasty or stent angioplasty, for >3 decades. After successful surgical repair reported by Crafoord and Nylin, the concept of angioplasty in the coronary arteries reported by Gruntzig et al opened up a new strategy of treatment of native and recoarctation.

The Cheatham-Platinum (CP) stent has a unique design with apposing the disrupted intima at the site of the coarctation. Over time, stent angioplasty became a natural progression of an endovascular interventional strategy. The stent, apart from reducing the risk of recoarctation, also arguably reduces the risk of aneurysm formation by apposing the disrupted intima at the site of the coarctation.

The basic principle of disruption of the aortic wall with a tear in the intima extending to the media remains the mechanism of relief of coarctation. Over time, stent angioplasty became a natural progression of an endovascular interventional strategy. The stent, apart from reducing the risk of recoarctation, also arguably reduces the risk of aneurysm formation by apposing the disrupted intima at the site of the coarctation.

With the advent of stent angioplasty, the material properties, designs, and advantages and disadvantages of stents became important topics for discussions, publications, and research. The balloon-expandable, stainless steel, slotted-tube stents were the first to be used as off-label devices in aorta when designed primarily for renal and peripheral interventions. Although the short-term hemodynamic results were acceptable, the risk of aortic aneurysm formation, early or late, and of aortic disruption or rupture remained a major risk.

In addition, at larger diameters, these stents shorten by >20%. The double-strut design was then considered to be a better design that would not shorten and would be flexible to go around curves. The strength of this design, however, was not good enough to withstand the compressive stresses.

The Cheatham-Platinum (CP) stent has a unique design with platinum-iridium wires welded together rather than slotted stainless steel tubes. The rounded edges of these wires are less traumatic to the edges of the vessel that is stented. It was designed to be used in large vessels such as the aorta and to allow dilatation to larger dimensions with limited shortening.

Against this background, the accompanying report by Meadows and colleagues in this issue of Circulation describes intermediate outcomes for the Coarctation of Aorta Stent Trial (COAST) trial patients. In the previous iteration, the investigators reported the short-term hemodynamic results after use of a CP stent for native and recoarctation. There were the expected improvements in the diameter of the aorta, gradient across the coarctation, and upper- and lower-extremity blood pressure gradient. The complication rates defined as adverse events were higher, probably as a result of the prospective nature of the trial compared with a previous study by the Congenital Cardiovascular Interventional Study Consortium (CCISC). However, the procedure-related events are acceptably low. The occurrence of aneurysms or tears described as aortic wall injury is interesting, considering that a compliance testing with a low-pressure balloon (2–4 atm) led to this injury and exclusion and transfer to the COAST II trial with covered CP stents.

The intermediate outcome over a period of 2 years with 86% follow-up shows sustained improvement of upper- and lower-extremity gradients. At the 1-year follow-up, 19% remained hypertensive, and 28% continued to receive antihypertension medications, which remained unchanged at 2 years. With a median age of 16 years and a wide range of ages within the cohort, it is difficult to draw any conclusions on the risk of persistent hypertension and the use of medications. One of the commonest late sequelae of coarctation itself rather than its treatment strategy is systemic hypertension. Unless a selected group of patients is followed up meticulously over the long term, we may never have an answer to whether surgery or catheter intervention provides better relief from late systemic hypertension.

The fact that 4 patients who were thought to have minor vascular injuries, and confirmed by the core laboratory, ended up having a covered CP stent further highlights the low thresholds that operators have to use covered stents to prevent the progression of such a lesion. The current practice in most European centers of using a covered stent for interventional treatment of coarctation in patients >30 kg also emphasizes this concern. With such a low incidence of major aortic wall injury with the use of bare metal stents, it will be difficult to show clear superiority of the covered CP stent in the current era of stent angioplasty of coarctation.

Indeed, this was clearly shown in the recent study by Sohrabi and colleagues, who randomized 120 patients with native coarctation to receive a bare or a covered CP stent with successful relief of obstruction in all patients. There was a small increased risk of recurrent obstruction in the bare CP
stent group, and paradoxically, the only patient who had aortic wall injury was in the covered CP stent group. Although computed tomography was used to look for aortic wall injury 6 months after the procedure, the investigators did not look for the incidence and severity of stent fractures. Various other reports of stent angioplasty for coarctation that include the use of CP stents, covered and bare, show very good relief of obstruction and a low incidence of aortic wall injury. Similarly, in the accompanying report, it remains to be seen whether a covered stent would be necessary for all coarctations. Nevertheless, the report serves the purpose of showing the safety and outcome of the CP stent for angioplasty.

One of the concerns with end-to-end anastomosis-type repair is the growth of the transverse arch. Although earlier articles reported adequate growth after relief of coarctation, the long-term follow-up is disappointing. Furthermore, the incidence of hypertension in patients with mild to moderate hypoplasia of the transverse arch is a cause for concern. Stent angioplasty of coarctation in principle deals with the discrete obstruction in the proximal descending aorta. The transverse arch being a hypoplastic arterial segment between the 2 carotids is tiger territory for interventional cardiologists. In addition, late-presenting native coarctations have variable underdevelopment of the transverse arch related to the asymmetrical collateral development from the subclavian arterial systems. This would remain one of the greatest limitations of stent angioplasty as a treatment option for coarctation in older children and adults.

Whether a more aggressive strategy of transverse arch augmentation during neonatal surgical intervention would improve the transverse arch in the long term remains to be seen. In addition, the potential calcification or stiffening of the material used to enlarge the arch and its impact on aortic wall properties need to be kept in mind. Similarly, the impact of a stent in an aortic segment may also contribute to altered aortic wall properties.

The safety and efficacy of stent angioplasty for native and recoarctation are well documented in various clinical studies of different designs. The important questions about the best strategy to reduce the lifetime burden of systemic arterial hypertension and its consequent sequelae will need meticulous long-term follow-up data. Sadly, in the field of congenital cardiology, this remains one more area where we have hastened to draw conclusions from relatively short-term data for a disease that has lifetime manifestations with a major impact on survival.

Disclosures

None.

References


Key Words: Editorials • aortic coarctation • hypertension • stents
Is the Coast Clear for Stent Angioplasty of Coarctation?
Sachin Khambadkone

_Circulation_. 2015;131:1643-1644; originally published online April 13, 2015; doi: 10.1161/CIRCULATIONAHA.115.016378

_Circulation_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/131/19/1643

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/